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Abstract— This paper presents an approach to planning
long distance trajectories for small unmanned aerial vehicles.
The feasibility of such long-distance flights is dependent on
exploiting atmospheric energy, which is possible in regions
where there is a strong vertical component of wind. Here a tree-
based approach is used to find a feasible trajectory between
the start position and a distant (i.e. beyond simple gliding
range) goal. To improve computation time a set of branches is
pre-computed from the space of allowable inputs allowing fast
expansion of a node. Nodes are selected for expansion based
on a weighted random approach. Simulation results show that
feasible paths can be found using this method.

I. INTRODUCTION

A major limitation in developing practical small unin-
habited aerial vehicles (UAV) is the energy required for
long-range, long endurance operations. Large aircraft such
as the Global Hawk can remain on-station for 24 hours
and can fly non-stop from the continental United States
to Australia. However, small and micro UAVs face severe
limits on the fuel that can be carried, greatly reducing both
endurance and range. In addition, the best L/D attainable
for small and micro UAVs is typically much smaller than
for larger aircraft because of the smaller Reynolds numbers.
This further reduces performance.

Significant range and endurance improvements can be
realized by obtaining energy (in the form of altitude or
speed) from the surrounding atmosphere. Energy can be
obtained from vertical air motion, from velocity gradients
and from gusts. Vertical air motion has three main causes:
uneven heating of the ground, which produces buoyant
instabilities known as thermals; long period oscillations of
the atmosphere, generally called wave; and orographic lift,
where wind is deflected by the slopes of hills and mountains.
Vertical air motion is a quasi-static phenomenon, and flight
which exploits vertical air motion is known as soaring. Large
birds such as eagles, hawks and condors as well as human
sailplane and hang glider pilots routinely use soaring flight
to remain aloft for many hours and traverse hundreds of
kilometers without flapping wings or the use of engines.

A second means of extracting energy from the air uses
velocity gradients (which can occur near the ground due to
the boundary layer) or shear layers (which often occur on the
leeward side of mountains and ridges). This strategy, called
dynamic soaring, was first described by Lord Rayleigh in
an analysis of albatross flight [1], [2]. Dynamic soaring is
again becoming the subject of research both for recreational
flight (mainly by RC flying enthusiasts) and for UAV flight.
However, this class of dynamic soaring generally requires

highly agile flight in close proximity to the ground: this is a
very risky endeavor.

The third means of extracting energy from the air exploits
gusts. It has been observed that the flight performance
of large birds is improved by gusts, while it is typically
reduced on human-piloted aircraft [3]. This suggests that
birds are able to extract energy from gusts, and indeed
Kiceniuk reports that it is even possible to extract energy
from a downward gust [4]! Extracting energy from gusts
is complicated by their typically short duration, hence very
fast response (typically exceeding human reaction time) is
required. Control laws have been developed to enable energy
extraction from gusts by small UAVs [5].

These three methods of extracting energy from the envi-
ronment can be used to enable autonomous long duration,
long distance flight (denoted (LD)2 flight) by unmanned
aerial vehicles. For the remainder of this paper these three
modes of energy extraction will be referred to as static
soaring, dynamic soaring and gust soaring, respectively.

The time scales of each of these modes of flight are
very different. Static soaring occurs over time ranging from
minutes to hours, dynamic soaring typically consists of a
periodic trajectory with a duration of a few tens of seconds
and gusts are very short duration (less than a few seconds).
In a system which exploits all three modes of energy ex-
traction this time scale separation can be used to treat each
mode almost independently. Long-duration planning can be
performed to exploit spatial variation in wind speed (both
vertical and horizontal), shorter duration optimal trajectories
can be designed for dynamic soaring and a closed-loop
controller can be designed to exploit gusts.

The major focus of this paper is on the problem of static
soaring by a small UAV, specifically on enabling both long
endurance and long range flights using orographic (i.e. slope)
lift. It describes a tree-based planning algorithm which uses
a point mass model of the vehicle and knowledge of the
wind field (this may be obtained from predictions generated
using meteorological forecasting tools such as MM5 [6]) to
generate feasible trajectories to a distant goal (i.e. a goal
which is significantly beyond simple gliding range).

Sampling based planning methods [7] such as probabilistic
roadmaps [8], [9] have become widespread. They have been
used in both static [10] and dynamic [11] environments.
Variants such as rapidly-exploring random trees (RRT, [12])
can account for higher order vehicle dynamics and have been
used for blimp trajectory planning [13]. These approaches are
probabilistically complete (i.e. if a feasible solution exists it
will be found, given enough time) but there is no guarantee of
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finding a solution within a specified time. Path planning for
long-range trajectories in realistic wind fields using genetic
algorithms is addressed by Rubio and Kragelund [14].

This paper describes a tree-based approach to planning
trajectories which exploit atmospheric energy. Since most
trajectories will lead to dead ends (i.e. the lack of rising air
will make energy extraction impossible), methods to bias the
expansion of the tree should be very effective in reducing
the time and computation required for finding a feasible
path. Biased searches have been proposed (for example, goal
biasing [15] or finding narrow passages [16]). In this case
the search will be biased along regions where energy can be
obtained from the atmosphere.

The remainder of this paper is organized as follows.
Section II discusses the dynamics and kinematics of flight,
Section III describes the planning algorithm, including com-
putation of branches, selection of nodes for expansion,
culling infeasible branches and the termination criterion.
Section IV presents results of a sample problem: flight to
a distant (i.e. beyond simple gliding range) goal. Finally
Section V presents concluding remarks.

II. VEHICLE DYNAMICS AND KINEMATICS

It is assumed that an on-board controller is able to follow
heading, airspeed and throttle commands. Moreover, it is
assumed that response to step changes in commands is very
fast compared with the duration of a particular command.
Hence a point mass model is sufficient to describe vehicle
motion for planning purposes (Figure 1). Vehicle kinematics
are given by

ẋ = va cos γ cosψ + wx (1)
ẏ = va cos γ sinψ + wy (2)
ż = va sin γ + wz (3)

where va is airspeed, ψ is heading and w = [wx wy wz]T

is the 3D wind vector.
The glide path angle γ is a function of airspeed va and

throttle setting T , and can be obtained for steady flight.
Resolving forces parallel and perpendicular to the flight path,

mg cos γ = L+ T sinαi (4)
mg sin γ = D − T cosαi (5)

where m is mass of the vehicle and αi is the angle of
incidence between the thrust axis and the flight path.

It is assumed that the flight path angle γ is small, hence
sin γ ≈ γ and cos γ ≈ 1. A further simplifying assumption
(admittedly less accurate) is that thrust is always aligned with
the flight path angle (i.e. αi is zero). From Equation 4

mg = L =
1
2
ρv2

aSCL (6)

therefore
CL =

2mg
ρv2

aS
(7)

Here CL is lift coefficient, ρ is density of the air, and S
is wing area. A polynomial approximation is used for the
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Fig. 1. Kinematics and point mass model of aircraft dynamics.

aircraft’s drag polar:

CD =
n∑

i=0

aiC
i
L (8)

Thus the drag force is

D =
1
2
ρv2

aS
n∑

i=0

aiC
i
L (9)

Typically a second order polynomial is used to represent
drag coefficient. However, this is often only valid over a
fairly narrow speed range, and here a fourth order polynomial
is used.

Substituting into Equation 5, the flight path angle for a
particular speed and thrust can thus be computed as

mgγ =
1
2
ρv2

aS
n∑

i=0

aiC
i
L − T (10)

The vehicle’s flight path is thus completely specified by
inputs u = [va ψ T ]T and wind speed w. This model is
adequate as long as the length of time of each trajectory
segment is large compared with the time constant of the
vehicle’s step response with respect to the inputs u.

III. TREE-BASED APPROACH TO PLANNING

Given a wind field w = w(x, y, z) and terrain map
zterrain = a(x, y) the problem is to find a trajectory from an
initial position and velocity to a goal position and velocity.
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This can be expressed as

minimize C(x,u) (11)
subject to ẋ = f(x,u,w) (12)

x(t = 0) = x0 (13)
x(t = tf ) = xf (14)

xmin ≤ x ≤ xmax (15)
umin ≤ u ≤ umax (16)

where C is a cost function, Equation 12 defines constraints
on vehicle dynamics, Equation 15 defines constraints on the
state (for example minimum altitude or minimum/maximum
airspeed), and finally Equation 16 defines constraints on con-
trol inputs (for example control surface deflections). Because
of vehicle kinematics and the complex wind field this is
generally a highly non-convex optimization problem. Solvers
such as MatLab’s fmincon generally require a feasible initial
guess, but even finding a feasible solution is non-trivial.

In this case a randomly expanding tree can be used to find
a feasible solution or set of feasible solutions.

A. Pre-computation of Branches

To reduce the time required for expanding the tree, a set
of branches for a family of allowable inputs can be defined:

U =
{

[va,m ∆ψn]T
∣∣∣va,m ∈ Va, ∆ψn ∈ ∆Ψ

}
(17)

m = 1, . . . ,M n = 1, . . . , N

where va,m is an airspeed command and ∆ψn is a heading
change command. The set of allowable inputs Va and ∆Ψ
are obtained by discretizing the range of inputs va,min ≤
va ≤ va,max and ∆ψmin ≤ ∆ψ ≤ ∆ψmax. The degree of
discretization is a parameter which can be varied depending
on computational and accuracy considerations.

Given a choice of input umn ∈ U and a time interval δt
the change in position and altitude can be computed from
the kinematics (Equation 1 through Equation 10):

∆xb
mn =

 ∆xb
mn

∆yb
mn

∆zb
mn

 = δt

 va,m cos γ cos ∆ψn

va,m cos γ sin∆ψn

va,m sin γ

 (18)

Note that wind speed w is not included in this set of pre-
computed branches: it is included when a particular node
in the tree is expanded. The set of branches Xb consists of
all possible changes in position and altitude given the set
of possible inputs U, and is formed by concatenating the
vectors of branches:

∆Xb =
[

∆xb
11 . . . ∆xb

MN

]
(19)

A representative set of branches is shown in Figure 2.
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Fig. 2. Pre-computed branches for set of allowable inputs.

B. Node definition, selection and expansion

In addition to geometric position, each node in the tree
contains values for internal variables whose changes are
not directly encoded in the branches but whose values are
affected by the path taken to reach that point. Each node
encodes

ni =
[
xi yi zi ψi va,i Etot,i rgoal,i

]T
(20)

where [xi yi zi] is vehicle position, ψi is heading, va,i is
airspeed, Etot,i is the specific total energy of the vehicle at
the node (Etot = gh+ v2

a

2 ) and rgoal,i is distance remaining
to the goal. Note that both Etot,i and rgoal,i can be computed
from the other variables: they are encoded in the node for
convenience.

1) Node selection: In many tree-based planning algo-
rithms nodes are selected for expansion at random. While this
ensures even coverage of the space, it also has the potential
to lead to a large number of ‘dead’ nodes that cannot lead to a
feasible solution. In this application there are generally only
narrow corridors that lead to the goal (e.g. a ridge which
triggers a long, narrow region of rising air), and a biased
approach is used to favor nodes which are more likely to
lead to a feasible path to the goal.

To increase the likelihood that widely separated nodes
are selected a stratified approach is used for node selection.
Nodes are grouped according to distance from the goal, a
random group is chosen and a node is chosen from this group
using a weighted random approach. Each node is assigned
a weight based on energy altitude hE and the horizontal
distance to the goal. Energy altitude is the altitude which
results when all the vehicle’s kinetic energy is transformed
to potential energy, and is a common way of representing
total energy:

hE = h+
v2

a

2g
(21)

where h is height above a datum (e.g. the goal).
The weight assigned to the ith node is

wi =
(
hE,i

rgoal,i

)2

(22)

and the probability of choosing a particular node from the
group is proportional to its weight.
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The weighted random approach was chosen because it
biases the search in a direction likely to lead to a feasible
solution but has the potential to explore the space. Note that
the value of the exponent on the weight wi serves to “stretch”
the range of values, and can thus be used to increase the
likelihood of choosing a higher weighted node by increasing
the difference between the smallest and largest weight.

2) Node expansion: The selected node with position xi is
expanded using the pre-computed branches and wind speed
to define a set of candidate nodes.

Xi,new = xi1 + Ti∆Xb + wi1 +

 0
0

∆zi

 (23)

where 1 is a 1×MN array of ones, wi is the wind vector
computed at xi, and

Ti =

 cosψi sinψi 0
− sinψi cosψi 0

0 0 1

 (24)

is the transformation which rotates the set of precomputed
branches to the local frame defined by the heading ψi. Finally
∆zi = [∆zi,1 ∆zi,2 . . .∆zi,MN ] with

∆zi,m =
v2

a,i − v2
a,m

2g
(25)

The term ∆zm accounts for the change in altitude which
occurs with a change in speed, assuming that total energy
is constant during the transition. This is not reflected in
the kinematic model of the aircraft and must therefore be
accounted for separately.

The wind vector wi is computed at xi and is assumed
to be constant over the time δt required to fly the branch.
Weather prediction tools such as MM5 and WRF are able to
compute wind field over a grid spacing of approximately 1.5
- 2 km: at the flight speeds of small gliders (10 m/s to 30
m/s) a time interval of 50s to 150s will provide adequate
discretization. Clearly smaller values of δt will allow more
accurate computation of wind over each branch of the tree,
but this will result in increased computational cost.

Before adding them to the tree the set of candidate nodes
Xi,new is checked for feasibility. Currently two criteria are
used to cull infeasible nodes: height above ground and
maximum allowable divergence of heading from the goal.
Nodes for which

z < zterrain + zsafety (26)
|ψ − βgoal| > ∆ψgoal (27)

are declared infeasible, the remaining nodes are added to the
tree. Here zsafety is an altitude buffer to ensure adequate
height above terrain, ∆ψgoal is the maximum allowable
divergence of heading from βgoal, the current bearing to the
goal.

Fig. 3. Digital elevation map of Pennsylvania showing ridges of the
Appalachian mountains.

C. Termination

Tree expansion terminates when a node is within gliding
distance of the goal. This can be expressed as r = (L/D)h,
where L/D is the glide ratio. Maximum glide ratio occurs at
a particular airspeed which depends on wind speed: in still
air the maximum glide range occurs when the ratio of lift to
drag is maximized, and the speed for maximum L/D will be
denoted vL/D,max.

For a vehicle flying at vL/D,max the end game region is the
set {rgoal, h} which satisfies rgoal/h ≤ L/D|max, where h
is the altitude above the goal. Recalling that airspeed can be
exchanged for altitude, the endgame region can be expressed
as the set {rgoal, h, va} which satisfies

rgoal

h+ 1
2g

(
v2

a − v2
L/D,max

) ≤ L/D|max (28)

This formulation of the endgame region reflects that a
vehicle which is low but flying fast may still have enough
total energy to reach the goal in a simple glide.

IV. SIMULATION

The Appalachians of central Pennsylvania consist of long,
parallel ridges, often separated by only a few kilometers
(Figure 3).

Here we consider a flight to a distant goal which requires
crossing two ridges. The starting position is within gliding
distance of the near ridge, but the starting altitude is not
high enough to clear the ridge without exploiting orographic
lift. Further, significant altitude must be gained in order to
cross the gap between the ridges, and then sufficient altitude
must be gained on the second ridge to enable a glide to the
goal. The ridges are parallel to the y axis and are modeled
as infinitely long hemi-cylinders (Figure 4). Far from the
ridges the wind speed is uniform, with only a component of
5 m/s in the positive x direction. Terrain, wind and trajectory
parameters are given in Table I.

The wind field is computed using potential flow, which
allows a closed-form computation of the 3D wind vector at
any (x, y, z). A vertical slice through the wind field is shown
in Figure 5. The vertical component of wind is greatest
just upwind of the ridge, and the magnitude of the vertical
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Fig. 4. Scenario for simulation of glider flight. The start is shown by the
open circle, the goal is shown by the closed circle.

TABLE I
WIND AND TERRAIN PARAMETERS

parameter value
ridge centerline x-coordinate (m) [-4000, 4000]

ridge radius (m) [200, 200]
wind speed at ∞ (m/s) [5 0 0]

trajectory start (m) [-6000 0 200]
trajectory goal (m) [10000 60000 0]

component falls off quickly with altitude. Thus successful
exploitation of orographic lift requires flight in fairly close
proximity to terrain.

Branches were computed for a small autonomous glider
based on an RnR Products SB-XC radio-controlled glider
(properties given in Table II) using the following sets of
allowable inputs:

Va =
[

10 15 20 25 30 35
]

(29)
∆Ψ =

[
−50◦ −40◦ . . . 40◦ 50◦

]
(30)

with time interval δt = 120s. The maximum allowable
heading divergence from the goal was ∆ψgoal = 60◦.

Given the starting altitude of 200m, the maximum gliding
distance in still air is 5000m, approximately 8% of the
distance to the goal. Flying at best glide ratio to the nearest
ridge will place the glider about 100m below the crest of the
ridge when it arrives: clearly it must extract energy from the
atmosphere if it is to continue with safe flight.
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Fig. 5. Vertical slice through terrain and wind field. Vectors show wind
speed, the heavy line shows terrain.

TABLE II
AIRCRAFT PROPERTIES

parameter symbol value
mass m 10kg

wing area S 1m2

drag CD 0.1723C4
L − 0.3161C3

L + 0.2397C2
L

coefficient −0.0624CL + 0.0194
best glide L/D|max 25

ratio

TABLE III
SIMULATION RESULTS FOR 100 RUNS.

max min median 90% 95%
CPU time (s) 423.6 2.886 31.27 96.01 143.9

# nodes 196272 2667 25636 69240 98456

To assess planning performance, 100 runs were performed
with the same scenario (randomness enters the problem
through the node selection algorithm). Results are tabulated
in Table III. A 2.8GHz dual-processor Dell Xeon desktop
computer was used for these simulations.

In half the cases a path was found within one quarter of
the time taken to fly a single segment of the trajectory (31s
to find a path, segment time is 120s). In only 6% of the
cases was the time required to find a path longer than that
required to fly a single segment. While unexpected variation
in wind field is not explicitly addressed by this planning
approach, fast re-planning is one possible avenue for coping
with a time-varying or uncertain wind field. Given in situ
measurements of wind (collected during flight), an updated
wind field can be computed and used for generating new
plans.

Ground tracks for all paths computed in this simulation
are shown in Figure 6. The influence of the two ridges is
clearly seen on the ground tracks: paths cluster along the
ridges, and the gap crossing appears uniformly distributed.

Since the time of flight is the same for each flight segment,
the time of flight to reach the goal for a particular path can
be obtained directly from the number of nodes traversed. The
flight path, flight speed and heading angle for the minimum
time trajectory is shown in Figure 7.

The path begins with flight along the near ridge at almost
constant airspeed. Note that the heading is not exactly 90◦:
the horizontal component of wind speed keeps the ground
track of the aircraft parallel to the ridge.

V. CONCLUSION

This paper has presented a tree based approach to planning
trajectories which exploit atmospheric energy. A kinematic
model is used for the vehicle and a set of branches is pre-
computed for the space of allowable inputs (for the glider
considered here, air speed and heading). Upon selection of
a node, this set of branches is added to the tree and checked
for feasibility. Feasibility of the resulting nodes is checked
based on height above terrain and allowable divergence from
the goal and infeasible nodes are pruned.
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Fig. 6. All paths computed using the tree-based planner for 100 runs
(projected onto the plane z = 0). The start position is shown by the open
circle, the goal is shown by the solid circle.

A weighted random approach is used for node selection,
with the weight dependent on energy altitude and distance
from the goal. This directs the search towards the goal
but allows for exploration of the space. Tree expansion
terminates when a node is within gliding distance of the
goal.

Simulation results show that feasible soaring trajectories
can be found for long distance flights.
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