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Abstract— This paper develops a generalization of the
balanced truncation algorithm applicable to discrete-time
Markov jump linear systems. The approximation error,
which is captured by means of the stochastic L2 gain, is
bounded from above by twice the sum of singular numbers
associated to the truncated states of each mode.

I. INTRODUCTION

A. Previous Work on Model Reduction

The concept of model reduction is pervasive in all ar-

eas where system theoretic ideas have been applied. The

objective is to find an adequate simplified model for a

given complex system. A particular reduction algorithm

is judged upon the certificates it provides concerning

the level of complexity reduction achieved, the accuracy

of the reduced order model and the algorithmic cost

involved.

In the context of linear time-invariant (abbreviated

LTI) systems a distance measure relevant to robustness

analysis is the H∞ system norm of the error system

between the original and reduced order model. Balanced

truncation and optimal Hankel model reduction are two

related reduction algorithms, which are suboptimal, but

are accompanied by provable a priori bounds to the

aforementioned metric.

Balanced realizations were originally proposed in the

controls literature in [1]. Optimal Hankel model reduc-

tion was developed in [2] and is inspired by the results

in [3]. The derivation of the associated error bounds

in continuous and discrete-time settings can be found

in [2], [4], [5] and [6]. Both methods are based on

the computation of the singular values of the Hankel

operator of an LTI system and are frequently termed as

SVD based approximation methods [7]. Their strength

lies in the guarantees of quality they provide and their

main drawback is the fact that they require computations

of the order O(n3) and storage of the order O(n2),
where n is the number of states of the original system.

A possibility of overcoming this deficit to some extent,
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is to seek approximate balanced representations, see [8]

and [9] for some early references on the subject.

Balanced truncation has been investigated also outside

the realm of LTI systems. In [10] a generalization to

multidimensional and uncertain systems in the linear-

fractional framework is presented. Linear parameter-

varying systems are investigated in [11]. The case of

linear time-varying systems is the subject of [12] where

an operator-theoretic framework is employed to give

bounds similar to those that apply to time-invariant

models. Later more general error bounds for linear time-

varying systems were obtained in [13].

B. Previous Work on Markov Jump Linear Systems

Jump linear systems (abbreviated JLS’s) are abstrac-

tions of hybrid systems, which combine continuous and

discrete dynamics. They form an extension of LTI sys-

tems, in the sense that the coefficients of the linear trans-

formation are functions of parameters. The transition

between the different modes of operation is controlled

by an exogenous parametric input, which is frequently

referred to as the switching signal. In this work it is

assumed that the switching signal takes values in a

finite set and that it follows an unconstrained stochastic

evolution. There is a large body of literature in the

fields of econometrics and system theory pertaining to

the class of JLS’s with randomly varying parameters.

Fundamental contributions on the jump linear control

problem in a continuous-time setting can be found in

[14], [15] and [16]. Subsequently various analysis and

synthesis results applicable to linear time-invariant sys-

tems have been extended to to the class of Markov jump

linear systems (abbreviated MJLS’s). A comprehensive

review of this material can be found in [17] and the

references therein. Stochastic JLS’s arise naturally in

connection with networked control systems when the

effects of variable sampling rates, link failures, delays

and other communication constraints are modeled in a

probabilistic framework. A review article on networked

control systems is [18]. Model reduction of MJLS’s is

the topic of [19], where the search of an optimal, in

terms of the stochastic L2 gain, reduced ordered model

is posed as a non convex optimization problem.
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C. Contributions of the Paper

The contribution of this paper consists of a balanced

truncation algorithm for discrete-time Markov jump lin-

ear systems. The main point of the reduction algorithm

is the formulation of two sets of dissipation inequalities,

which in conjunction with a suitably defined storage

function enable the derivation of suboptimal reduced

order models, which are accompanied by a provable

a priori upper bound on the stochastic L2 gain of

the approximation error. result can be considered as

generalization of the corresponding balanced truncation

algorithm for linear time-invariant systems.

D. Notation

The set of nonnegative integers is denoted by N, the

set of positive integers by Z+ and the set of real numbers

by R. Let n ∈ Z+ then Rn denotes the Euclidean n-

space. The transpose of a column vector x ∈ Rn is x′.

Let x ∈ Rn, then |x|2 = x′x denotes the square of the

Euclidean norm. Let P ∈ Rn×n, then P > 0 indicates

that it is a positive definite matrix and the notation |x|2P
stands for x′Px, the square of the weighted norm of

x ∈ Rn. The positive definite square root of P is denoted

by P
1

2 . The identity matrix in Rn×n is written as In.

Let A : Rn×n, then rσ [A] denotes the spectral radius

of A. Let P, Q ∈ Rn×n, the inner product of these two

matrices is defined as < P, Q >= Tr[P ′Q]. Let f :
N → Rn, the notation f and {f(k)}∞k=0 will be used

interchangeably. The space of square summable vector

sequences with elements in Rn is denoted by ln2 . Let

f ∈ ln2 then ‖f‖22 stands for
∞
∑

k=0

|f(k)|2. The unit sphere

in ln2 is denoted by Sn
2 = {f ∈ ln2 : ‖f‖2 = 1}. Let x

be a random variable, then its expected value is denoted

by E[x].

II. SYSTEM MODEL

The class of discrete-time Markov jump linear sys-

tems, abbreviated MJLS’s, considered in this work is

more general than what is standard in the literature, in

the sense that the system matrices in the state space

recursion exhibit stochastic dependence on the mode

transition of the system. Apart from that, the dimension

of the continuous valued part of the state variable is

allowed to vary depending on which discrete mode the

system resides in. This class of systems arises naturally

in the area of networked control systems, when various

constraints such as variable intersampling times, package

losses and delays are modeled in a probabilistic frame-

work. A directed graph with multiple edges between

nodes is considered. In particular let Q, N ∈ Z+ and

define Θ = {1, . . . , N} as the set of nodes and Q =
{1, . . . , Q} as the set of edges. Consider also the sets

Φij , i, j ∈ Θ, which contains the edges emanating from

node i and ending in node j and let n, m, r be maps from

Θ into Z+. The state space representation of a MJLS L

is

x(k + 1) = A[φ(k + 1)]x(k) + B[φ(k + 1)]f(k),

y(k) = C[θ(k)]x(k), k ∈ N. (1)

The system mode, which can also be interpreted as an

exogenous parametric input, is θ(k) ∈ Θ and corre-

sponds to the state of a Markov chain, taking values

in Θ. The transition probability matrix of the Markov

chain is denoted by P = [pij ], i, j ∈ Θ, where pij =
P[θ(k+1) = j|θ(k) = i]. The signal φ(k) is a sequence

of random variables taking values in the finite set Q. The

distribution of φ(k +1) is determined by θ(k), θ(k +1).
Define the set Yk = {θ(0), . . . , θ(k), φ(1), . . . , φ(k)}
and let F be a subset of Q, then

Pr[φ(k + 1) ∈ F |Yk, θ(k + 1)] =

Pr[φ(k + 1) ∈ F |θ(k), θ(k + 1)].

The relevant conditional probabilities are denoted by

ql, where l ∈ Q, i, j ∈ Θ and ql = Pr[φ(k + 1) =
l|θ(k) = i, θ(k + 1) = j]. The continuous valued part

of the state variable is x(k) ∈ Rn[θ(k)], note that its

dimension depends on θ(k). Similarly the number of

sensors and actuators depends on the mode the system

is in, thus the input signal f(k) ∈ Rr[θ(k)] and output

y(k) ∈ Rm[θ(k)]. Throughout the work the input signal

is taken to be deterministic.

III. STABILITY

There are several stability notions for stochastic sys-

tems. The relevant concept to this work is that of mean

square stability.

Definition 3.1: [20] The MJLS L with {f(k)} = {0}
is mean square stable, if for every initial condition θ(0) ∈
Θ, x(0) ∈ Rn[θ(0)]

E[|x(k)|2]→ 0 as k →∞.

Theorem 3.1: Let F [i] > 0, F [i] ∈ Rn[i]×n[i], i ∈ Θ.

The MJLS L is mean square stable iff there exists a

unique N -tuple of positive definite matrices G[i] >

0, G[i] ∈ Rn[i]×n[i], i ∈ Θ such that :

G[i]−
∑

j∈Θ

pij

∑

l∈Φij

qlA[l]′G[j]A[l] = F [i], ∀i ∈ Θ

(2)
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Proof: ”←” The above relation implies that

V [x, θ] = |x|2G[θ] acts as a stochastic Lyapunov function

for the system L. Consider the unforced evolution of the

system L

x(k + 1) = A[φ(k + 1)]x(k),

and let

Ĝ[i] =
∑

j∈Θ

pij

∑

l∈Φij

qlA[l]′G[j]A[l],

then one has

E[V [x(k+1), θ(k+1)]|x(k), θ(k)] = x(k)′Ĝ[θ(k)]x(k).

Relation (2) implies then,

E[V [x(k+1), θ(k+1)]|x(k), θ(k)]−V [x(k), θ(k)] < 0.

By making use of the law of iterated expectations,

namely for any two random variables, x, y, E[E[x|y]] =
E[x], one gets from the above relation

E[V [x(k + 1), θ(k + 1)]− V [x(k), θ(k)]] < 0.

Thus

E[V [x(k), θ(k)]]→ 0 as k →∞

and since G[θ(k)] > 0, ∀θ(k) ∈ Θ mean square stability

follows.

”→” Define the mode indicator function

Ii(k) =

{

1 if θ(k) = i

0 otherwise,

and note that

E[|x(k)|2] = E[
∑

i∈Θ

|x(k)|2Ii(k)].

Let Xi(k) = E[x(k)x(k)′Ii(k)] then the mean square

stability condition implies Xi(k)→ 0 as k →∞, where

Xj(k + 1) =
∑

i∈Θ

pij

∑

l∈Φij

qlA[l]Xi(k)A[l]′, ∀j ∈ Θ.

Define Hn = Rn[1]×n[1] × . . .×Rn[N ]×n[N ] and intro-

duce the linear operator T : Hn → Hn, where

T [V ] =

[

. . . ,
∑

i∈Θ

pij

∑

l∈Φij

qlA[l]V [i]A[l]′, . . .
]

.

Using this notation one can write compactly

T [
[

X1(k), . . . , XN (k)
]

] =
[

X1(k + 1), . . . , XN(k + 1)
]

and consequently mean square stability implies rσ[T ] <

1, where rσ denotes the spectral radius. Similarly define

the linear operator L : Hn → Hn, where

L[V ] =

[

. . . ,
∑

j∈Θ

pij

∑

l∈Φij

qlA[l]′V [j]A[l], . . .
]

.

The set of equations in (2) can be written as

L[
[

G[1], . . . , G[N ]
]

]−
[

G[1], . . . , G[N ]
]

=

−
[

F [1], . . . , F [N ]
]

Let the inner product of V, S ∈ Hn be given by <

V, S >=
∑

i∈Θ

Tr[V ′

i Si], then L′ = T .

< T [V ], S >=
∑

j∈Θ

Tr[Tj [V ]′Sj ] =
∑

j∈Θ

Tr[Tj [V
′]Sj ]

=
∑

j∈Θ

∑

i∈Θ

pij

∑

l∈Φij

qlTr[A[l]V [i]′A[l]′Sj ]

=
∑

j∈Θ

∑

i∈Θ

pij

∑

l∈Φij

qlTr[V [i]′A[l]′SjA[l]]

=
∑

i∈Θ

∑

j∈Θ

pij

∑

l∈Φij

qlTr[V [i]′A[l]′SjA[l]]

=
∑

i∈Θ

Tr[V [i]′Li[S]]

= < V,L[S] > .

Since L is the adjoint of T one has rσ [T ] < 1 →
rσ[L] < 1 and

G =
∞
∑

i=1

Li[F ] > 0

is the unique positive definite solution to L[G] − G =
−F .

Definition 3.2: The stochastic L2 gain for the MJLS

L is denoted by γL and is defined by

γ2
L = sup

θ(0)∈Θ

sup
f∈Sm

2

∞
∑

k=0

E[|y(k)|2]

under the assumption x(0) = 0, θ(0) ∈ Θ.

Lemma 3.1: Given is a MJLS L and let γ ∈ R, γ >

0. Consider the quadratic function V [x, θ] = x′G[θ]x,

where G[θ] ∈ Rn[θ]×n[θ], G[θ] > 0 and x ∈ Rn[θ].

Suppose that

γ2|f |2 + V [x, i] ≥

|C[i]x|2 +
∑

j∈Θ

pij

∑

l∈Φij

qlV [A([l]x + B[l]f, j],

∀x ∈ Rn[i], ∀f ∈ Rm, ∀i ∈ Θ, (3)

then the stochastic L2 gain of L does not exceed γ.
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Theorem 3.2: If the MJLS L is mean square stable,

then its stochastic L2 gain is finite.

Proof: Lemma 3.1 will be employed in this proof.

Note that (3) can be written equivalently in matrix form

as

W [i] ≤

[

G[i] 0
0 γ2Im

]

, ∀i ∈ Θ, (4)

where

W [i] =

[

W11[i] W12[i]
W ′

12[i] W22[i]

]

=

∑

j∈Θ

pij

∑

l∈Φij

ql

[

A[l] B[l]
C[i] 0

]′ [

G[j] 0
0 Ip

]

[

A[l] B[l]
C[i] 0

]

By taking the Schur complement one obtains the follow-

ing set of sufficient conditions for (4) to hold

W11[i] < G[i],

W22[i]−W ′

12[i](W11[i]−G[i])−1W12[i] < γ2Im,

∀i ∈ Θ. (5)

Mean square stability implies existence of a

positive definite matrix P̃ [i] > 0, such that
∑

j∈Θ

pij

∑

l∈Φij

A[l]′P̃ [j]A[l]− P̃ [i] < 0. Set G[i] = αP̃ [i]

with α ∈ R, α ≥ 1. It is straight to see that the first

set of conditions in (5) can be satisfied by taking

α large enough. Subsequently note that for a fixed

value of α the second set of conditions in (5) can

always be satisfied by taking γ large enough. Finally

let V [x, θ] = x′G[θ]x and note that the assumptions of

Lemma 3.1 are fulfilled.

A standing assumption in this work is that a given MJLS

L is mean square stable.

A. Reduction by state truncation

This concept of model reduction by means of state

truncation is developed for MJLS’s. One starts out with

the state space representation of a MJLS L as in (1) and

applies an invertible coordinate transformation x(k) =
T [θ(k)]x̃(k) that puts the ”most important” states in

first components of the transformed state vector x̃(k).
The new state vector x̃(k) is then partitioned as x̃(k) =
[x̃1(k)′, x̃2(k)′]′, where x̃1(k) ∈ Rn̂[θ(k)] corresponds

to the states that are to be retained, x̃2(k) ∈ Rr[θ(k)]

to the states that are to be removed and n̂[θ(k)] =
n[θ(k)]−r[θ(k)]. The state space matrices are partitioned

accordingly as

Ã[φ(k + 1)] =

[

Ã11 Ã12

Ã21 Ã22

]

[φ(k + 1)],

B̃[φ(k + 1)] =

[

B̃1

B̃2

]

[φ(k + 1)],

C̃[θ(k)] =
[

C̃1 C̃2

]

[θ(k)], θ(k) ∈ Θ,

and the state space representation of L̂ of order n̂ is

given by

x̂(k + 1) = Â[φ(k + 1)]x̂(k) + B̂[φ(k + 1)]f(k),

ŷ(k) = Ĉ[θ(k)]x̂(k), k ∈ N,

where

Â[φ(k+1)] = Ã11[φ(k+1)], B̂[φ(k+1)] = B̃1[φ(k+1)],

Ĉ[θ(k)] = C̃1[θ(k)], θ(k) ∈ Θ, φ(k + 1) ∈ Q.

Note that the size of the partitioned blocks of the state

space matrices is varying depending on the number

of states that have been truncated at each mode. For

instance in the case where n̂[θ(k)] = n[θ(k)] and

n̂[θ(k + 1)] = n[θ(k + 1)] then one has

Â[φ(k + 1)] = Ã11[φ(k + 1)] = Ã[φ(k + 1)]

and so forth. In order to shorten subsequent notation,

it will be convenient to think of the state variable

of the reduced system submerged in the original state

space. Let r[θ(k)] = n[θ(k)] − n̂[θ(k)] and x̂1(k) =
[x̂(k)′, 0′]′ ∈ Rn[θ(k)], then in a slight abuse of notation

L̂ will also be used to denote the system with state space

representation

x̂1(k + 1) = (In[θ(k+1)] − Er[θ(k+1)])

(Ã[φ(k)]x̂1(k) + B̃[φ(k + 1)]f(k)),

ŷ(k) = C̃[θ(k)]x̂1(k), k ∈ N,

where

Er[θ(k)] =

[

0 0
0 Ir[θ(k)]

]

∈ Rn[θ(k)]×n[θ(k)].

IV. BALANCED TRUNCATION

A. Dissipation inequalities

The point of departure is a mean square stable MJLS

L. The model reduction procedure developed for this

class of systems relies on the computation of U [i] > 0,
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R[i] > 0, i ∈ Θ such that the following set of dissipation

inequalities are satisfied:

|x|2U [i] ≥
∑

j∈Θ

pij

∑

l∈Φij

ql(|A[l]x|2U [j]) + |C[i]x|2,

∀x ∈ Rn, ∀i ∈ Θ, (6)

|x|2R[i] + |f |2 ≥
∑

j∈Θ

pij

∑

l∈Φij

ql(|A[l]x + B[l]f |2R[j]),

∀x ∈ Rn, ∀f ∈ Rm, ∀i ∈ Θ (7)

Inequality (6) will be referred to as the output dissipation

inequality and (7) will be referred to as the input

dissipation inequality.

1) Output dissipation inequality: Note that (6) are

equivalent to the set of LMI’s

U [i] ≥
∑

j∈Θ

pij

∑

l∈Φij

qlA[l]′U [j]A[l] + C[i]′C[i], i ∈ Θ

and imply under zero input the relation

E[|x(k + 1)|2U [θ(k+1)]|x(k), θ(k)] + |y(k)|2 ≤

|x(k)|2U [θ(k)], ∀x(k) ∈ Rn, ∀θ(k) ∈ Θ.

2) Input dissipation inequality: Relations (7) are

equivalent to the set of LMI’s
[

W11[i] W12[i]
W ′

12[i] W22[i]

]

≤ 0, i ∈ Θ

where

W11[i] = −R[i] +
∑

j∈Θ

pij

∑

l∈Φij

qlA[l]′R[j]A[l]

W12[i] =
∑

j∈Θ

pij

∑

l∈Φij

qlA[l]′R[j]B[l]

W22[i] = −I +
∑

j∈Θ

pij

∑

l∈Φij

qlB[l]′R[j]B[l], i ∈ Θ

and imply

E[|x(k + 1)|2R[θ(k+1)]|x(k), θ(k)] ≤

|x(k)|2R[θ(k)] + |f(k)|2,

∀x(k) ∈ Rn, ∀f(k) ∈ Rm, ∀θ(k) ∈ Θ.

B. Upper bound on the approximation error

Theorem 4.1: Consider a mean square stable system

L and matrices U [i] > 0, R[i] > 0, i ∈ Θ of appropriate

dimensions such that the dissipation inequalities (6), (7)

are satisfied, and suppose for a particular mode i∗ ∈ Θ

U [i∗] =

[

Σ1i∗ 0
0 βIr[i∗]

]

and

R[i∗] =

[

Σ2i∗ 0
0 1

β
Ir[i∗]

]

Let L̂ be the reduced order model obtained by truncating

the last r(i∗) states corresponding to the mode i∗ of L.

Then, the stochastic L2 gain of the error system E
L,L̂

is bounded from above by

γE
L,L̂
≤ 2β. (8)

Introduce the matrix

Er[i] =

[

0 0
0 Ir[i]

]

∈ Rn[i]×n[i].

and note that Er[i] = 0 unless i = i∗. The dynamics of

the reduced order system can be written as

x̂(k + 1) = (In[θ(k+1)] − Er[θ(k+1)])

(A[φ(k + 1)]x̂(k) + B[φ(k + 1)]f(k)),

ŷ(k) = C[θ(k)]x̂(k), k ∈ N. (9)

The following variables are introduced to shorten subse-

quent notation,

z(k) = x(k) + x̂(k),

δ(k) = x(k) − x̂(k)

h[φ(k + 1)] = A[φ(k + 1)]x̂(k) + B[φ(k + 1)]f(k),

e(k) = y(k)− ŷ(k), k ∈ N.

One obtains accordingly

z(k + 1) = A[φ(k + 1)]z(k) + 2B[φ(k + 1)]f(k)−

Er[θ(k+1)]h[φ(k + 1)],

δ(k + 1) = A[φ(k + 1)]δ(k) + Er[θ(k+1)]h[φ(k + 1)],

e(k) = C[θ(k)]δ(k), k ∈ N.

According to Lemma 3.1 it is sufficient to find a storage

function such that :

|C[i]δ|2 + ∆Vi ≤ 4β2|f |2, (10)

∀x ∈ Rn[i], ∀x̂ ∈ Vn[i]−r[i], ∀f ∈ Rm, ∀i ∈ Θ

∆Vi =
∑

j∈Θ

pij

∑

l∈Φij

qlV [x(+), x̂(+), j]− V [x, x̂, i]

x(+) = A[l]x + B[l]f

x̂(+) = (In[j] − Er[j])(A[l]x̂ + B[l]f).

A quadratic storage function candidate is given by

V [x, x̂, i] = β2|x+x̂|2R[i]+|x−x̂|2U [i] = β2|z|2R[i]+|δ|
2
U [i].
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One needs to verify (10). Let x ∈ Rn[i], x̂ ∈
Vn[i]−r[i], f ∈ Rm, i ∈ Θ, one has

∆Vi =
∑

j∈Θ

pij

∑

l∈Φij

ql|A[l]δ + Er[j]h[l]|2U [j] +

β2
∑

i∈Θ

pij

∑

l∈Φij

ql|A[l]z + 2B[l]f +

−Er[j]h[l]|2R[j] − β2|z|2R[i] − |δ|
2
U [i].

Expanding the individual terms in the above expressions,

one obtains

∆Vi =
∑

j∈Θ

pij

∑

l∈Φij

ql|A[l]δ|2U [j] − |δ|
2
U [i] + (11)

+β2
∑

j∈Θ

pij

∑

l∈Φij

ql|A[l]z + 2B[l]f |2R[j] − β2|z|2R[i]

+2β
∑

j∈Θ

pij

∑

l∈Φij

ql|Er[j]h(i, j)|2

−2β
∑

j∈Θ

pij

∑

l∈Φij

ql(Er[j]h(i, j))′ (12)

(A[l]z + 2B[l]f −A[l]δ).

Applying the dissipation inequality (6) to the first two

terms of (11) gives

∑

j∈Θ

pij

∑

l∈Φij

ql|A[l]δ|2U [j] − |δ|
2
U [i] ≤ −|C[i]δ|2.

Applying the dissipation inequality (7) to the second line

in (11) gives

β2
∑

j∈Θ

pij

∑

l∈Φij

ql|A[l]z+2B[l]f |2R[j]−β2|z|2R[i] ≤ 4β2|f |2.

For the last term of (11) note that A[l]z + 2B[l]f −
A[l]δ = 2h[l], and that E2

r[j] = Er[j]. Using the above

relations we obtain

∆Vi+|C[i]δ|2 ≤ 4β2|f |2−2β
∑

j∈Θ

pij

∑

l∈Φij

ql|Er[j]h[l]|2.

Since 2β
∑

j∈Θ

pij

∑

l∈Φij

ql|Er[j]h[l]|2 ≥ 0 relation (10) is

satisfied, completing the proof.

It is straight to verify that for the reduced system the

dissipation inequalities (6), (7) are satisfied by Û [i] =
U [i], R̂[i] = R[i] when i ∈ Θ, i 6= i∗ and Û [i∗] = Σ1i∗ ,

R̂[i∗] = Σ2i∗ . Thus by repeating the above argument

one can obtain the twice the sum of the tail result when

more than one set of states are truncated and when states

in different modes are truncated as well.
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