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Abstract— In this paper, we present a reactive control law
that can navigate a single, sensor-enabled vehicle to ascend
or descend a scalar potential field. The design builds on our
previous work on developing an isoline following control. The
model framework enables us to establish performance bounds
for the developed ascending/descending control that are related
to the geometrical parameters of the field. The efficacy of our
approach is demonstrated through two possible applications -
source-centric mapping of a potential field and tracking of a
single target, emitting a distance-related potential field.

I. INTRODUCTION

In the last few years there has been increased interest in
what the authors of this paper call automated potential field
exploration. A few references worth noting are [1]-[8]. The
main motivation of this type of exploration is the existence of
certain phenomena that can be measured at discrete points
but which are impossible to be instantaneously sensed in
their entirety. Examples in environmental monitoring are
quantities such as ocean temperature, CO2 concentration
and many others that can be measured only in a point-wise
fashion, so as to provide an arbitrarily accurate representation
of their distribution. Going down the scale, similar restriction
can be observed in Scanning Probe Microscopy (SPM) where
a single probe measures the specifics of a few micrometers
sample, such as elevation, magnetism and etc., point-by-
point. The challenge is to find means for efficiently acquiring
information either by focusing on certain features of the field
such as level sets [1], [6], [7] and extremums [9], or by
reducing the error of the acquired potential field map [2].
In general, these techniques are also known as non-raster
scans [10]. The aim of this paper is to contribute to this
idea by proposing a new control capable of navigating a
vehicle, such that it ascends/descends along a potential field.
Although similar exploration strategies are employed by
other authors [3], [9], our control overcomes the deficiencies
of the previously known techniques by introducing a purely
reactive control which makes use of a single sensor enabled
vehicle.

A reactive control law was also used in a our previous
work [1] to guide an autonomous exploration agent to
map the isolines of an unknown potential field. The label
reactive control stands for the concept of treating the agent
as a dynamical system reacting directly to its immediate
environment. For the purpose of the automated potential
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field exploration such strategies can have two possible goals:
to follow an isoline [1], [6] and to ascend/descend along
the potential [3]. In the current paper, we build upon the
general model framework established in [1] to design and
analyze the descending/ascending control law. Our view is
that the currently proposed algorithm, together with the
isoline following control law, form a full set of motion
primitives which a higher level strategy can utilize for the
continuous monitoring and exploration of potential fields.

There are two known setups, that can provide for the
solution of this problem. The first one, we call Single Entity
equipped with Multiple Sensors (SEMS) - a single entity,
represented either by a single vehicle or by a rigid formation
of vehicles [11], utilizes multi-sensor information to achieve
the objectives of the control law [3], [6]. The existence of
a sensor array enables the control to rely on a variety of
explicitly estimated parameters, describing the local behavior
of the potential field, such as the direction and the magnitude
of the gradient at a point or the curvature of an isoline.

In the current paper, we employ Single Entity equipped
with Single Sensor (SESS) - the control law can rely only on
a single point measurement of the potential field. (See [1] and
[9] for other examples of SESS potential field exploration.)
The benefits of such an approach are that: first, it is a more
parsimonious use of resources; and second, it can be applied
in a much smaller scale in which multiple sensors cannot be
utilized [12].

The limitation of this setup is that no gradient information
can be available in real time, since to estimate the magnitude
and the direction of the gradient requires the potential to be
measured at at least four points. One way to handle this
restriction is algorithmic. Reference [9] presents a solution
for the extremum seeking problem in which the vehicle
moves in a given direction until the potential is increasing
along its trajectory (or respectively decreasing depending on
whether the extremum is a minimum or a maximum) and
when the potential starts decreasing, the vehicle orients to
another direction. Although an algorithmic approach presents
a viable solution for the descending/ascending problem, it
comes with innate limitations. Foremost, algorithmic controls
are difficult or often impossible to analyze. For the automated
potential field exploration this fact manifests by the inability
of an algorithmic control to address the question of whether
there are curtain pathological representations of the potential
field that render it unstable. To the contrary, a reactive control
law can have analytically established performance bounds
that, if related to the geometry of the potential field, can
quantify the limiting cases for the control.

In this paper, we show two possible applications for the
ascending/descending control law. The first one is to map
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a neighborhood of an extremum, such that the position of
the extremum is mapped with pre-specified precision. The
second application is to localize and continuously track a
moving source.

II. MODEL FRAMEWORK FOR THE REACTIVE CONTROL
OF A VEHICLE IN A POTENTIAL FIELD

Let S : R2 → R be an almost everywhere analytic scalar
potential field. The task of designing a reactive control is
equivalent with defining a map Ψ : Rn+1 → R2:

Ψ
(

S,
dS

dt
, ...,

dnS

dtn

)
= U, (1)

which transforms the potential measured at the position of
the vehicle and the history captured by its higher order
derivatives into a control action U. Here, S = S(r(t)) is
the potential along the trajectory of the vehicle at time t and
the vector r(t) ∈ R2 is relative to a fixed coordinate frame.

The derivatives cannot be directly evaluated and need to
be estimated from the measurements of the potential. Taking
into account that the measurements in general have added
noise, the higher the order of a derivative, the larger the
noise of its estimate. Therefore, we limit the control to the
form:

U = Ψ
(

S,
dS

dt

)
. (2)

As established in [1], a convenient coordinate system to
analyze a reactive control is a nonlinear coordinate system,
which coordinate directions are aligned with and transverse
to the level sets of the potential function S(r). Assuming that
S is a harmonic function implies that a coordinate system
based on S and its harmonic conjugate Q, satisfying:

∂Q

∂x
= −∂S

∂y
(3)

∂Q

∂y
=

∂S

∂x
, (4)

is orthogonal and defined everywhere in R2.

Fig. 1. Angles between the velocity of the vehicle and the normal ~n =
∇S
|∇S| and the tangent ~t = ∇Q

|∇Q| to the isoline, along which S has constant
value.

The conventional wisdom of designing control for au-
tonomous agents is that, regardless of the goal, the simplest
model, e.g the fully actuated point vehicle, provides for a
least complex solution. This model can be written as:

ṙ = U, (5)

where the control should be U = {u, v}T and consists of
the projections of the velocity of the vehicle on the x and y
axis of the fixed coordinate frame.

However, the specifics of the SESS setup leads to a
situation for which the simplest model does not provide for
the simplest solution. Previously this fact has been shown in
[1] and it can be observed from the curvilinear representation
of (5):

Ṡ = ∇S · ṙ = −V M sin (θ − α) (6)
Q̇ = ∇Q · ṙ = V M cos (θ − α) . (7)

In these equations the parameters are defined as follows:
V =

√
u2 + v2 is the magnitude of the velocity, M is the

magnitude of the gradient (‖∇S‖), α is the angle between
the tangent of the isoline at the position of the robot and the
x axes, and θ is the heading of the vehicle (Fig.1).

Since the goal of a reactive potential field control is to
align the vehicle either to the level sets (isoline following
sin (θ − α) = 0) or to their transverse (gradient climbing
cos (θ − α) = 0), the vehicle should be able to estimate
the angle α, or in other words the direction of the gradient.
The SESS setup excludes such information. Nevertheless,
introducing nonholonomic constraints on the vehicle, or U =
{V, ω}T (ω = θ̇), alleviates this limitation.

Using the simplest example of a nonholonomic vehicle:

ṙ = V

(
cos θ
sin θ

)
(8)

θ̇ = ω, (9)

defining φ = θ−α, and setting constant unit velocity yields
to the following system in the {S, Q} plane:

Ṡ = −M sinφ

Q̇ = M cos φ (10)
φ̇ = ω − κS cos φ− κQ sinφ.

Here, ∇ ·
(
∇S
|∇S|

)
= κS and ∇ ·

(
∇Q
|∇Q|

)
= κQ are the

curvatures respectively of the isolines S(r) = const and the
streamlines Q(r) = const. Note that in this expression all
the unknown parameters (κS , κQ and M ) are geometrical
characteristics of the potential field. Using non-unit velocity
will scale this parameters with the magnitude of the speed.
However, in what follows we treat them as disturbances
and therefore choosing constant speed allows us to define
exact bounds on their influence. This fact enables the design
of a control law which performance depends purely on the
geometry of the potential field.

III. ASCENDING/DESCENDING CONTROL

In this section we introduce the ascending/descending con-
trol law. To facilitate the analysis, the discussion that follows
is aimed at ascending control (Ṡ (r (t)) > 0). However,
without loss of generality, the results can be extended to
descending control (Ṡ (r (t)) < 0).

We start by defining bounds on the geometry of the
potential field. Foremost, to enable the design of an ascend-
ing control law, the potential should be steep enough. This
requirement is formalized in the following assumption:
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Assumption 1: Let ΩS =
{
r ∈ R2|S(r) ≥ Sd

}
be a given

region on the plane in which the vehicle executes its motion,
and let there be a single maximum in ΩS with potential
value Smax. Then, for every 0 < ε < Smax − Sd, which
defines a neighborhood ΩM =

{
r ∈ R2|S(r) ≥ Smax − ε

}
around the maximum, there exists σ such that ‖∇S‖ > σ,
∀r ∈ ΩS − ΩM .

The curvatures κS and κQ quantify the deformation of
the potential field. It follows that their magnitude affects
the ability of a control strategy to converge the vehicle to a
desired path. Moreover, they can quantify singularities in the
field. An extremum, for example, is marked with curvature
κS →∞. Therefore, bounding the curvatures guarantees, on
one hand, that the vehicle’s trajectory stays at a sufficiently
large distance from the singularities and, on the other, that
the variations of the field are unable to render the control
unstable.

Assumption 2: There exist a bound |κQ|, |κS | < η, ∀r ∈
ΩS − ΩM .

Building upon these assumptions, an ascending control law
should have the goal of transporting the vehicle from any
point in ΩS into ΩM in finite time. Hence, the problem can
be formulated as follows: given knowledge for the bounds σ
and η, design a control law which achieves stable ascending
of the trajectory through the potential field S, ∀ r(t) ∈ ΩS−
ΩM .

Theorem 1: Let Assumptions 1 and 2 be satisfied, and let
the system (8) evolve under the control law:

ω = K1

(
1−K2

dS

dt

)
, (11)

with gains satisfying:

K1 ≥ Θ
√

2η, (12)

K2 ≥ 1
σ

(
1 +

η

K1

)
, (13)

where the constant Θ is chosen as 1 < Θ and Θ − 1 �
1. Then, given that ΩS is sufficiently large, there exists a
set Ω0,ΩM ⊆ Ω0 ⊆ ΩS such that starting from any initial
condition in r(0) ∈ Ω0 and 0 ≤ θ(0) ≤ 2π, first,

r(t) ∈ ΩS , ∀t > 0.

and second, there exists time τ , satisfying

r(τ) ∈ ΩM . (14)
Proof: The motion of the vehicle in curvilinear coor-

dinates is given by (10). Note, that Ṡ ≤ 0 for φ ∈ [0, π]
and Ṡ > 0 for φ ∈ (π, 2π), therefore the investigation of
the system behavior can be reduced to the evolution of the
vehicle’s orientation relative to the isolines of the potential
field. Substituting the control law, (11), into (10) yields

φ̇ = K1 (1 + K2M sinφ)− κS cos φ− κQ sinφ.

Now, lets assume that r(t) ∈ ΩS−ΩM for t ∈ [0, τ ], then
under K1,K2 chosen according to (12), (13), the following
inequalities hold.

For φ = π + δ, where δ is a small positive constant,
satisfying Θ(1−K2Mδ) > 1, we have

φ̇ = K1 (1−K2M sin δ) + κS cos δ + κQ sin δ

> K1 (1−K2Mδ)−
√

2η > 0, (15)

and for φ = 3
2π, we have:

φ̇ = K1 (1−K2M) + κQ <

< K1 (1−K2M) + η < 0. (16)

Therefore, φ ∈
[
π + δ, 3

2π
]

is a trapping region for φ in
which the following holds:

0 < ‖∇S‖ sin δ < Ṡ(r(t)) < ‖∇S‖. (17)

Let t1 be the time that the orientation enters the trapping
region, e.g. φ(t1) ∈

[
π + δ, 3

2π
]
. Then, the vehicle will

ascend the potential field as long as r(t) ∈ ΩS−ΩM , which
is equivalent to t1 ≤ t ≤ τ . Note that,

φ̇ ≥ K1 − κS cos φ− κQ sinφ

≥ K1 −
√

κ2
S + κ2

Q > 0, φ ∈ [0, π]. (18)

and therefore the vehicle can spend only limited time de-
scending after which its orientation will be confined in the
trapping region. Thus, given that ΩS is sufficiently large,
there will exist a set Ω0, such that if r(0) ∈ Ω0 and
0 ≤ φ(0) ≤ 2π then r(t1) ∈ ΩS . Moreover, if ΩM ⊆ Ω0

r(t) ∈ ΩS , ∀t ≥ 0.
The implications of this theorem can be better understood

if the geometry of the potential field is restricted to a special
case - a radial function (κQ = 0). Then, the behavior of the
exploration agent can be summarized by the corollary stated
below.

Corollary 1: Let S(r) be a radial function , e.g. S(r) =
S(‖r−rM‖), where rM are the coordinates of the maximum,
and let the control law be:

ω = η

(
1− 1

σ

dS

dt

)
. (19)

Then
lim

t→∞
‖r(t)− rM‖ →

1
η

(20)

∀r(0) ∈ Ω0 and θ ∈ [0, 2π].
Proof: The proof proceeds as follows: first, we show

that the evolution of the trajectory can be described with a
system of two time-invariant differential equations; then, we
establish a trapping region for the trajectory; and finally, we
prove, that there are no stable limit cycles in the bounded
region. In case the last two conditions hold, the Poincare-
Bendixson Theorem [13] guarantees that once in the trapping
region, the trajectory of the system converges to an equilib-
rium point within it.

Beginning with the fact that the system evolves in a radial
potential field, it follows that there exist an inverse function
S−1(·) = ‖r − rM‖ and that the magnitude of the gradient
‖∇S‖ is also a radial function. Therefore, the system can be
expressed in terms of two state space coordinates: the angle
φ and ‖r − rM‖ = − 1

κS
= r (the minus sign is due to the

fact that S is concave). The resulting system yields:

ṙ = sinφ (21)

φ̇ = η (1 + f (r) sinφ) +
1
r

cos φ,

where f(r) = ‖∇S‖
σ and f(r) > 1, ∀r ∈ ΩS − ΩM

(Assumption 1).
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Without loss of generality, we will set η = 1. Equation
(20) implies that the trajectory of (21) converges to r =
1
η = 1 and it can be verified that {r = 1, φ = π} is a fixed
point for the system.

The next step is to establish a trapping region for the
trajectory - T , such that if {φ(τ), r(τ)}T ∈ T , it follows
that {φ(t), r(t)}T ∈ T ∀t > τ .

By Theorem 1 the trajectory of the vehicle is such that if
r(0) ∈ Ω0 then r(t) ∈ ΩS , ∀t > 0, which establishes the first
boundary of the trapping region. The other two boundaries
are given by r = 1, for φ ∈ [ 32π, 2π] and φ = 3π

2 for r > 1.
The validity of this boundaries can be directly verified by
substituting the corresponding values in (21).

The last side of the trapping region is given by

1− r cos φ = 0

for 0 ≤ φ < π
2 . To verify this boundary, we define the

Lyapunov function L = 1 − r cos φ. Its derivative on the
trajectory of the system yields:

L̇ = r sinφ + rf(r) sin2 φ. (22)

Note, that L̇ > 0, given that r ∈ ΩS and 0 ≤ φ < π
2 and

therefore the trajectory of the system cannot cross the curve
1− r cos φ = 0 from within the trapping region.

The boundaries of the trapping region are shown in red in
Fig.2.

Fig. 2. The boundaries of the trapping region in red for (21)

In the final step of the proof, we use the Dulac Criterion
(See Theorem 6.6.3 in [13]) to establish that there are no
limit cycles in T . This is done by defining the function
g(φ, r) = r2−1

sin φ , which combined with (21) gives:

∇ · (g(φ, r)F(φ, r)) =
(1− r cos φ)(r2 + 2r cos φ + 1)

r sin2 φ
,

(23)
where F is the vector consisting of the RHS of (21). It can be
verified that r2 +2r cos φ+1 ≥ 0 ∀φ, r and 1− r cos φ ≥ 0
∀φ, r ∈ T , which by the Dulac Criterion implies that there
are no stable limit cycles in the trapping region, and therefore
the trajectory converges to the fixed point r = 1

η , φ = π.
The fact that the trajectory converges to a curve with

pre-specified radius around the maximum implies that the
user can adjust the final distance between the source and
the vehicle by adjusting the gain K1, e.g K1 = 1

r . This
property can be useful in adversary applications, that require
the exploration agent to maintain its existence undetected
from the position of the source.

Another property of the control law is that the ascending
rate can be adjusted through adjusting the gain K2. This fact
is proved in the next corollary.

Corollary 2: For fixed κS , κQ and M the growth rate of
the potential along the trajectory is a decreasing function of
K2.

Proof: In the prove of Theorem 1, we have established
that if K1 and K2 are properly assigned, there exist a
trapping region for φ - φ ∈ (π, 3π

2 ). For fixed κS , κQ and
M this translates to a stable fixed point φ∗ ∈ (π, 3π

2 ) for the
one dimensional system given by:

φ̇ = K1 (1 + K2M sinφ)− κS sinφ− κQ cos φ. (24)

It can be verified from this expression that φ∗ is a
decreasing function of K2 such that as K2 → ∞, φ∗ → π.
Taking into account that the descending rate will approach
Ṡ → −M sinφ∗ , it follows that Ṡ is also a decreasing
function of K2.

What this corollary also implies is that if S(r) is radial
function and the magnitude of the gradient, M , is known
along the trajectory of the vehicle, a control law of the type
(11), having the optimal ascending rate, yields:

ω = K1

(
1− 1

M

dS

dt

)
. (25)

IV. APPLICATIONS

In this section, we present two possible applications for
the ascending control law.

A. Source centric mapping
The first application of the control is to enable an ex-

ploration agent to perform source centric mapping. In this
application, the exploration goal is to provide the user
with both, a high quality map of the neighborhood of an
extremum, and the coordinates of its position. The properties
of the ascending/descending control that enable a vehicle to
efficiently achieve these objectives are:

1) The ascending/descending algorithm can localize the
critical point in the potential field with pre-specified
precision.

2) The ascending/descending rate can be adjusted, and
along with that the precision with which the vehicle
maps the neighborhood of the extremum.

The first property can be traced back to Theorem 1 where
we have shown that for any size of the set ΩM , as long as
Assumptions 1 and 2 are satisfied, there exist gains K1 and
K2 that can converge the vehicle’s trajectory to ΩM .

The second one can be drawn as a direct consequence
of Corollary 2. In addition, it will also amount to the
trajectory of the vehicle spending less time in areas where
the magnitude of the gradient is small, as opposed to areas
where the magnitude of the gradient is large. This property
is visualized in Fig. 3 where the vehicle is ascending a radial
potential field given by:

S(r) = −‖r‖+ 5 sin
(
‖r‖
7

)
. (26)

This figure clearly shows that the trajectory is concentrated
in the lighter regions, corresponding to large ‖∇S‖, as
opposed to the darker regions, corresponding to small ‖∇S‖.
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Fig. 3. The trajectory of the vehicle for K1 = 5, K2 = 40 and S(r)
given by (26), shown over a map of ‖∇S‖

In Fig. 4, we show the control law applied to a more
realistic situation. The potential field pictured represents
the total CO2 concentration near the surface of the Pacific
Ocean, off the coast of South America [14]. In the left
image, one can observe the trajectory of the vehicle along the
potential field, and in the right image, the map reconstructed
from the gathered data.

Fig. 4. The trajectory of the vehicle for K1 = 1, K2 = 2.5 in the potential
field pictured above and the reconstructed map of the potential field from
the data gathered along the trajectory of the vehicle

B. Source-tracking
We are assuming that the source (further referred as the

target) moves in the plane and emits a potential, which is a
constant function of the distance between the target and the
pursuing vehicle.

To accommodate for the moving target, the model de-
scribed in (10) should be appended. Defining γ to be the
angle between the tangent to the isoline at the position of
the tracker and the heading of the target, the following new
system describes the evolution of the potential at the position
of the pursuer:

Ṡ = M (− sinφ + Vt sin γ)

φ̇ = ω − 1
r

(− cos φ + Vt cos γ) (27)

γ̇ = ωt −
1
r

(− cos φ + Vt cos γ) .

The parameters Vt and ωt are respectively the velocity and
the steering rate of the target, and r is the distance between
the target and the pursuer.

Building upon Theorem 1, it should be possible to com-
pensate for the new terms by modifying the gains K1 and
K2. Before following this proposition, however, we restrict
the mobility of the target with the following new assumption:

Assumption 3: The target moves with constant velocity
Vt < Vmax < 1 and ωt = 0.

This assumption will be alleviated in future work to
accommodate for linear acceleration and steering velocities.
Further in this section, we show simulation results for
tracking a target maneuvering with constant steering rate ωt.

Proposition 1: If Assumptions 1, 2 and 3 are satisfied,
there exist a control law of the type:

ω = K1Θ1

(
1−K2Θ2

dS

dt

)
, (28)

for which if the pursuing vehicle is in the proximity of the
target it will reach ΩM in finite time, where K1 and K2 are
given by Theorem 1 and Θ1, Θ2 > 1.

Proof: Proving this proposition is equivalent with
proving that the distance between the target and the pursuer
will be decreasing, or, in other words, the potential measured
at the position of the pursuer will be increasing. This yields
to the condition:

Ṡ > Mε > σε > 0, (29)

where ε is a small positive constant and σ is defined in
Assumption 1.

Further, lets assume that there exist a trapping region T
in the {φ, γ} plane such that if {φ(τ), γ(τ)} ∈ T , it follows
that {φ(t), γ(t)} ∈ T , ∀t > τ . Then, the proof transforms to
proving that there exist ε such that:

inf
{φ,γ}∈T

(− sinφ + Vt sin γ) > ε, (30)

given that the parameters in (27) obey Assumptions 1 through
3.

We start with the set T = {φ ≤ 3
2π|−sinφ+Vt sin γ ≥ ε},

where ε is chosen such that:

(1− Vmax) > 2ε. (31)

Note that the so defined T satisfies (30). To prove that
it is also a trapping region, φ = 3

2π is substituted into the
second equation of (27), which yields:

φ̇ = K1Θ1 (1−K2MΘ2 (1 + Vt sin γ))− 1
r
Vt cos γ.

The gain K1 is given by (12). Therefore, choosing Θ2

as Θ2 > Θ1+Vmax

Θ1(1−Vmax) guarantees that φ̇ ≤ 0 and hence,
establishes φ ≤ 3

2π as a valid bound for the trapping region.
On the other hand, defining the Lyapunov function:

L = − sinφ + Vt sin γ − ε, (32)

and proving L̇ > 0 for L = 0, φ ∈ (π, 3
2π) establishes the

other bound for the trapping region. Differentiating on the
trajectory yields:

L̇ = −ω cos φ− 1
r

(− cos φ + Vt cos γ)2 , (33)

where ω is given by (28).
Note that L̇ ≥ 0 should be satisfied on the curve L =

0, when φ is in (π, 3
2π). This fact can be utilized in the

following expression for cos φ:

cos φ = −
√

1− (Vt sin γ − ε)2. (34)
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Therefore, the condition L̇ ≥ 0 for L = 0 transforms to:

ωε ≥
1
r

(√
1− (Vt sin γ − ε)2 + Vt cos γ

)2

√
1− (Vt sin γ − ε)2

, (35)

where ωε is derived from setting L = 0 in (28):

ωε = K1Θ1 (1−K2Θ2ε) . (36)

Letting ε → 0 transform the condition expressed in (35)
into:

K1Θ1 ≥ 1
r
(1 + Vt)2, (37)

where we have used that:(√
1− (Vt sin γ)2 + Vt cos γ

)2

√
1− (Vt sin γ)2

≤ (1 + Vt)2 (38)

Taking into account that both the left and the right side of
(35) are continuos function of ε, if we choose Θ1 > (1 +
Vmax)2Θ, where 1 < Θ and Θ − 1 � 1, there will exist
ε > 0 for which (35) is satisfied. Then, the trapping region
is defined by both curves - − sinφ + Vt sin γ − ε = 0 and
φ = 3

2π, and its existence is guaranteed by setting:

Θ1 ≥ Θ(1 + Vmax)2 (39)

Θ2 ≥ Θ1 + Vmax

Θ1 (1− Vmax)
. (40)

In Fig. 5, we show the trajectories of both the pursuer and
the target for a potential function given by S(‖r‖) = ‖r‖,
which is equivalent of assuming that the intensity function
is known. In Fig. 6, we show ‖r‖ as function of time during
the pursuit.

Fig. 5. The vehicle pursuing a target - K1Θ1 = 2.25, K2Θ2 = 2

In Fig. 7, we show a pursuit for which ωt = 0.1.

V. CONCLUDING REMARKS

In this paper, it has been shown that a sensor enabled
robot can be controlled to approach maxima (or minima)
of a sensed potential field. The conditions under which
our proposed control law can be guaranteed to work are
regularity assumptions regarding the field. The results of
the paper, combined with our previous work, provide a set
of motion primitives for exploration of a potential field by
a single robotic agent. Future work will emphasize such
exploration using teams of robots.

Fig. 6. The distance between the pursuer and the target as a function of
time

Fig. 7. The vehicle pursuing a target in case of ωt = 0.1 and K1Θ1 =
2.25, K2Θ2 = 2
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