
Observability Based Parameter Identifiability for Biochemical Reaction
Networks

D. Geffen, R. Findeisen, M. Schliemann, F. Allgöwer, and M. Guay

Abstract— In systems biology, models often contain a large
number of unknown or only roughly known parameters that
must be identified. This work examines the question of whether
or not these parameters can in fact be estimated from avail-
able measurements. We consider identifiability of unknown
parameters in biochemical reaction networks obtained from
first-principles-modeling of metabolic and signal transduction
networks. Such systems consist of continuous time, nonlinear
differential equations. Several methods exist for answering the
question of identifiability for such systems; many of which
restate the question of identifiability as one of observability.
We consider the application of such methods to a representative
biological system: the NF-κB signal transduction pathway. It is
shown that existing observability based strategies, which rely on
finding an analytical solution, require significant simplifications
to be applicable to systems biology problems which are often not
feasible. For this reason, a new method based on the use of an
’empirical observability Gramian’ for checking identifiability is
proposed. This method is demonstrated through the use of a
simple biological example.

I. INTRODUCTION

In systems biology, models generally contain a large
number of unknown or only roughly known parameters.
Accurate knowledge of these parameter values is important
for describing and analyzing the dynamics and behaviour
of biological systems. This can be done using one of
several existing parameter identification strategies (see eg.
[1–3]) which all involve the fitting of measurement data.
However, these methods are often difficult to apply in
practice and offer no guarantee that available measurements
will yield meaningful values for the desired parameters. For
this reason, it is important to first consider the question
of whether or not parameters can in fact be determined
(uniquely) from a given model and choice of measurements.
This identifiability analysis is required to ensure the
mathematical significance of the estimated parameter values
and can also be a valuable tool for experimental design.

We focus on identifiability of nonlinear systems in
continuous time as this is generally the result of first-
principles-modeling of biochemical reaction networks.
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Several methods exist for checking identifiability of this
type of system such as those found in [4–6]. However, such
methods were not developed with biological systems in
mind so do not necessarily address the specific challenges
posed by this type of problem.

Identifiability methods can be roughly divided into two
categories: those that check for functional relationships
between parameters through simulation, optimization and
parameter estimation such as [7–9] and those which restate
the question of identifiability as one of observability by
extending the state space to include parameters, see eg.
[4–6, 10–12].

In this work, we specifically consider observability based
methods. We look at existing methods in the context of a
representative systems biology problem: the NF-κB signal
transduction pathway. This example serves to highlight
some of the limitations of the use of previous methods for
biological systems. To overcome the specific challenges
presented by existing methods, we propose a new approach
for checking identifiability based on the use of the ’empirical
observability Gramian’ presented in [13, 14]. This method is
simulation based so does not require an analytical solution
to be found as is the case for the other methods. Ideally,
this will allow for identifiability analysis of larger and
more complex systems such as those found in biology. This
approach is demonstrated on the relatively simple biological
example of microbial growth with Michaelis-Menten
kinetics as described in [15–17].

This paper is structured as follows. Section II contains a re-
view of existing observability based parameter identifiability
methods as well as their application to a representative sys-
tems biology problem. This provides the motivation for the
following sections. In Section III, a new method for checking
identifiability based on the use of an ’empirical observability
Gramian’ is proposed to overcome the challenges highlighted
in Section II. Section IV deals with the application of this
new method to a simple biological example as well as other
computational considerations. Conclusions and directions of
future work are discussed in Section V.

II. BACKGROUND AND MOTIVATION

There are many specific challenges to consider when dealing
with parameter identification and identifiability of biological
systems. For example, in traditional systems theory, systems
are often linearized or worked with in discrete time for
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analysis purposes. This is not a desirable approach for
biological systems as parameters have physical significance,
such as describing reaction rates, which would be lost.
For this reason, methods dealing with nonlinear systems in
continuous time are considered. Since most methods were
not developed with this specific purpose in mind, they are
discussed here in the context of their relevance to systems
biology problems.

A. Review of Identifiability Methods

We are specifically concerned with structural or a priori
identifiability: whether or not parameters can be identified
from a given model structure and outputs without consid-
ering possible measurement noise (as opposed to ’practical
identifiability’ in [7–9] which considers the quality of the
data as well). Many of these methods are based on restating
the question of identifiability as one of observability by
expanding the state space to include parameters. For this
reason, these are the methods focused on here.
One such method based on a power series expansion as
described in [6, 11]. It involves determining whether or not
one can express the system outputs and its derivatives in
terms of the unknown parameters using a Taylor series
expansion. The complexity of the method has been found
to increase greatly with system size [11] and it generally
only provides local identifiability results.
In [10, 11] a method using local state isomorphism theory is
employed. This method consists of solving a set of partial
differential equations for a set of parameters and determining
the uniqueness of the solution.
Differential algebra methods, such as those found in [4,
5, 12, 18], are based on using differentiation and algebraic
manipulation to find an observable representation of the
system in a structured manner. This can then be used to
evaluate if it is in fact possible to express parameters in terms
of measurable quantities through rank considerations. This
method does not require previous knowledge of the system
such as initial conditions which would need to be determined
experimentally. This condition is especially important for
a priori identifiability. However, the downside is that the
computation becomes increasingly complex with more states
and parameters which could pose a problem for biological
systems.

B. Motivation for New Approach

We use the NF-κB signal transduction pathway from [19]
as a framework by which to discuss and evaluate existing
observability based identifiability strategies and to offer
motivation for the new Gramian based approach.
The original model from [19] consists of 15 states and
29 parameters. In order to facilitate analysis using existing
methods, a model reduction is required. The pathway of the
reduced model examined is shown in Fig. 1.
This model contains 8 states and 15 parameters of which,
as an additional simplification, only 9 are considered to be
unknown and in need of being identified. The system is
described by a set of ordinary differential equations derived

Fig. 1. Schematic pathway representation of the reduced NF-κB model
with unknown parameters circled.

from mass action kinetics which are linear in terms of the
parameters and nonlinear (bilinear) in terms of the states. As
is the case for many biological systems, the system is limited
in terms of potential inputs that will sufficiently excite the
system (in the NF-κB case no inputs are considered). This is
in stark contrast to traditional systems theory in which most
identification methods are based on the input-output map of
the system [20].
Details of the full algebraic identifiability analysis of the
reduced NF-κB model are presented in [21]. It turns out
that the identifiability analysis can only be carried out after
making significant simplifications to the model. The number
of states have to be reduced through model reduction and
finding a solution is highly dependent on the choice of
outputs. As shown in [21] for this example, addition of a third
output is required in order to compute the observability map
of the system. Due to the presence of the bilinear terms, the
highest order derivative that can be taken before the system
of algebraic equations can no longer be solved analytically
is y(2) imposing a restriction that a solution can only be
found for systems ≤ 3p states where p is the number of
outputs. However, in biological systems one is extremely
limited in terms of what can be measured experimentally
so the addition of more outputs is not necessarily feasible.
One must also consider that this system is still of only
moderate size and complexity in comparison to the range of
systems biology problems available. This suggests existing
observability based methods are not well suited for analyzing
identifiability of biological systems.
The difficulty with the current observability based methods
examined, is that finding the observability of nonlinear
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systems in continuous time is a highly challenging problem
in itself without even considering the parameter values. In
fact, the limitations of these methods lay in the number
of states they can handle as they all require an analytical
solution to be found. For this reason, it is necessary to
develop methods which are not as dependent on the size and
nonlinearity of the system for their computation. In the next
section, we propose a new, simulation based identifiability
method considering the observability Gramian as a measure
for identifiability.

III. EMPIRICAL GRAMIAN FOR IDENTIFIABILITY

The concept of empirical observability and controllability
Gramians was introduced in [13] for the purpose of model
reduction for nonlinear systems. It is introduced as a ’data
based’ approach making use of data either from simulation
or experiments in order to avoid some of the computa-
tional complexity associated with other methods. It has been
successfully applied to systems with dozens of states [22]
for purposes of model reduction. In [14] the use of such
Gramians for observability (and controllability) analysis is
proposed and compared to the use of linear Gramians and
Lie algebra based methods. Currently there are no results
of using these Gramians for the purpose of identifiability
analysis as is proposed here. The hope is that since this
method is simulation based, it can overcome some of the
constraints on the system size and complexity imposed by
the other observability based methods previously discussed
and thus can be used for biological systems.

A. System Description

Consider a nonlinear dynamic system of the form:

Σ :
{

ẋ = f (x,θ) , x(0) = x0,
y = h(x,θ), (1)

where x ∈ X ∈ Rn, y ∈ Rp, and θ ∈ P ∈ Rq are the states,
outputs, and unknown time-invariant parameters respectively.
P is a simply connected open subset of Rq of feasible
parameter values and X is a simply connected open subset
of Rn of feasible states. X ×P together form the operating
region of the system. Note that we do not consider inputs
for simplicity of presentation however the results are easily
expandable to this case.

We consider the following definition of structural identifia-
bility:
Definition 1: (Structural identifiability)
A given parameter θi is (a priori or structurally) globally
identifiable if there exists, for all possible measurement
trajectories, a unique solution to (1) for θi. A parameter
with a countable or uncountable number of solutions is
considered locally identifiable or unidentifiable.

For the purpose of our approach, the question of identifiabil-
ity is restated as one of observability by including parameters
as states. Considering time invariant parameters the following
augmented system is obtained from that in (1):

Σ̃ =


˙̃x =

[
ẋ
θ̇

]
=

[
f (x,θ)

0

]
, x̃(0) =

[
x0
θ0

]
,

y = h(x,θ),
(2)

where x̃ ∈ Rñ, ñ = n + q is the augmented state vector
containing both the parameters and original states.

B. Empirical Identifiability Gramian

The following definition is adapted from that of the empirical
observability Gramian found in [13, 22] by considering the
augmented system.
Definition 2: (Empirical identifiability Gramian)

WI =
r

∑
l=1

s

∑
m=1

1
rsc2

m

∫
∞

0
TlΨ

lm(t)T T
l dt (3)

where Ψlm(t) ∈ Rñ×ñ is given by:

Ψ
lm
i j (t) = (yilm(t)− yilm

ss )T (y jlm(t)− yilm
ss ). (4)

The Gramian WI is constructed using output values obtained
through perturbations of the initial states of the system. In
this case yilm(t) and yilm

ss are the time varying and steady
state output of the system for the particular ’experiment’
considered by the initial state given by:

x̃(0)ilm = cmTlei + x̃nom. (5)

These initial states are obtained through perturbations around
a nominal value x̃nom. The following sets describe the per-
turbations:

T ñ =
{

T1, . . . ,Tr; Tl ∈ Rñ×ñ, T T
l Tl = I, l = 1, . . . ,r

}
,

M = {c1, . . . ,cs; cm ∈ R, cm > 0, m = 1, . . . ,s} ,
E ñ =

{
e1, . . . ,en; standard unit vectors in Rñ

}
.

Here r is the number of matrices that describe the
direction of the perturbations and s is the number of
different perturbation magnitudes for each direction. The
perturbations reflect the reasonable or desired operating
range of the system.

Remark 1: Note that the augmented system is only neutrally
stable. However, in order for the empirical Gramian to be
applied it is typically required that the complete system
be exponentially stable (at least locally for the region
considered). This does not pose a problem here though
because the neutrally stable parts are resulting from the
system parameters that are adjoint to the original system.
Since the parameters are constant, they are canceled out by
the subtraction of the steady state values.

Based on the empirical observability Gramian, the following
two statements can be made:
• Firstly, the augmented system (2) is locally observable

over the operating range considered if the resulting
Gramian is of full rank.
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• As a direct consequence of this, it follows that since the
states of the augmented system consist of the states and
parameters of the original system, that if the augmented
system is observable then the parameters are locally
identifiable over the operating range considered.

This provides a means to check identifiability by employing
the observability Gramian. One basically considers the
observability Gramian for the expanded system and checks
if it is of full rank.

If one can make further assumptions or show that the system
being examined is observable (the observability Gramian of
the original system is invertible) additional simplifications
can be made to the Gramian of the augmented system so that
the part dealing only with identifiability can be isolated. This
is beneficial as it eliminates the effect of the cross terms (for
example, the effect of changing the parameters on the time
course of the states which can indirectly effect the output).
In this case, WI of the augmented system can be decomposed
as follows:

W (ñ×ñ)
I =

[
W (n×n)

X W (n×q)
Xθ

W (q×n)
θX W (q×q)

θ

]
.

The (q× q) empirical identifiability Gramian can then be
defined as:

WI = Wθ −WθXW−1
X WXθ . (6)

If this matrix has full rank (rank= q where q is the number of
unknown parameters) then those parameters are identifiable.
Since the matrix is obtained using numerical approximations,
eigenvector/ eigenvalue decomposition is used as a measure
of rank deficiency.

IV. APPLICATION OF EMPIRICAL IDENTIFIABILITY
GRAMIAN

The empirical Gramian can be computed from experimental
or simulation data from within a region where the process is
to be operated. While this helps overcome the restrictions on
system size of the other observability based methods, it also
introduces complications in terms of the number of degrees
of freedom one is presented with for computation. One
must select nominal values for the states and parameters, a
region of interest for the system, and define the directions
and magnitudes of the perturbations.

Remark 2: It is also important to note that the system
should be scaled prior to perturbation. One can include the
scaling considerations when determining the perturbations by
rewriting (5) as:

x̃(0)ilm = cmS−1Tlei + x̃nom

where S is the scaling matrix. The scaling can also reflect
the different feasible operating regions of the states and
parameters.

We discuss computational considerations and demonstrate
the application of empirical Gramians for identifiability
analysis through the use of a simple biological example.

Biological Example

As a biological example we look at a model of microbial
growth from [16, 17]. The structural identifiability of this
system was previously analyzed in [15] using a different
approach based on several existing methods so can be used
to confirm the results of the Gramian approach. The system
description is as follows:

ẋ = µmb2l(t)x(t)
Ks+b2l(t) −Kdx(t)

l̇ =− µml(t)x(t)
Y (Ks+b2l(t))

x(0) = x0 , l(0) = 1,

(7)

where l(t) = 1
b2

s(t). The system is derived using Michaelis-
Menten kinetics where s(t) and x(t) are the concentration of
substrate and product respectively and µm, Kd , b2, Ks, Y are
the reaction parameters. Note that the system is nonlinear in
continuous time.
We examine the question of whether or not the unknown
parameter set:

θ = (µm,Kd ,b2,Ks,Y )T

is identifiable over the range of system states and parameters
considered. The measurable output in this case is given by:

y(t) = x(t).

Comments on Computation

The Gramian calculations are done using nominal state and
parameter values and by considering perturbations within a
region of biological interest; similar to what would be exam-
ined experimentally for the purpose of parameter estimation.
The nominal values for the biological example are [16]:

x̃nom =



x0
l0
µm
Kd
b2
Ks
Y


nom

=



1
1

0.5
0.025

10
3.0
0.6


.

With respect to the perturbations, one would want to
consider a larger range of parameter values as the exact
nominal values are not known. In this case, perturbations
of ±10% about the nominal values are considered for the
states and ±50% for the parameters.

In order to specify the perturbation directions, we use a 2ñ

factorial design to generate the T matrix. This leads to an
(ñ×2ñ) matrix made up of ±1 which is made orthogonal by
dividing it by

√
2ñ.
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There are several reasons for utilizing this approach, as
opposed to the ones presented in [13, 14], when considering
parameter identifiability. In [13] the use of T = [I,−I]
is suggested while the perturbation directions in [14] are
evenly distributed around a unit circle. The use of randomly
generated orthogonal (n× n) matrices is also considered.
It is important to note that in both [13, 14], the use of
a steady state point in the system for the nominal state
values is proposed. The use of ±I to define the perturbation
directions essentially translates into ’experiments’ in which
only one state or parameter is perturbed at a time. This
approach proves to be disadvantageous when considering
parameter identifiability of biological systems as the steady
state value for at least some of the states is often zero.
This makes it impossible to obtain information about the
parameters associated with these states because when the
parameter is perturbed the state will remain at zero. The
use of random perturbation directions gives a T matrix that
contains not only direction but also magnitude to a certain
degree. The use of a factorial design for T not only allows
for the consideration of every perturbation combination, it
facilitates the use of an equilibrium point of the system as
the nominal states and has no magnitude associated with it
as well.

Remark 3: In [13, 14] it is specified that T is an (n× n)
orthogonal matrix and multiple (l = 1, . . . ,r) T matrices
are used to define the perturbation directions considered.
However, these are not requirements as long as the
following adjustments are made (proof not included here).
The set M describing the perturbation magnitude remains
the same although T ñ becomes T ∈ Rñ×2ñ

,T T T = I,
the l index is no longer required and E ñ becomes:
E2ñ

= {e1, . . . ,e2ñ ; standard unit vectors in R2ñ}. The Ψ

matrix also changes dimensions to become (2ñ×2ñ). Despite
these changes the dimensions of the empirical Gramian
remain the same.

The perturbations are used to define the initial conditions
for each ’experiment’ and the resulting outputs are used to
calculate WI according to (3).

Remark 4: While Definition 2 considers the integral from
zero to infinity, a finite end time, t f , must be used for
computational purposes. As long as tF > the time it takes
for the outputs to reach steady state, the results will not be
effected.

Identifiability Result

In the case of the microbial growth example, the system is
observable with the considered output so WI , as defined in
(6), can be used for the identifiability analysis. This leads to
the following (q×q) identifiability Gramian:

WI =


0.0946 0.1871 −0.0024 −0.0554 −0.0446

0.1871 6.081 0.0059 −0.1328 −0.0916

−0.0024 0.0059 −0.0020 0.00001 −0.0030

−0.0554 −0.1328 0.00001 0.0357 0.0272

−0.0446 −0.0916 −0.0030 0.0272 0.0188

 .

An eigenvalue/eigenvector decomposition of the WI matrix
is used to determine its rank and thereby whether or not the
unknown parameters are identifiable. The eigenvalues, λi, are
expressed as relative values or as a percentage of the total
norm. For the microbial example we obtain:

λ1 = 0.978
λ2 = 0.0223

λ3,λ4,λ5 = O(10−4)

with the corresponding eigenvector matrix:

v =


0.032 −0.797 −0.266 0.535 −0.082

0.999 0.041 0.0007 0.003 −0.001

0.001 0.007 −0.704 −0.427 −0.567

−0.022 0.474 0.076 0.656 −0.582

−0.015 0.372 −0.653 0.319 0.577

 .

In this case λ3, λ4, and λ5 are 2− 3 orders of magnitude
smaller than the other eigenvalues and can be considered neg-
ligibly small (as noise due to the numerical approximation).
This suggests that 3/5 of the unknown parameters from (7)
are unidentifiable. By looking at the eigenvectors of WI one
can see that these unidentifiable parameters correspond to
b2, Ks, and Y . This is consistent with the results from [15]
obtained using a different parameter identifiability approach.

V. CONCLUSIONS AND OUTLOOK

Identifying parameters for biochemical reaction networks
is a challenging task. We look at existing observability
based methods for structural or a priori identifiability,
originally developed for general nonlinear systems, in
the context of a typical systems biology problem: the
NF-κB signal transduction pathway. It is found in [21]
that the identifiability analysis itself can only be carried
out after significant simplifications are made. The number
of states must be reduced through model reduction and
whether or not identifiability can be analyzed is found to
depend greatly on the choice of outputs. One must also
consider that this example is still of only moderate size
and complexity compared to the range of systems biology
problems available, suggesting that such methods are not
well suited for this purpose.

The difficulties with the current observability based methods
stem from the fact that they all require an analytical
solution to be found imposing limitations on the size
and complexity of systems that can be handled. In order
to overcome this, we propose the use of an ’empirical
observability Gramian’ for identifiability analysis. Since this
method is data/simulation based it should be able to avoid
computational complexities associated with the previous
methods and thereby be used on biological systems. The
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empirical observability Gramian has already been shown to
be able to handle dozens of states for the purpose of model
reduction in [22]. The use of this Gramian for identifiability
purposes is demonstrated on a biological example: a
model of microbial growth. Results from [15] for the
same system state that the unknown parameters b2, Ks, and
Y are unidentifiable which verifies the results of our method.

Since the empirical Gramian is generally used for model
reduction purposes, many questions remain regarding the
analysis in the identifiability case; namely how to extract
as much information from the Gramian as possible. This
becomes increasingly important when dealing with larger
systems. Future work will look at applying this method to
larger biological examples, such as the NF-κB pathway, to
be better able to compare and contrast it with the previous
analytical based approaches shown. In this work, only time
invariant parameters are used. Since when using the Gramian
for identifiability purposes the parameters are included as
states by considering their time derivatives, this method could
easily be extended to the case of time variant parameters as
well.
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