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Abstract— This work concerns the observer-based control of
a remote, Master-Slave system through the Internet network.
This communication link introduces variable, asymmetric and
unpredictable delays. The data-sampling effects are also taken
into account, even in the aperiodic case. Previous strategies
were requiring additional buffers, allowing the delay to become
constant but greater and that the Slave and the Master share
the same clock. In this article, these assumptions are not
longer required. Thanks to an adequate Lyapunov-Krasovskii
functional, the present result uses the information as soon as
received. The proposed LMI ensure the asymptotic stability
of the global closed loop system. The maximum admissive
synchronization error is also computed. The last part of the
paper provides an example where the Slave is a second-order
system.

I. INTRODUCTION AND HYPOTHESES

Internet technology appears as a natural and cheap way
to ensure the communication link in remotely controlled
systems [1]. Today, the available Quality of Service is
often good enough for that kind of applications. How-
ever, such a communication link constitutes an additional
dynamical system, which great influence on stability was
already mentioned in the 60’s [5]. Indeed, several dynamics
and perturbations (communication delay, real-time sampling,
packet dropout and synchronization errors) are unavoidably
introduced and have to be taken into account during the
design of the control/observation loop.

In the literature, many authors assume that the nodes of
the NCS are synchronized [11]. However the synchronization
is an fundamental issue of NCS since ensuring several
nodes re synchronized is not easy and some error in it may
reduce the performances of the controller [6]. The article
focusses on the lake of time-synchronization and provides a
robust controller for continuous networked control systems
with synchronization error and to parameter uncertainties.
A time-delay representation which takes into account the
transmission delays, the sampling and the synchronization
errors.

Previous works [8], [20] have shown that both sampling
effects and communication time lags can be regrouped into
a time-varying delay, homogenized representation. Recently
this article was extended to solve the stabilization of the
Master-Slave systems under packet loss [21]. The present
study aims at including the effect of synchronization error
on this unifying model. Once the global system is reduced to
a system with time-varying delays, several control techniques
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can be involved (see for instance [14], [18]). Here, an
observer-based instantaneous state feedback will be used.
But, before presenting the details, a short overview of
previous results will highlight the various assumptions on
the communication delays h1(t) (from Master to Slave) and
h2(t) (from Slave to Master).

Several works on tele-operation introduced the question
of transmission delays in the constant case [2], [4], [16].
However, in networked control situations, the delays are ba-
sically variable (jitter phenomenon) and unpredictable. This
is a source of problem when the classical predictor-based
controllers are intended to be applied. These techniques
generally need the constant delay, i.e. hi(t) = hi.

In the case of variable delays, some researches have
used independent-of-delay conditions. Because such i.o.d.
conditions may be conservative in general, particular cases
such as constant or symmetric delays were considered [3].
These assumptions refers to the case where the transmission
delays are equal, i.e. h1(t) = h2(t) = R(t)/2, where R(t)
denotes the round trip time (RTT). In [10] non-symmetric
delays are considered, but only in the constant delay case,
i.e. h1(t) = h1 6= h2(t) = h2.

Another interesting approach was recently given in [22],
which generalized the predictor techniques to the case of
variable delays. In this case, a maximal bound of the delays is
assumed to be known (hM such that 0≤ h(t)≤ hM), which is
not that restrictive. The most constraining assumption is that
a dynamical Ordinary Differential Equation (ODE) model of
the delay is supposed to be available, which is possible in
the case of a single-owner network.

When using Internet, the generated delays are not only
time-varying and non-symmetric, but also unknown (no
dynamical model of the delays is available, see [15]). To
bypass this problem, it was proposed [12], [13], [17] to
introduce two input buffers (Master and Slave) that make
both the receivers wait until the maximum value hM of
the communication delay is reached. However, it is obvious
that this situation maximizes the delays h1(t) and h2(t)
up to their worst (largest) value (i.e., h1(t) ↪→ hM and
h2(t) ↪→ hM) and, consequently, decreases the possible range
of speed performance. To reduce this maximizing effect, [20]
restricted the buffer to the only transmission from Master
to Slave (thus, h1(t) ↪→ hM), while the remote observer
was computing the present Slave’s state on the basis of
the non-buffered Slave’s information. The stabilizing gains
were designed via some Lyapunov-Krasovskii functionals
and, moreover, a guaranteed speed rate was computed. A
first original contribution of the present study is to get rid
of any buffer. We only assume the (non-symmetric) delays
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to have known minimal and maximal bounds hm and hM , so
that the following holds:

A1 (maximal allowed delay) : hm ≤ hi(t)≤ hM. (1)

Since we aim at limiting the value of hm, the use of UDP
(User Datagram Protocol) is preferred to TCP (Transmission
Control Protocol), the reliability mechanisms of which may
needlessly slow down the feedback loop. In return, some data
packets can be lost during the transmission, without being
re-emitted. This phenomenon was treated in [21] and will
not be treated in this article.

The synchronization of the Slave and Master clocks is not
assumed to be achieved. It means that the time tS given by the
Slave clock and the time tM delivered by the Master clock
do not have the same sense. For instance, if the reference
time is assumed to be given by the Slave, it means that
tM = tS + ε(t) where ε corresponds to a time-varying error
of synchronization. We take the following evaluation:

A2 : T he synchronization errors is time− varying
but bounded : |ε(t)| ≤ ε̄

(2)
The proposed method will allow for computing some admis-
sible (in the sense: non destabilizing) value of ε̄ .

An other feature of Internet is that the packets are not
always arriving in their chronological emission order, while
UDP does not automatically re-organize them. Then, the
reception function of Master and Slave will be added a re-
ordering mechanism, based on some “time-stamps” added
in the control and measurements packets. This additional
mechanism implies that the transmission delay variation
satisfies:

A3 (packet reordering) : ḣi(t) < 1. (3)

The last disturbance implied by the network comes from
samplers and zero-holders needed for a discrete-time im-
plementation. Following the lines of [8], we consider they
produce an additional variable delay t− tk, where tk is the
kth sampling instant. Moreover, because of the computer
architecture and operating system, the sampling is generally
not periodic, i.e. there is no exact period T such that tk = kT .
So, we only assume there exists a known maximum sampling
interval T so that:

A4 (max. sampling interval) : 0≤ tk+1− tk ≤ T. (4)

The global delays resulting from the communication-plus-
sampling phenomena will be denoted by δi(tk)= hi(t)+t−tk,
for which the condition δ̇i(t) ≤ 1 holds. Note that the limit
case δ̇i = 1 occurs.

The paper is organized as follows. Section II describes the
remote system features. Section III considers the problem
of robust stability with respect to synchronization errors.
Section IV gives an illustrative example and Section V
proposes some concluding remarks.

II. FEATURES OF THE REMOTE SYSTEM

For the sake of simplicity, the Slave is considered to fit
a linearized model. The exchanged data correspond to the
control (sent by the Master to the Slave) and to the output
of the remote system (sent by the Slave to the Master). The
Slave is not supposed to have a large computation power and
its functions are limited to: receive control packets, apply
control, send output measurement data. Thus the control
and observation complexity is to be concentrated in the
Master which has to: receive output measurements, estimate
present state of Slave, compute and send the control value.
Our purpose is to guarantee the asymptotic stability of
the global Master-Slave system. In particular, the global
system must ensure the closed-loop stability whatever the
delay, the errors in the synchronization and the possible
aperiodicity of the real-time sampling processes.The stability
must be robust with respect to the resulting, global delay.
This property will be proven by using adequate Lyapunov-
Krasovskii functionals, leading to an LMI optimization of the
controller and observer gains. The system has the features
which are exposed in Fig.1 and explained in the sequel:

Task Controller
Implementation

Card

Sensors

Master Slave

B0

B0Observer

 

Fig. 1. Structure of the remote system under time-varying delays, samplings
and synchronization errors.

• The Master computes and forwards the control to the
Slave. The forwarding cannot be instantaneous. It in-
duces a time-varying delay h1(t), assumed to satisfy A1
and (thanks to packet re-ordering) A3, with synchro-
nization error for which A2 holds, as well as sampling
effects which create the variable delay τ1(t) satisfying
A4.

• The Slave is driven by a controllable and observable,
known model (A,B,C), influenced by an input delay
δ1(t) to be defined later on in subsection II-D:

{
ẋ(t) = Ax(t)+Bu(t−δ1(t)),
y(t) = Cx(t). (5)

• The Slave measures its sampled output variables y, that
the Master receives after a delay h2(t) which is assumed
to belong to the same interval (see A1). This assumption
is not restrictive since it is obtained by the union of
the intervals of variation of h1 and h2. The delay τ2(t)
due to the sampling is added. It means that the Master
only can access y(t − δ2(t)), where δ2 corresponds to
the resulting delay. The Master includes an observer for
estimating x̂ of the complete Slave state x at the present
time. Based upon this estimation, the Master elaborates
the control law.
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• The sampling instants tk may not be periodical i.e. tk 6=
kT , but it is supposed there exists a known T such that
A4 holds for any k.

• Instead of [20], both Master and Slave subsystems are
not synchronized anymore, i.e. they do not share a
common clock. However and lead each data packet
includes an added time-stamp which corresponds to the
time the packet was sent. By this way, the receiver can
calculate an estimation of the transfer delays hi(t) as
soon as it receives the packet but this estimation has an
error ε(t) .

In the sequel, it is assumed that the reference clock is given
by the Slave. The next subsections detail the features and
notations.

A. The sampling delays

From a practical viewpoint, the system (including the con-
troller, the observer, the network and the process) cannot be
considered as a continuous-time one. Exchanging packets be-
tween Slave and Master in continuous time would mean that
the network has a large bandwidth. Then, the packets only
give discrete-time information. The corresponding sampling
effect represents a possible disturbance to the stabilization
and must be taken into account in the observer and contin [8],
[19] such sampling effects is considered as continuous-time
phenomena with variable time delays. Indeed, the sample
g(tk) of a function g(t) at time tk can be written as g(tk) =
g(t− [t−tk]) = g(t−τ(t)); This notation replaces the sample-
and-hold with an additional delay τk(t) = t− tk, t ∈ [tk, tk+1[.
Thus, an aperiodic sampling is modeled as an unknown delay
with the upper-bound T defined by (4). This change allows
continuous-time techniques to be applied, e.g. Lyapunov-
Krasovskii functionals for the stability study of sampled
systems.

B. The control law

The controller computes a control law which considers
some set-values to be reached by the Slave. The static state
feedback control u(t) = Kx̂(t) is defined considering the state
estimate x̂ given by the observer. The main difficulty is to
design the linear gain K of controller in order to guarantee
stability despite the value of the time-varying delay δ1(t). In
[20], the controller design was achieved using exponential
stability criteria.

C. Transmission of the control u

The kth packet sent by the Master to the Slave includes the
designed control u(t1,k) and a instant of time t1,k when the
packet was sent. The Slave receives this information at time
tr
1,k. This time does not have the same meaning for both the

Slave and the Master. Then, the term tr
1,k−t1,k, corresponding

to the transmission delay, corrupted by ε is estimated by the
Slave once the packet has reached it.

D. Receipt and processing of the control data

The control, sent at time t1,k, is received by the Slave at
time tr

1,k ≥ t1,k +hm. There is no raison that the Master also

knows the time tr
1,k when the control u(t1,k) will be injected

into the Slave input. Finally, the slave process is governed
by:

ẋ(t) = Ax(t)+Bu(t1,k) (6)

where k is such that hm ≤ t1,k ≤ hM +T .

E. Transmission of the measured output information

The Slave accesses its output y at discrete instants of
time. A sent packet contains the output y(t2,k′) and the
measurement instant t2,k′ which is the k′th one. The Master
receives the output data at time tr

2,k′ .

F. Observation of the process

For a given k̂ and any t ∈ [t1,k̂ + (hM − hm)/2, t1,k+1 +
(hM − hm)/2[, there exists a k′ such that the proposed
observer is of the form:
{ ˙̂x(t) = Ax̂(t)+Bu(t1,k̂ + ε)−L(y(t2,k′)− ŷ(t2,k′ − ε)),

ŷ(t) = Cx̂(t).
(7)

The time stamp t1,k̂ correspond to the time where the control
input is supposed to be implemented in the Slave. The index
k′ corresponds to the most recent output information the
Master has received. Note that the Master is not supposed
to know the time tr

1,k and the control u(t1,k) (see Section II-
D), which makes this observer realizable. The input delay
approach to sampled-data signals allows considering a ho-
mogenized definition of the delays δ1(t) , t− t1,k where k
corresponds to the real sampling implemented in the Slave
process, δ̂1(t) , t − t1,k̂ and δ2(t) , t − t2,k′ . The observer
dynamics can be written as:





˙̂x(t) = Ax̂(t)+Bu(t− δ̂1(t)+ ε)
−L(y(t−δ2(t))− ŷ(t−δ2(t)− ε)),

ŷ(t) = Cx̂(t),
(8)

where the features of the system lead to hm ≤ δi(t) ≤
hM + T for i = 1,2. Equivalently, if the average delay
δ (hm,hM,T ) = (hM + T + hm)/2 and the maximum delay
amplitude µ(hm,hM,T ) = (hM +T −hm)/2 is used, then:

δ −µ ≤ δi(t)≤ δ + µ , ∀i = 1,2. (9)

According to (6) and (7) and for given k and any t ∈
[tr

1,k + hm, tr
1,k+1 + hm[, there exist k̂ and k′ such that the

system is governed by:

ẋ(t) = Ax(t)+BKx̂(t1,k),
˙̂x(t) = Ax̂(t)+BKx̂(t1,k̂− ε)−LC(x(t2,k′)− x̂(t2,k′ + ε).

(10)
Rewriting the equations by using the error e(t) = x(t)− x̂(t),
the dynamics become:

ẋ(t) = Ax(t)+BKx(t1,k)−BKe(t1,k),

ė(t) = Ae(t)+LCe(t2,k′)−BK
∫ t1,k̂+ε

t1,k
[ẋ(s)− ė(s)]ds

+LC
∫ t2,k′

t2,k′−ε [ẋ(s)− ė(s)]ds.
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Applying the input delay representation [8] leads to:

ẋ(t) = Ax(t)+BKx(t−δ1(t))−BKe(t−δ1(t)),

ė(t) = Ae(t)+LCe(t−δ2(t))−BK
∫ t1,k̂+ε

t1,k
[ẋ(s)− ė(s)]ds

+LC
∫ t2,k′

t2,k′−ε [ẋ(s)− ė(s)]ds.
(11)

with δ1(t) = t − t1,k and δ2(t) = t − t2,k′ . Knowing that the
communication delays belong to the interval [hm, hM] where
hm and hM are given by the network properties, the condition
(9) on the delays still holds.

In an ideal case ε = 0 (from A2, no synchronization error)
and the Master to Slave delay is assumed to be well known,
ie. δ1(t) = δ̂1(t) (see [20]), then the global system can then
be rewritten using the error vector e(t) = x(t)− x̂(t) as:

ẋ(t) =Ax(t)+BKx(t−δ1(t))−BKe(t−δ1(t)) (12a)
ė(t) =Ae(t)+LCe(t−δ2(t)) (12b)

For this ideal case, Theorem 2 and 3 in [20] deliver
controller and observer gains.

III. STABILIZATION UNDER SYNCHRONIZATION ERROR

This section focusses on the development of asymptotic
stability criteria for the system detailed in Fig. 1. It is now
accepted that δ1(t) 6= δ̂1(t) and that an error may appear in
the synchronization process. As a synchronization error leads
to a disturbance in the delay measurements, the stability of
the controller and of the observer is not ensured anymore by
Theorem 2 and 3 in [20].

As in equation (11), there are some interconnection terms
between the two variables x and e. A separation principle thus
is no longer applicable to prove the global stabilization. The
proof of the stability requires to consider now both variables
simultaneously.

Theorem 1: For given K and L, suppose that there exist
positive definite matrices : Pq1, Sq, Rqa, Rqε , Sxe and Rxe and
matrices of size n× n: Pq2, Pq3, Zql for l = 1,2,3, Yql′ for
l′ = 1,2 and for q representing the subscript x or e, such that
the following LMI’s hold :




Θx Θx12 µPT
x AK PT

x AK µPT
x AK

∗ −Sx 0 0 0
∗ ∗ −µRxa 0 0
∗ ∗ ∗ −Sxe 0
∗ ∗ ∗ ∗ −µRxe


 < 0, (13)




Θe Θe12 µPT
e AL ε̄PT

e AL ε̄PT
e AL βPT

e AK βPT
e AK

∗ −Se +Sxe 0 0 0 0 0
∗ ∗ −µRea 0 0 0 0
∗ ∗ ∗ −ε̄Reε 0 0 0
∗ ∗ ∗ ∗ −ε̄Rxε 0 0
∗ ∗ ∗ ∗ ∗ −βReε 0
∗ ∗ ∗ ∗ ∗ ∗ −βRxε


 < 0,

(14)
[

Rq Yq1 Yq2
∗ Zq1 Zq2
∗ ∗ Zq3

]
≥ 0, q ∈ {x,e}, (15)

where β = 2(µ + ε̄), Pq =
[

Pq1 0
Pq2 Pq3

]
and

Θx = Θn
x +

[
0 0
0 4(µ + ε̄)Rxε

]
,

Θe = Θn
e +

[
0 0
0 4(µ + ε̄)Reε +2µRxe

]
,

Θn
q = PT

q

[
0 I
A −I

]
+

[
0 I
A −I

]T
Pq

+
[

Sq +Yq1 +Y T
q1 +δZq1 Yq2 +δZq2

∗ δRq +2µRqa +δZq3

]
,

Θx12 = PT
x AK −

[
Y T

x1
Y T

x2

]
,Θe12 = PT

e AL−
[

Y T
e1

Y T
e2

]
.

and where AK =
[

0
BK

]
and AL =

[
0

LC

]
.

Then, the system (10) is asymptotic stable.
Proof: To analyze asymptotic stability of such a system,

equations (11) are rewritten by using the descriptor represen-
tation introduced in [7], [9] with x̄(t) = col{x(t), ẋ(t)}, ē(t) =
col{e(t), ė(t)}. Consider the following Lyapunov-Krasovskii
functional:

V = Vxn +Vxa +Vxε +Ven +Vea +Veε +Vxe (16)

where the sub-Lyapunov-Krasovskii functionals are, for q
representing the subscript of the variables ‘x’ and ‘e’:

Vqn(t) = q̄T (t)EPqq̄(t)+
∫ 0
−δ

∫ t
t+θ q̇T (s)Rqq̇(s)dsdθ

+
∫ t

t−δ qT (s)Sqq(s)ds,
Vqa(t) =

∫ µ
−µ

∫ t
t+θ−δ q̇T (s)Rqaq̇(s)dsdθ ,

Vqε(t) = 2
∫ µ+ε̄
−µ−ε̄

∫ t
t+θ−δ q̇T (s)Rxε q̇(s)dsdθ

Vxe(t) =
∫ µ
−µ

∫ t
t+θ−δ ėT (s)Rxeė(s)dsdθ

with E = diag{In,0} and Px, Pe defined in Theorem 1.
The signification of each sub-Lyapunov-Krasovskii func-

tional has to be explain. The first functionals Vxn and Ven
deal with the stability of the Slave and the observer systems
subject to the constant delay δ while Vxa and Vea refer to the
disturbances due to the delay variations. Even if the func-
tionals do not explicitly depend on each time-varying delay,
it will be considered both different delays δ1 and δ2. The
functionals Vxε and Veε are concerned with synchronization
error. The last functional Vxe deals with the interconnection
between the variables x and e. This will appear more clearly
later on. According to Theorem 2 in [19], if LMI (15) holds
for ′q = x′, the following inequality holds:

V̇xn(t)+V̇xa(t)≤ ξ T
x (t)

[
Ψx1 PT

x

[
0

BK

]

∗ −Sx

]
ξx(t)+ηx(t),

(17)
where ξx(t) = col{x(t), ẋ(t),x(t−δ )} and:

ηx(t) = −2x̄T (t)PT
x [ 0 (BK)T ]e(t−δ1(t))

Ψx1 = Θn
x + µPT

x [ 0 (BK)T ]T R−1
xa [ 0 (BK)T ]Px,

Noting that e(t − δ1(t)) = e(t − δ )− ∫ t−δ
t−δ1(t) ė(s)ds and

using a classical LMI bounding, the following inequality
holds for i = 1,2:

ηx(t)≤ x̄T (t)PT
x

[
0

BK

]
(S−1

xe + µR−1
xe )

[
0

BK

]T
Pxx̄(t)

+eT (t−δ )Sxee(t−δ )+ |∫ t−δ
t−δ1(t) ėT (s)Rxeė(s)ds|

(18)
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where Sxe and Rxe are positive definite matrices which rep-
resent the presence of the error vector in the state equation.
Then, the following inequality holds:

V̇xn(t)+V̇xa(t)≤ ξ T
x (t)

[
Ψn

x2 PT
x

[
0

BK

]
−

[
Y T

x1
Y T

x2

]

∗ −Sx

]
ξx(t)

+eT (t−δ )Sxee(t−δ )+ |∫ t−δ
t−δ1(t) ėT (s)Rxeė(s)ds|,

(19)
where

Ψn
x2 = Θn

x +PT
x

[
0

BK

]
(S−1

xe + µR−1
xa + µR−1

xe )
[

0
BK

]T
Px

Concerning the errors dynamics, LMI (15) with q = e
yields:

V̇en(t)+V̇ea(t)≤ ξ T
e (t)

[
Ψe1 PT

e

[
0

LC

]
−Y T

e

∗ −Se

]
ξe(t)

−ηx
e1(t)+ηe

e1(t)−ηx
e2(t)+ηe

e2(t),
(20)

where ξe(t) = col{e(t), ė(t),e(t−δ )} and

Ψe1 = Θn
e + µPT

e [ 0 (LC)T ]T R−1
ea [ 0 (LC) ]Pe,

ηq
e1(t) = 2ēT (t) ×PT

e [ 0 (BK)T ]T
∫ t1,k̂+ε

t1,k
q̇(s)ds

ηq
e2(t) = −2ēT (t) ×PT

e [ 0 (LC)T ]T
∫ t2,k′

t2,k′−ε q̇(s)ds

where q represents either x or e. Note that the functions
ηq

ei(t), for q =‘x’,‘e’ and i = 1,2 correspond to the distur-
bances due to the synchronization error. Consider now q =‘x’
and i = 1:

−ηx
e (t) =−2ēT (t)PT

e

[
0

BK

]∫ t1,k̂+ε

t1,k

ẋ(s)ds

Noting that from assumption A4, inequality t1,k̂ + ε− t1,k ≤
ε̄ +2µ holds, then a classical bounding leads to:

ηx
e1(t)≤ (ε̄ +2µ)ēT (t)PT

e

[
0

BK

]
R−1

xε

[
0

BK

]T
Peē(t)

+
∫ t1,k̂+ε

t1,k
ẋT (s)Rxε ẋ(s)ds.

(21)
By the same method, the following inequalities hold:

ηe
e1(t)≤ (ε̄ +2µ)ēT (t)PT

e

[
0

BK

]
R−1

eε

[
0

BK

]T
Peē(t)

+
∫ t1,k̂+ε

t1,k
ėT (s)Reε ė(s)ds.

ηx
e2(t)≤ ε̄ ēT (t)PT

e

[
0

LC

]
R−1

xε

[
0

LC

]T
Peē(t)

+
∫ t2,k′

t2,k′−ε ẋT (s)Rxε ė(s)ds.

ηe
e2(t)≤ ε̄ ēT (t)PT

e

[
0

LC

]
R−1

eε

[
0

LC

]T
Peē(t)

+
∫ t2,k′

t2,k′−ε ėT (s)Reε ė(s)ds.
(22)

Finally, the following inequality holds:

V̇en(t)+V̇ea(t)≤ ξ T
e (t)

[
Ψn

e2 PT
e

[
0

LC

]
−Y T

e

∗ −Se

]
ξe(t)

+∑q=x,e
∫ t1,k̂+ε

t1,k
q̇T (s)Rqpq̇(s)ds

+∑q=x,e
∫ t2,k′

t2,k′−ε
q̇T (s)Rqpq̇(s)ds,

(23)

where

Ψn
e2 = Θn

e + µPT
e

[
0

LC

]
R−1

ea

[
0

LC

]T
Pe

+2(ε̄ + µ)PT
e

[
0

BK

]
(R−1

xε +R−1
eε )

[
0

BK

]T
Pe

+ε̄PT
e

[
0

LC

]
(R−1

xε +R−1
eε )

[
0

LC

]T
Pe.

Differentiating Vxε , Veε and Vxe leads to:

V̇xε(t) = 4(µ + ε̄)ẋT (t)Rxε ẋ(t)
−2

∫ t−δ+µ+ε̄
t−δ−µ−ε̄ ẋT (s)Rxε ẋ(s)ds

V̇eε(t) = 4(µ + ε̄)ėT (t)Reε ė(t)
−2

∫ t−δ+µ+ε̄
t−δ−µ−ε̄ ėT (s)Reε ė(s)ds,

V̇xe(t) = 2µ ėT (t)Rxeė(t)
−2

∫ t−δ+µ
t−δ−µ ėT (s)Rxeė(s)ds.

(24)

Combining (19), (23) and (24) and noting that the sum
of the negative integrals in (24) with the integrals in (22) is
negative, the following inequality holds:

V̇ (t)≤ ξ T
x (t)

[
Ψx2 PT

x

[
0

BK

]

∗ −Sx

]
ξx(t)

+ξ T
e (t)

[
Ψe2 PT

e

[
0

LC

]

∗ −Se +Sxe

]
ξe(t)

(25)

where

Ψx = Ψn
x +

[
0 0
0 4(µ + ε̄)Rxε

]
,

Ψe = Ψn
e +

[
0 0
0 4(µ + ε̄)Reε +2µRxe

]
,

Then the Schur complement leads to the LMI’s given in
(13) and (14). Then LMI’s from Theorem 1 are satisfied,
the system (11) is asymptotically stable.

Remark 1: Theorem 1 allows the robust stability of the
global remote to be guaranteed system with respect to the
synchronization error and for observer and controller gains
given in [20]. Since the problems of designing observer and
controller gains are dual, the development of constructive
LMI’s is not straightforward. Another solution would be to
develop conditions in order to design the controller gain for a
given observer gain and other conditions to solve the opposite
problem.

IV. APPLICATION TO A MOBILE ROBOT

This study is illustrated on the model of a mobile robot
(Slave) which can move in one direction. The identification
phase gives the following dynamics:

{
ẋ(t) =

[
0 1
0 −11,32

]
x(t)+

[
0

11,32

]
u(t−δ1(t)),

y(t) = [ 1 0 ]x(t).
(26)

The characteristics of transmission delays in a classical
network (between Lens and Lille in France (50km)) allows
hm = 0,1s and hM = 0.4s. Consider now that the bandwidth
of the network allows the sampling period as T = 0.1s to
be defined. For these values, Theorems 2 and 3 in [20]
produce the following gains L = [ −0.9119 −0.0726 ]T and
K = [ −0.9125 −0.0801 ]. These gains ensure that the remote
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system is α-stable for αx = αe = 1.05 in an ideal case (ε = 0
and δ1 = δ̂1. Theorem 1 ensures that the global system (12)
is asymptotically stable and robust with respect to any time-
varying synchronization error less than ε̄ = 0.214s in (3).
Moreover it guarantees asymptotic stability of the global
system without the introduction of a buffer in the controller.

V. CONCLUDING REMARKS

A characteristic feature of this control strategy is to
consider that the Master runs in continuous time (i.e., with
small computation step) whereas the Slave provides discrete-
time measurements. Thus, the observer keeps on providing
a continuous estimation of the Slave state, even if the Slave
information is not sent continuously.

This paper has proposed a strategy for an observer-based
controller for a remote process. No buffering technique was
involved, which allows both the Master and the Slave to
use the available information as soon as received. Various
perturbations were dealt with: (1) jittery, non-symmetric and
unpredictable delays (Internet); (2) synchronization error and
(3) aperiodic sampling (real-time). A remaining assumption
in [20] which is that Master and Slave’s clocks have to be
synchronized is not required anymore.

Even if the proposed asymptotic stability conditions give
satisfying results, it would be interesting to investigate in
developing exponential stability criteria to establish the effect
on synchronization error to the exponential decay rate of
the solutions. Moreover new and less conservative results on
the stability of systems with sampled-data control recently
appear. It would be interesting to apply these technics on the
present system.
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