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Abstract— Many gene regulatory networks are modeled at
the mesoscopic scale, where chemical populations are assumed
to change according a discrete state (jump) Markov process.
The chemical master equation (CME) for such a process is
typically infinite dimensional and is unlikely to be compu-
tationally tractable without further reduction. The recently
proposed Finite State Projection (FSP) technique allows for
a bulk reduction of the CME while explicitly keeping track of
its own approximation error. In previous work, this error has
been reduced in order to obtain more accurate CME solutions
for many biological examples. In this paper, we show that this
“error” has far more significance than simply the distance
between the approximate and exact solutions of the CME. In
particular, we show that apart from its use as a measure for
the quality of approximation, this error term serves as an exact
measure of the rate of first transition from one system region to
another. We demonstrate how this term may be used to directly
determine the statistical distributions for stochastic switch rates,
escape times, trajectory periods, and trajectory bifurcations. We
illustrate the benefits of this approach to analyze the switching
behavior of a stochastic model of Gardner’s genetic toggle
switch.

I. INTRODUCTION

The majority of modeling and analysis of biological sys-
tems is done using ordinary differential equations (ODEs). In
biochemical systems these equations depend upon assump-
tions that (1) the system contains so many molecules that
each chemical can be described with a continuous valued
concentration, and (2) that the system behaves at thermal
equilibrium. Under these assumptions of mass action kinet-
ics, the resulting ODE models can be analyzed using efficient
and accurate numerical integration software. However, for
many gene regulatory networks, some chemical species are
so rare that they must be quantified by discrete integer
amounts. These rare chemical species may include crucial
cellular components such as genes, RNA molecules, and
proteins, which can in turn affect a vast array of biological
functions. As a result, a slightly noisy environment will
introduce significant randomness and result in phenomena
such as stochastic switching [1], stochastic focussing [2],
stochastic resonance, and other effects. These effects cannot
be captured with deterministic models, and require a separate
set of analytical tools.

Gillespie showed in [3] that if a chemical system is well
mixed and kept at constant temperature and volume, then
that system behaves as a discrete state Markov process. Each
state of this process corresponds to a specific population

vector, and each jump is a reaction that takes the system from
one population vector to another. The probability distribution
of such a chemical process evolves according to a set of
linear ODEs known as the chemical master equation (CME).
Although the CME is relatively easy to define (see below),
it can be very difficult or impossible to solve exactly. For
this reason, most research on the CME has concentrated
on simulating trajectories of the CME using methods such
as the Stochastic Simulation Algorithm (SSA) [4] or one
of its various approximations (see for example: [5], [6]).
While these methods reliably provide samples of the process
defined by the CME, they require a huge collection of
simulations to obtain an accurate statistical solution. This be-
comes particularly troublesome, when one wishes to compute
the transition probabilities of very rare events or to compare
distributions arising from slightly different parameter sets.

Recently, we developed a new approach to obtain an
approximate solution to the CME: the Finite State Projection
(FSP) algorithm [7]–[10]. This approach systematically col-
lapses the infinite state Markov process into a combination
of a truncated finite state process and a single absorbing
“error sink”. The resulting system is finite dimensional and
solvable. The probabilities of the truncated process give
a lower bound approximation to the true CME solution.
The probability measure of the error sink gives an exact
computation of the error in this approximation. This error
can then be decreased to reach any non-zero error tolerance
through a systematic expansion of projections known as the
FSP algorithm [7]. However, as we will illustrate in this
paper, the “error” guarantee of the FSP provides more than
a simple distance between the FSP solution and the true
solution to the CME. Instead, this important term in the
projection provides a wealth of additional information about
the Markov process. From it one can determine the statistical
distributions of switch rates and escape probabilities and also
analyze stochastic pathway bifurcation decisions.

The focus of this paper is to explore this added information
contained in the FSP “error” term and to present some of
the types of analyses for which this information provides.
The next section will provide a precise summary of the
original FSP results from [7] but with an emphasis on the
understanding of the underlying intuition of the error sink. In
Section III, we show how this sink can be used to determine
some statistical quantities for stochastic switches, such as
switch waiting and return times. Section IV will then show
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how multiple absorbing sinks can be used to effectively
analyze pathway bifurcation decisions in stochastic systems.
In Section V we will illustrate how these new approaches
can be applied to a stochastic model of the genetic toggle
switch [11]. Finally, in Section VI we will finish with some
concluding remarks.

II. BACKGROUND ON THE FINITE STATE PROJECTION
APPROACH

For many biochemical systems, it is convenient to assume
that all of the microscopic dynamics–intermolecular forces
and collisions, changing molecular geometries, thermal fluc-
tuations, and so forth–all average out to yield a far simpler
jump Markov process. Indeed such assumptions are well
supported in the case of a fixed volume, fixed temperature,
well-mixed, reaction of ideal gasses as shown by Gillespie
in [3]. This scale is commonly referred to as the mesoscopic
scale of chemical kinetics.

In the mesoscopic description of chemical kinetics the
state of an N reactant process is defined by the integer
population vector x ∈ ZN . Reactions are transitions from
one state to another x→ x + νµ, where νµ is known as the
stoichiometry (or direction of transition) of the µth reaction.
For any xi there are at most M reactions that will take the
system from xi to some other state xj 6= xi and at most
M reactions that will bring the system from xk 6= xi to xi.
Each reaction has an infinitesimal probability of occurring
in the next infinitesimal time step of length dt; this quantity
is known as the propensity function: wµ(x)dt.

If Pi(t) and Pµi (t) are used to denote the probabilities that
the system will be in xi and xµi = xi − νµ, respectively, at
time t, then:

Pi(t+ dt)− Pi(t)
dt

= −
M∑
µ=1

wµ(xi)Pi(t)− wµ(xµi )P
µ
i (t).

Taking the limit dt → 0 easily yields the chemical master
equation, which can be written in vector form as: Ṗ(t) =
AP(t). The ordering of the infinitesimal generator, A, is
determined by the enumeration of the configuration set
X = {x1,x2,x3, . . .}. Each ith diagonal element of A is
negative with a magnitude equal to the sum of the propensity
functions of reactions that leave the ith configuration. Each
off-diagonal element, Aij , is positive with magnitude wµ(xj)
if there is a reaction µ ∈ {1, . . . ,M} such that xi = xj+νµ
and zero otherwise. In other words:

Aij =

8<: −
PM
µ=1(wµ(xi))

wµ(xj)
0

for (i = j)
for all j such that (xi = xj + νµ)
Otherwise

9=; .

(1)

When the cardinality of the set X is infinite or extremely
large, the solution to the CME is unclear or vastly difficult
to compute, but one can get a good approximation of
that solution using Finite State Projection (FSP) techniques
[7]–[10]. To review the FSP, we will first introduce some
convenient notation. Let J = {j1, j2, j3, . . .} denote an index
set, and let J ′ denote the complement of the set J . If X
is an enumerated set {x1,x2,x3, . . .}, then XJ denotes the

subset {xj1 ,xj2 ,xj3 , . . .}. Furthermore, let vJ denote the
subvector of v whose elements are chosen according to J ,
and let AIJ denote the submatrix of A such that the rows
have been chosen according to I and the columns have been
chosen according to J . For example, if I and J are defined
as {3, 1, 2} and {1, 3}, respectively, then: a b c

d e f
g h k


IJ

=

 g k
a c
d f

 .
For convenience, let AJ := AJJ .

Let M denote a Markov chain on the configuration set
X, such as that shown in Fig. 1(a), whose master equation
is Ṗ(t) = AP(t), with initial distribution P(0). Let MJ

denote a reduced Markov chain, such as that in Fig. 1(b),
comprised of the configurations indexed by J plus a single
absorbing state. The master equation of MJ is given by[

ṖFSP
J (t)
Ġ(t)

]
=
[

AJ 0
−1TAJ 0

] [
PFSP
J (t)
G(t)

]
, (2)

with initial distribution,[
PFSP
J (0)
G(0)

]
=
[

PJ(0)
1−

∑
PJ(0)

]
.

At this point it is crucial to have a very clear understanding
of how the process MJ relates to M and in particular the
definitions of the terms PFSP

J (t) and G(t). First, the scalar
G(0) is the exact probability that the system begins in the set
XJ′ at time t = 0, and G(t) is the exact probability that the
system has been in the set XJ′ at any time τ ∈ [0, t]. Second,
the vector PFSP

J (0) contains the exact probabilities that the
system begins in the set XJ at time t = 0, and PFSP

J (t)
are the exact joint probabilities that the system (i) is in the
corresponding states XJ at time t, and (ii) the system has
remained in the set XJ for all τ ∈ [0, t].

With this understanding, the relevant portions of the orig-
inal FSP theorems [7] are trivial to state and to prove as
follows:

Theorem 1. For any index set J and any initial distribution
P(0), it is guaranteed that

PJ(t) ≥ PFSP
J (t) ≥ 0.

Proof. PFSP
J (t) is a more restrictive joint distribution than

PJ(t).
Theorem 2. Consider any Markov chain M and its

reduced Markov chain MJ . If G(tf ) = ε, then∣∣∣∣[ PJ(tf )
PJ′(tf )

]
−
[

PFSP
J (tf )

0

]∣∣∣∣
1

= ε. (3)

Proof. The left side of (3) can be expanded to:

LHS =
∣∣PJ(tf )−PFSP

J (tf )
∣∣
1

+ |PJ′(tf )|1 .

Applying the Theorem 1 yields

LHS = |PJ(tf )|1 −
∣∣PFSP

J (tf )
∣∣
1

+ |PJ′(tf )|1 .
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Fig. 1. (a): A Markov chain for a two species chemically reacting system,
M. The process begins in the configuration shaded in grey and undergoes
three reactions: The first reaction ∅ → s1 results in a net gain of one s1
molecule and is represented by right arrows. The second reaction s1 → ∅
results in a net loss of one s1 molecule and is represented by a left arrow.
The third reaction s1 → s2 results in a loss of one s1 molecule and a gain
of one s2 molecule. The dimension of the Master equation is equal to the
total number of configurations inM, and is too large to solve exactly. (b) In
the FSP algorithm a configuration subset, XJ is chosen and all remaining
configurations are projected to a single absorbing point, G. This results
in a small dimensional Markov process, MJ . (c,d) Instead of considering
only a single absorbing point, transitions out of the finite projection can be
sorted as to how they leave the projection space. (c) G1 and G3 absorb
the probability that has leaked out through reactions 1 or 3, respectively.
This information can then be used to analyze the probabilities of certain
decisions or to expand the configuration set in later iterations of the FSP
algorithm. (d) Each Gi absorbs the probability that s1 first exceeds a certain
threshold, smax1 when s2 = i.

Since P(tf ) is a probability distribution |PJ(tf )|1 +
|PJ′(tf )|1 = |P(tf )|1 = 1 and the LHS can be rewritten:

LHS = 1−
∣∣PFSP

J (tf )
∣∣
1
.

Because the pair {G(tf ),PFSP
J (tf )} are a probability

distribution for MJ , one can see that the right hand side is
precisely equal to |G(tf )|1 and the proof is complete.

Theorem 1 guarantees that as we add points to the subset
XJ , then the PFSP

J (tf ), monotonically increases, and The-
orem 2 provides a certificate of how close the approximation
is to the true solution.

In previous work, the probability lost to the absorbing
state, G(t), has been used only as in Theorem 2 as a means to
evaluate the FSP projection in terms of its accuracy compared
to the true CME solution. As a probability of first transition,
however, this term has an importance of its own, as we will
see in the remainder of this paper.

(a)

G
(b)

u0

Fig. 2. Schematic representation for the computation of round trip times
for discrete state Markov processes. (a) A Markov chain, M where the
system begins in the shaded circle, and we wish to find the distribution
for the time at which the system first enters then shaded region and then
returns to the initial state. (b) A corresponding Markov process where the
top points correspond to states on the journey from the dark circle to the
shaded box, and the bottom circles correspond to states along the return trip.
In this description, the absorbing point G(t) corresponds to the probability
that the system has gone from the initial condition to the grey box and then
back again.

III. ANALYZING SWITCH STATISTICS WITH THE FSP

As discussed above, the term G(t) for the process MJ

is simply the probability that the system has escaped from
XJ at least once in the time interval [0, t]. With such an
expression, it is almost trivial to find quantities such as
median or pth percentile escape times from the set XJ . We
need only find the time t such that G(t) in (2) is equal to
p%. In other words, we find t such that

G(t) = 1− |exp(AJ t)PJ(0)|1 = 0.01p. (4)

This can be solved with a relatively simple line search as we
will do in the example of Section V. Using a multiple time
interval FSP approach such as those explored in [9] or [10]
could significantly speed up such a search, but this has not
been utilized in this study.

Alternatively, one may wish to ask not only for escape
times, but for the periods required to complete more com-
plicated trajectories. For example, suppose the we have a
Markov chain such as that in Fig. 2(a). The system begins
in the state represented by the shaded circle, and we wish
to know the distribution for the time until the system will
first visit the region in the grey box and then return to
the original state. Biologically this may correspond to the
probability that a system will switch from one phenotypical
expression to another and then back again. To solve this
problem, we can duplicate the lattice as shown in Fig. 2(b).
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In this description, the top lattice corresponds to states where
the system has never reached the grey box, and the bottom
lattice corresponds to states where the system has first passed
through that box. The master equation for this system is given
by:24 Ṗ1

J1(t)

Ṗ2
J2(t)

Ġ(t)

35 =

24 AJ1 0 0
C AJ2 0
0 −1TAJ2 0

35 24 P1
J1(t)

P2
J2(t)
G(t)

35 , (5)

where XJ1 includes every state except those in the grey box,
and XJ2 includes every state except the final destination.
The matrix C accounts for transitions that begin in XJ1 and
end in XJ2 (via a transition into the grey box) and can be
expressed:

Cik =

8<: wµ(xk)

0

for xk ∈ XJ1 and
xk + νµ = xi ∈ XJ2

Otherwise

9=; . (6)

The initial distribution is simply [1, 0, . . . , 0]T . The proba-
bility of the absorbing point, G(t), in this description is now
exactly the probability that the system has completed the
return trip in the time interval [0, t]. This solution scheme
requires a higher dimensional problem than the original
problem. However, with the FSP approach from [7], this
dimension could be reduced while maintaining a measure
of the method’s accuracy. As an approximate alternative to
duplicating the system and solving such a high dimensional
problem, one can utilize the linearity of the system to solve
the problem with a numerical convolution approach, as is
shown in an extended version of this article [12].

IV. PATHWAY BIFURCATION ANALYSIS WITH THE FSP

There are numerous examples in which biological systems
decide between expressing two or more vastly different
responses. These decisions occur in developmental pathways
in multicellular organisms as heterogeneous cells divide and
differentiate, in single cell organisms that radically adapt
to survive or compete in changing environments, and even
in viruses that must decide to lay dormant or make copies
of themselves and ultimately destroy their host [1]. Many
of these decisions are stochastic in nature, and models and
methods are needed to determine the nature and probability
of these decisions. Next, we show how the FSP approach
can be adapted to answer some of these questions.

In the original FSP approach, a single absorbing state has
been used, whose probability coincides with the probability
that the system has exited the region XJ . Suppose one wishes
to know a little more about how the system has exited this
region. For example in the process in Fig. 1(a), one may ask:

Problem 1: What is the probability that the system leaves
XJ via reaction 1 (rightward horizontal arrow) or via reac-
tion 3 (leftward diagonal arrow)?

Problem 2: What is the probability distribution for the
population of species s2 when the population of s1 first
exceeds a specific threshold, smax1 ?

These questions can be answered by creating a new
Markov process with multiple absorbing states as shown in
Fig. 1(c,d). Let M∗J refer to such a chain where we have

s1

s2

Promoters1

Promoter

Genes1

Genes2 s2

Fig. 3. Schematic of the toggle model comprised of two inhibitors: s1
inhibits the production of s2 and vice-versa.

included K different absorbing states. The CME for the two
problems above can be written as:[

ṖFSP
J (t)
Ġ(t)

]
=
[

AJ 0
Q 0

] [
PFSP
J (t)
G(t)

]
, (7)

where G = [G0, . . . , GK ]T and the matrix Q is given in
Problem 1 by:

Qµi =
{
aµ(xji)

0
if (xji + νµ) /∈ XJ

Otherwise

}
,

and in Problem 2 by:

Qki =

8<:
P
aµ(xji)

0

For all ji s.t. (xji)2 = k
and µ s.t. (xji + νµ)1 > smax1

Otherwise

9=; .

Note the underlying requirement that each ji is an element of
the index set J . Also recall that xj is a population vector–the
integer (xj)n is the nth element of that population vector.

For either problem, the solution of (7) at a time tf is found
by taking the exponential of the matrix in (7) and has the
form»

PFSPJ (t)
G(t)

–
=

»
exp(AJ tf ) 0R tf

0 Q exp(AJτ)dτ I

– »
PFSPJ (0)

G(0)

–
. (8)

This solution yields all of the same information as previous
projections with regards to the accuracy of PFSP

J (t), but it
now provides additional useful knowledge. Specifically, each
Gk(t) gives the cumulative probability distribution at time t
that the system will have exited from XJ at least once and
that that exit transition will have occurred in the specific
manner that was used to define the kth absorbing state.

In [7] we showed a FSP algorithm that relied on increasing
the set XJ until the solution reaches a certain pre-specified
accuracy. The additional knowledge gained from solving
Problems 1 or 2 above is easily incorporated into this
algorithm. If most of the probability measure left via one
particular reaction or from one particular region of XJ , it
is reasonable to expand XJ accordingly. Such an approach
is far more efficient that the original FSP algorithm and has
been considered in [9].

V. ANALYZING THE GENETIC TOGGLE SWITCH

To illustrate the usefulness of the absorbing sink of the
FSP in the analysis of stochastic gene regulatory networks,
we consider a stochastic model of the Gardner’s gene toggle
model [11]. This system, shown in Fig. 3 is comprised of two
mutually inhibiting proteins, s1 and s2. The four reactions,
Rµ, and corresponding propensity functions, wµ, are given
as:
R1 ; R2 ; R3 ; R4

∅ → s1 ; s1 → ∅ ; ∅ → s2 ; s2 → ∅
w1 = 16

1+s2
; w2 = s1 ; w3 = 50

1+s2.5
1

; w4 = s2
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For these parameters, the system exhibits two distinct
phenotypes, which for convenience we will label OFF
and ON. By definition, we will call the cell OFF when
the population of s1 exceeds 5 molecules, and we will
label the system as being ON when the population of s2
exceeds 15 molecules. Each of these phenotypes is relatively
stable–once the system reaches the ON or OFF state, it
tends to stay there for some time. For this study, we assume
that the system begins with a population s1 = s2 = 0, and
we wish to analyze the subsequent switching behavior.

Q1. After the process starts, the system will move within its
configuration space until eventually s1 exceeds 5 molecules
(the cell turns OFF) or s2 exceeds 15 molecules (the cell
turns ON). What percentage will choose to turn ON first (s2
exceeds 15 before s1 exceeds 5)?

To analyze this initial switch decision, we use the
methodology outlined in Section IV. We choose XJ to
include all states such that s1 ≤ 5 and s2 ≤ 15. There are
only two means through which the system may exit this
region: If s1 = 5 and R1 occurs (making s1 = 6), then
the system is absorbed into a sink state GOFF . If s2 = 15
and R3 occurs, then the system is absorbed into a sink
state GON . The master equation for this Markov chain has
the form of that in (7) and contains 98 states including
the two absorbing sinks. By solving this equation for the
given initial condition, one can show that the probability of
turning ON first is 78.1978%. Thus, nearly four-fifths of the
cells will turn ON before they turn OFF. The asymptotes of
the blue and red dashed lines in Fig. 4(bottom) correspond
to the probabilities of that the system will first turn ON and
OFF, respectively.

Q2. Find the times t50 and t99 at which 50% and 99% of
all cells will have made their initial decision to turn ON or
OFF?

To solve this question we can use the same Markov
chain as in Q1, and search for the times, t50 and
t99, at which GOFF (t50) + GON (t50) = 0.5 and
GOFF (t99) + GON (t99) = 0.99, respectively. This
has been done using a simple line search, in which we
found that t50 = 0.5305s and t99 = 5.0595s. In Fig
4(bottom) these times would correspond to the point in time
where the black dashed line cross 0.5 and 0.99, respectively.

Q3. What is the time at which 99% of all cells will have
turned ON at least once?

Because we must include the possibility that the cell
will first turn OFF and then turn ON, this solution for this
question requires a different projection. We have chosen to
use a projection, XJ1 , that includes all states such that s1 ≤
45 and s2 ≤ 15. There are only two means through which
the system may exit this region: GON is basically the same
as above. However, the system can still exit XJ1 if s1 = 45
and R1 occurs; in this case the probability is absorbed into a
sink state Gerr, which will result in a loss of precision in our
results. This error comes into play as follows: If t1 is defined

as the time at which GON (t1) +Gerr(t1) = 0.99, and t2 is
defined as the time at which GON (t2) = 0.99, then the time,
t99, at which 99% turn ON is bounded by t1 ≤ t99 ≤ t2.
For the chosen projection, this bound is very tight yielding
a guarantee that t99 ∈ [1733.1, 1733.2]s. Similarly, one can
use a projection, XJ2 where s1 ≤ 5 and s2 ≤ 100 to find
that it will take between 798.468 and 798.472 seconds until
99% of cells will turn OFF.

Note that the times for Q3 are very large in comparison
to those in Q2; this results from the fact that the ON and
OFF regions are relatively stable. This trait is evident in
Fig. 4. In the figure, the blue dashed line corresponds to
the time of the first ON decision provided that the system
has not previously turned OFF. Since only about 78%
percent decide to turn ON before they turn OFF, this curve
asymptotes at about 0.78 (see Q1 and Q2). On the other
hand, the solid blue line corresponds to the times for the
first ON decision whether or not the system has previously
turned OFF. The red curves represent the same information
for the OFF decisions. The kinks in these distributions,
where the solid and dashed curves separate, result from
the stability of the OFF region. In particular, the curve
for the first switch to the ON state exhibits a more severe
kink due to the fact that the OFF region is more stable
than the ON region (compare solid red line to solid blue line).

Q4. What is the distribution for the round trip time until
a cell will first turn ON and then turn OFF?

In order to answer this question we use the round-
trip methodology from the latter half of Section III. Intu-
itively, this approach is very similar to that depicted in Fig.
2(bottom), except that now the top and bottom portions of
the Markov chain are not identical and the final destination
is a region of the chain as opposed to a single point.
Also, since the Markov process under examination is infinite
dimensional, we will apply a finite state projection to reduce
this system to a finite set. For the system’s outbound journey
into the ON region, we use the projection XJ1 from Q3
where s1 ≤ 45 and s2 ≤ 15. After the system turns ON, it
begins the second leg of its trip to the OFF region through
a different projection XJ2 where s1 ≤ 5 and s2 ≤ 100.
When the system reaches the OFF region on the second leg,
it is absorbed into a sink G(t). The transition from the set
XJ1 to XJ2 occurs only when the system is in one of the
states [s1, s2] ∈ {[0, 15], [1, 15], . . . , [5, 15]}. The full master
equation for this process can be written as:

Ṗ1
J1

(t)
Ṗ2
J2

(t)
Ġ(t)
ε(t)

 =


AJ1 0 0 0
C21 AJ2 0 0
0 c32 0 0
cε1 cε2 0 0




P1
J1

(t)
P2
J2

(t)
G(t)
ε(t)

 , (9)

where AJ1 and AJ2 are defined as in (1). The
matrix C21 is defined as in (6) and accounts
for the transitions from the states [s1, s2] =
{[0, 15], [1, 15], . . . , [5, 15]} ∈ XJ1 to the corresponding
states [s1, s2] = {[0, 16], [1, 16], . . . , [5, 16]} ∈ XJ2 . The
vector c32 corresponds to the transitions that exit XJ2 and
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Fig. 4. Probability densities (top) and cumulative distributions (bottom) of
the times of switch decisions for a stochastic model of Gardner’s gene toggle
switch [11]. The blue and red dashed lines correspond to the probabilities
that the first switch decision will be to enter the ON or OFF region,
respectively. Note that the system will turn ON first for about 78% of
trajectories (Q1); the rest will turn OFF first (see asymptotes of dashed
lines in bottom plot). The black dashed line in the bottom plot is equal to
the sum of the red and blue dashed lines; this corresponds to the cumulative
distribution until the time of the first switch decision (Q2). The solid lines
correspond to the probabilities for the first time the system will reach the
ON (or OFF) region (Q3). The dotted lines correspond to the times until
the system completes a trajectory in which it begins at s1 = s2 = 0, it
turns ON (or OFF), and finally turns OFF (or ON) (Q4).

turn OFF (completing the full trip). The last two vectors
cε1 and cε2 correspond to the rare transitions that leave the
projected space and therefore contribute to a computable
error, ε(t) in our analysis.

The solution of this system for the scalar G(t) then gives
us the joint probability that (i) the system remains in the set
XJ1 until it enters the ON region at some time τ1 ∈ [0, t),
and (ii) it then remains in the set XJ2 until it enters the OFF
region at some time τ2 ∈ (τ1, t]. This distribution is plotted
with the dotted lines in Fig. 4. Once again we can see the
effect that the asymmetry of the switch plays on the times of
these trajectories; the ON region is reached first more often
and the ON region is less stable, thus the ON then OFF
trajectory will occur significantly faster than the OFF then
ON trajectory (compare red and blue dotted lines in Fig. 4).

VI. CONCLUSION

In order to account for the importance of intrinsic noise,
researchers model many gene regulatory networks as be-
ing jump Markov processes. In this description, each state
corresponds to a specific integer population vector and
transitions correspond to individual reactive events. These
processes have probability distributions that evolve according
to a possibly infinite dimensional chemical master equation
(CME) [3]. In previous work, we showed that the Finite State
Projection (FSP) method [7] can provide a very accurate
solution to the CME for some stochastic gene regulatory
networks. The FSP method works by choosing a small finite

set of possible states and then keeping track of how much
of the probability measure exits that set as time passes. In
the original FSP, the amount of the probability measure that
exits the chosen region yields bounds on the FSP approx-
imation error. In this paper we have shown that this exit
probability has intrinsic value and can allow for the precise
computation of the statistics of switching times, escape times
and completion times for certain more involved trajectories.
We have illustrated these techniques on a stochastic model
of Gardner’s genetic toggle switch [11]. We have used the
FSP to find the distribution for the times at which the system
first turns ON or OFF as well as the time until the system
will complete a trajectory in which it first switches one way
and then the other. In each of these computations, the FSP
results come with extremely precise guarantees as to their
own accuracy.
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