
Neighboring Extremal Solution for Discrete-Time Optimal Control Problems

with State Inequality Constraints

Reza Ghaemi, Jing Sun and Ilya Kolmanovsky

Abstract— A neighboring extremal control method is pro-
posed for discrete-time optimal control problems subject to a
general class of inequality constraints. The approach generalizes
the method proposed in [7] to the case when the results of
[7] become inapplicable: one with constraints which depend
only on states but not inputs and another with over-determined
input-state constraints. The application of the proposed method
leads to a computationally efficient model predictive control
algorithm, which is described in conjunction with a numerical
example, to illustrate the utility of the proposed approach.

I. INTRODUCTION

Efficient numerical methods which solve finite horizon op-

timal control problems can broaden the range of applications

of optimization-based control, including Model Predictive

Control. One approach to reduce the computational time and

effort is to use an approximate solution derived using the

neighboring extremal method.

The neighboring extremal solution associated with a per-

turbed initial state, in the absence of state or input con-

straints, is presented in [1], [2], for continuous time systems,

while its counterpart for discrete time systems can be found

in [3], [4]. Moreover, the neighboring extremal solution

for continuous time systems with inequality constraints and

discontinuities can be derived using multi-point boundary

value techniques, as presented in [5].

For discrete time systems, the dynamic optimal control

problem can be transformed (or transcripted) into a nonlinear

programming problem. Consequently, exploiting sensitivity

analysis for the nonlinear programming problem, the neigh-

boring extremal solution can be calculated as shown in [6].

The drawback of this method is that solving the resulting

high-dimensional quadratic programming problem can be

computationally expensive.

In an attempt to alleviate the computational burden associ-

ated with the nonlinear programming, a neighboring extremal

method was proposed in [7] for discrete-time systems with

input and state inequality constraints. This method is based

on linearization of the necessary optimality conditions of the

original problem along a nominal optimal trajectory, thereby

leading to a set of Riccati-like backward recursive equations

that can be used to calculate the neighboring extremal

solution. This method has the advantage that the numerical
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effort for calculating the neighboring extremal solutions

grows only linearly with respect to the length of the horizon,

as compared to the cubical growth rate for the nonlinear

programming method. However, the method proposed in [7]

is not applicable if there are pure state inequality constraints,

or when the state inequality constraints are over-determined

at some time instants.

In this paper we propose a modified neighboring extremal

method for discrete-time systems which can handle more

general classes of constraints. These classes of constraints

include cases when there are constraints dependent only on

states but not inputs, as well as the cases when the active

inequality constraints outnumber the control inputs at some

time instant over the horizon. We will also illustrate the

application of the proposed approach to Model Predictive

Control, using a 5th order nonlinear ship maneuvering model

as an example.

II. PROBLEM FORMULATION

In this section we review the neighboring extremal control

approach for discrete-time systems with mixed input and

state inequality constraints, proposed in [7]. Consider the

problem of minimizing a cost function,

J [u] =
N−1
∑

k=0

L(x(k), u(k)) + Φ(x(N)), (1)

over all feasible control sequences u : [0, N ] → R
m and

all state vectors x : [0, N ] → R
n subject to the following

constraints:

x(k + 1) = f(x(k), u(k)); f : R
n+m → R

n (2)

x(0) = x0; x0 ∈ R
n (3)

C(x(k), u(k)) ≤ 0, C : R
n+m → R

l. (4)

Here, it is assumed that the number of active inequality

constraints at each time instant is not greater than the number

of control inputs.

Let xo(k), uo(k), k ∈ [0, N ] be the state and control

trajectories corresponding to the optimal solution in the

problem of minimizing (1) subject to the constraints (2)-(4)

with the initial condition x(0). The solution xo(k), uo(k)
is referred to as the nominal solution. Let Ca(k) be a

vector consisting of the constraints that are active at the time

instant k and µ(k) be the corresponding Lagrange variable1.

Moreover, letting λ(·) be the sequence of co-states associated

1Note that the dimension of Ca(k) could vary for different k. It is an
empty vector if no constraint is active at the time instant k.
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with the dynamics of the system, the Hamiltonian function

can be defined as follows:

H(k) = L(x(k), u(k)) + λ(k + 1)T f(x(k), u(k))

+ µ(k)T Ca(x(k), u(k)).
(5)

As shown in [11], if a perturbation δx(0) in the initial state

x(0) does not change the activity status of the constraints,

then the corresponding optimal solution to the problem

defined by the cost function (1) and constraints (2), (4)

and initial state x(0) = x0 + δx(0) can be approximated,

in a neighboring extremal sense, as xo(k) + δx(k) and

uo(k) + δu(k), k ∈ [0, N ], provided

Zuu(k) ≻ 0 for k ∈ [0, N ] (6)

for the nominal solution, where2

Zuu(k) = Huu(k) + fT
u (k)S(k + 1)fu(k),

Zux(k) = Zxu(k)T = Hux(k) + fT
u (k)S(k + 1)fx(k),

Zxx(k) = Hxx(k) + fT
x (k)S(k + 1)fx(k)

(7)

and S(k) in equation (7) is given by:

S(i)=Zxx(i) − [Zxu(i) CT
x (i)]K0(i)

[

Zux(i)
Cx(i)

]

,

S(N) = Φxx(N).
(8)

Moreover, the following explicit relation between state and

input variations can be derived to calculate the perturbed

solution:

δu(k) = K∗(k)δx(k), (9)

K∗(k) = −[I 0]K0(k)

[

Zux(k)
Ca

x(k)

]

, (10)

and

K0(k) =

[

Zuu(k) Ca
u

T (k)
Ca

u(k) 0

]−1

. (11)

Since it is assumed that the matrix Zuu(·) is positive defi-

nite over the entire horizon, the matrix K0(k) is well defined

as long as Ca
u(k) is full row rank for k = 0, · · · , N − 1. If

Ca
u(k) is not full row rank at some time instant k, the matrix

K0(k) is not well defined and the proposed algorithm fails.

Two special cases of such situation can be easily identified:

one is when the constraint is a function of state x(·) and

not input u(·) (in this case, Cu = 0), another is when the

number of active inequality constraints at the time instant k is

greater than the number of control inputs, m. The goal of the

subsequent sections is to circumvent the technical difficulties

in the these cases, and propose a general approach that can

deal with a broader class of problems.

2Following the notation used in [8], Huu, Hux, Hxx, Φxx, etc., denote
the partial derivatives with respect to x and/or u, with the exception for
Zuu, Zux, Zxx, which are defined by (7).

III. PERTURBATION ANALYSIS FOR DISCRETE TIME

OPTIMAL CONTROL PROBLEM SUBJECT TO CONSTRAINTS

In this section we consider the case where there are general

point-wise-in-time input-state constraints. Let us consider the

optimization problem of minimizing the cost (1) subject to

the following constraints:

x(k + 1) = f(x(k), u(k)); f : R
n+m → R

n, (12)

x(0) = x0; x0 ∈ R
n, (13)

C(x(k), u(k)) ≤ 0, C : R
n+m → R

l, (14)

C̄(x(k)) ≤ 0 C̄ : R
n → R

l̄, (15)

where C and C̄ denote the mixed state-input constraints and

state-only constraints, respectively.

In order to describe the neighboring extremal solution to

this problem, we first introduce the following notations. Let

x(k), u(k), k ∈ [0, N ] be referred to as the nominal solution

for the state and control corresponding to the optimal solution

in the problem of minimizing (1) subject to the constraints

(12)-(15). With λ(·) defined as in Section II, the Hamiltonian

function can be defined as follows:

H(k) = L(x(k), u(k)) + λ(k + 1)T f(x(k), u(k))

+ µ(k)T Ca(x(k), u(k)) + µ̄(k)T C̄a(x(k)),
(16)

where µ(·) and µ̄(·) are vectors of Lagrange multipliers

associated with the active parts of constraints (14) and (15),

respectively. Now we define matrix sequences C̃u(·), C̃x(·)
and S(·) using the following backward recursive equations.

Let

Ĉx(N) := C̄a
x(x(N)),

S(N) := Φxx(N) +
∂

∂x
(C̄T

x (x(N))µ̄(N)),
(17)

and, at the time instant k, we define

Caug(k) :=

[

Ca
u(k)

Ĉx(k + 1)fu(k)

]

,

r̃k := rank(Caug(k)).

(18)

At each time instant k, there is a matrix P (k) that transforms

matrix Caug(k) into an upper triangular form, namely

P (k)

[

Cu(k)

Ĉx(k + 1)fu(k)

]

=

[

C̃u(k)
0

]

, (19)

with C̃u(k) ∈ R
r̃k×m having independent rows.

By defining

Γ(k) :=





P (k)

[

Ca
x(k)

Ĉx(k + 1)fx(k)

]

C̄a
x(k)



 ,

and assuming that γk is the number of rows of matrix Γ(k),
we can define

C̃x(k) := [Ir̃k×r̃k
0r̃k×(γk−r̃k)]Γ(k) ∈ R

r̃k×m,

Ĉx(k) := [0(γk−r̃k)×r̃k
I(γk−r̃k)×(γk−r̃k)]Γ(k) ∈ R

(γk−r̃k)×m.
(20)
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Having Zuu(·), Zux(·) and Zxx(·) defined in (7), the matrix

S(k) can be defined as follows

S(k) = Zxx(k)− [Zxu(k) C̃T
x (k)]K0(k)

[

Zux(k)

C̃x(k)

]

, (21)

where

K0(k) =

[

Zuu(k) C̃u(k)T

C̃u(k) 0

]−1

. (22)

Using equation (17) as an initial condition for backward

iterating, we can apply equations (19), (20) and (21) to cal-

culate matrix sequences Zuu(·), Zux(·), Zxx(·), C̃u(·), C̃x(·)
and P (·). Having the above matrix sequences calculated,

we introduce the following theorem which gives a sufficient

condition for existence of the neighboring extremal solution

to the optimal control problem with the perturbed initial

state. The theorem is followed by a corollary which gives

the neighboring extremal solution.

Theorem 3.1: If rank(Ĉx(0)) = 0, then a sufficient

condition for the existence of the neighboring extremal

control subject to the inequality constraints and initial state

perturbation δx(0) is

Zuu(k) ≻ 0 for k ∈ [0, N − 1]. (23)

Remark 3.1: Condition (23) guarantees the convexity of

the quadratic programming problem resulting from the sec-

ond order variational analysis, which is performed to calcu-

late the neighboring extremal solution.

Remark 3.2: The condition, rank(Ĉx(0)) = 0, can be

interpreted as follows: For the cases where the constraints

involve only states and not inputs, or the cases where

the constraint variations caused by control variations are

dependent, the state equation x(k) = f(x(k − 1), u(k − 1))
will be used to back-propagate the constraints to the time

k − 1. The condition rank(Ĉx(0)) = 0 implies that such

back-propagation, when applied consecutively as needed,

will not result in a constraint on the initial state variation

δx(0).
Corollary 3.1: If a perturbation δx(0) in the initial state

x(0) does not change the activity status of the constraints

and

Zuu(k) ≻ 0 for k ∈ [0, N − 1], (24)

then the corresponding optimal solution to the problem

defined by the cost function (1) and constraints (12)-(15)

and initial state x(0) = x0 + δx(0) can be approximated as

x(k) + δx(k) and u(k) + δu(k), k ∈ [0, N ] where

δu(k) = K∗(k)δx(k), (25)

K∗(k) = −[I 0]K0(k)

[

Zux(k)

C̃x(k)

]

. (26)

We describe the derivation of the neighboring extremal

solution given in equation (25) next.

Derivation of the neighboring extremal solution

Using the second order variational analysis, we minimize

the variation of the Hamiltonian function in the optimization

problem of minimizing the cost (1) subject to constraints

(12)-(15). Namely, we consider the problem of minimizing

the following functional

δ2J̄ = 1/2δx(N)T

(

Φxx(N) +
∂

∂x
(C̄T

x (x(N))µ̄(N))

)

δx(N)

+ 1/2
N−1
∑

k=0

[

δx(k)
δu(k)

]T [

Hxx(k) Hxu(k)
Hux(k) Huu(k)

] [

δx(k)
δu(k)

]

,

(27)

subject to the constraints:

δx(k + 1) = fx(k)δx(k) + fu(k)δu(k), (28)

δx(0) = δx0, (29)

Ca
x(k)δx(k) + Ca

u(k)δu(k) = 0, (30)

C̄a
x(k)δx(k) = 0, (31)

which are obtained by linearizing (12)-(15) at the nominal

solution. Let us assume that δλ(·), δµ(·) and δµ̄(·) are the

Lagrange multipliers associated with constraints (28), (30)

and (31), respectively. Hereafter, the superscript a is dropped

for notational simplicity, assuming that the constraints ap-

pearing in the equations are active.

By applying the Karush-Kuhn-Tucker (KKT) conditions

to the problem (27) for the time instant k = N , we have

δλ(N) =

(

Φxx(N) +
∂

∂x
(C̄T

x (x(N))µ̄(N))

)

δx(N)

+ C̄T
x (x(N))δµ̄(N),

C̄x(x(N))δx(N) = 0.
(32)

Defining δµ̂(N) := δµ̄(N), T (N) := 0, Ĉx(N) :=
C̄x(x(N)) and

S(N) := Φxx(N) +
∂

∂x
(C̄T

x (x(N))µ̄(N)),

the first equality in (32) can be expressed as

δλ(N) = S(N)δx(N) + T (N) + ĈT
x (N)δµ̂(N). (33)

Now assume that for the time instant k + 1,

δλ(k+1) = S(k+1)δx(k+1)+T (k+1)+ĈT
x (k+1)δµ̂(k+1)

(34)

and

Ĉx(k + 1)δx(k + 1) = 0. (35)

From equations (35), (28) and (30), we have:

Cu(k)δu(k) + Cx(k)δx(k) = 0, (36)

Ĉx(k+1)fu(k)δu(k)+Ĉx(k+1)fx(k)δx(k)=0,(37)

C̄x(k)δx(k) = 0. (38)

Applying the Karush-Kuhn-Tucker (KKT) conditions to

the problem (27) at time k, we have

δλ(k) = Hxxδx(k) + Hxuδu(k) + fT
x (k)δλ(k + 1)

+ CT
x (k)δµ(k) + C̄T

x (k)δµ̄(k).
(39)
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Substituting expression of δλ(k +1) given by (34), equation

(39) becomes:

δλ(k) = Zxx(k)δx(k) + Zxu(k)δu(k) + fT
x (k)T (k + 1)

+





Cx(k)

Ĉx(k+1)fx(k)
C̄x(k)





T



δµ(k)
δµ̂(k+1)

δµ̄(k)



 .

(40)

By defining

δµ̃(k) := [Ir̃k×r̃k
0r̃k×(γk−r̃k)]





P (k)−T

[

δµ(k)
δµ̂(k+1)

]

δµ̄(k)



 ,

δµ̂(k) := [0(γk−r̃k)×r̃k
I(γk−r̃k)×(γk−r̃k)]





P (k)−T

[

δµ(k)
δµ̂(k+1)

]

δµ̄(k)





(41)

where δµ̃(k) ∈ R
r̃k , δµ̂(k) ∈ R

(γk−r̃k), and referring to (19)

for the definition of C̃x(·) and Ĉx(·), we have

δλ(k) = Zxx(k)δx(k) + Zxu(k)δu(k) + fT
x (k)T (k + 1)

+ C̃x(k)T δµ̃(k) + Ĉx(k)δµ̂(k).
(42)

On the other hand, from equations (36), (37), (19) and (20)

we have

C̃u(k)δu(k) + C̃x(k)δx(k) = 0. (43)

In addition, by applying the Karush-Kuhn-Tucker (KKT)

conditions to the problem (27)-(31), δx(k), δu(k), δλ(k) and

δµ(k) should satisfy the following equation,

Hux(k)δx(k)+Huu(k)δu(k)+fu(k)T δλ(k+1)+Cu(k)Tδµ(k)=0.
(44)

Using equations (44), (34), and (19) we have

Zuu(k)δu(k)+C̃T
u (k)δµ̃(k)=−Zux(k)δx(k)−fT

u (k)T (k+1).
(45)

Since C̃u(k) is full row rank and Zuu(k) is positive definite,

the matrix

K0(k) =

[

Zuu(k) C̃u(k)T

C̃u(k) 0

]−1

(46)

is well defined and from equations (43) and (45) we have
[

δu(k)
δµ̃(k)

]

=−K0(k)

[

Zux(k)

C̃x(k)

]

δx(k)−K0(k)

[

fT
u (k)T (k+1)

0

]

.

(47)

Applying equation (47) to (42), we have

δλ(k) = S(k)δx(k) + T (k) + ĈT
x (k)δµ̂(k) (48)

where ĈT
x (k) and S(k) are calculated from equation (20)

and (21), respectively, and

T (k) ≡ 0.

If rank(Ĉx(0)) 6= 0, then either Ĉx(0)δx(0) ≡ 0, which

means that the linear equations resulted from linearizing

active constraints are redundant, or the variation δx(0) for

the initial state x(0) is infeasible. In both cases, further

modification will be needed in order to apply the proposed

algorithm. This modification will be addressed in our future

work.

The procedure for determining the neighboring extremal

solution can be summarized as follows.

• Initialize matrices S(N) and Ĉx(N) using equation

(17).

• Calculate, in a backward run, matrix sequences P (·)
(using equation (19)), C̃u(·) and C̃x(·) (using equations

(19 and (20))), Zuu(·), Zux(·), Zxx(·) (using equation

(7)) and S(·) (using equation (21)).

• Given initial state variation δx(0), in a forward run,

calculate δx(·) and δu(·) using equation (25) and (28).

Figure 1 illustrates the computation sequence and equa-

tions involved in calculating δu(·) and δx(·), which involves

a step to calculate µ(·), µ̂(·) and λ(·).

Fig. 1. Computation sequence for calculating the neighboring extremal
solution.

IV. APPLICATIONS IN MODEL PREDICTIVE CONTROL

The neighboring extremal method developed in the pre-

vious sections can be useful in developing fast model

predictive control algorithms. In this section, we illustrate

two approaches based on the neighboring extremal method

proposed in Section III in the context of MPC. One approach

is using the neighboring extremal method to develop a local

compensation mechanism for the Forecasting MPC (FMPC)

proposed in [9], [10]. Another one is the combination of the

neighboring extremal method with the Sequential Quadratic

Programming, as proposed in [11], where it is referred to as

IPA-SQP.

Consider a class of discrete-time systems represented by

the following difference equation

x(k + 1) = f(x(k), u(k)) (49)

where the state and control must satisfy the constraints

C(x(k), u(k)) ≤ 0, C : R
n+m → R

l. (50)

C̄(x(k)) ≤ 0, C̄ : R
n → R

l̄. (51)
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Based on the FMPC strategy [12], [13], the following optimal

control problem is solved within the time interval [k− 1, k]:

PN (x̂) : V ∗

N (x̂) = min
u

{VN (x, u)},

VN (x̂, u) =
k+N−1

∑

i=k

L(x(i), u(i)) + Φ(x(k + N)), x(k) = x̂(k)

(52)

where

x̂(k) = f(x(k − 1), u(k − 1)), (53)

u = {u(k), u(k + 1), ..., u(k + N − 1)} (54)

and x(k − 1) is the measured state at the time instant

k − 1, while x̂(k) is the predicted state at the time instant

k. Denoting the optimal control sequence as u∗(x̂(k)), the

FMPC control law at the time instant k is

u(k) = u∗

1(x̂(k)), (55)

where u∗

1 denotes the first element in the sequence u∗.

In the presence of disturbances or model uncertainties, the

predicted state x̂(k) and actual state x(k) may not match.

Such difference may be accounted for as the perturbation in

the initial condition of the optimal control problem PN (x̂).
By utilizing the neighboring extremal method proposed in

the previous sections, the optimal solution corresponding

to x(k), the measured state at time k, can be derived by

approximating it with the nominal solution, computed in

advance, and the perturbation solution which is computed

once the state measurement is available at the time instant

k. Namely,

u(x(k)) ≈ u∗

1(x̂(k)) + δu(δx0) (56)

where δx0 = x(k) − x̂(k). This strategy can be expanded

to states predicted more than a single step in advance,

and its advantage is that it permits more time to perform

computations.

The second example is the IPA-SQP approach [11], de-

scribed in the following, that is based on approximating

the optimal solution at each time instant using the optimal

solution computed at the previous time instant.

Let us assume that at the time instant k+1, the state x(k+
1) is observed and the optimal control problem PN (x(k +
1)) must be solved. Suppose that by the time instant k + 1,

the solution to the problem PN (x(k)) is available. Defining

dx(k) := x(k + 1) − x(k), (57)

the solution of the problem PN (x(k + 1)) can be approxi-

mated using the solution of PN (x(k)) and the neighboring

extremal method when the perturbation on the initial state

dx(k) is assumed. Clearly, the time and effect involved in

computing the approximation are smaller than computing the

optimal solution from scratch. However, since the neighbor-

ing extremal method is based on an approximation, large

error in the optimality condition (Hu(k) = 0) may develop if

such a strategy is employed repeatedly. Such considerations

provided motivation for introducing IPA-SQP method in [11]

which unifies the Perturbation Analysis and SQP with the

active set method to achieve faster convergence in calculating

the perturbed optimal solution, given the nominal optimal

solution.

V. A NUMERICAL EXAMPLE

In this section, we consider a ship maneuvering problem.

Our objective is to steer a ship to a desired location while

avoiding an obstacle. For instance, such an obstacle may

represent an oil rig or another ship. Given the constraints

involved in this control problem, we choose the MPC as the

control approach. The following ship model, taken out from

[14], is used for numerical simulation:

ẋ1 = x5cos(x3) − (r1x4 + r3x
3
4)sin(x3),

ẋ2 = x5sin(x3) + (r1x4 + r3x
3
4)cos(x3),

ẋ3 = x4,

ẋ4 = −ax4 − bx3
4 + cur,

ẋ5 = −fx5 − Wx2
4 + ut,

(58)

where x1 and x2 are the ship’s coordinates (in nautical miles

(nm)) in the x1−x2 plane, x3 is the heading angle (in radians

(rad)), x4 the yaw rate (rad/min), and x5 the forward velocity

(nm/min). The two control inputs are: ur, the rudder angle

(rad), and ut, the propeller’s thrust (nm/min2).

The constant parameters in the ship model are summarized

in Table 1. With these parameters, the ship has a maximum

speed of .25 nm/min = 15 knots for a maximum thrust of

0.235 nm/min2. For maximal rudder angle of 35o(0.61rad),
the stationary rate of turn is 1o/sec.

Table I: Constant parameters of ship model.

Parameter value unit

a 1.084 1/min

b 0.62 min/rad2

c 3.553 1/min2

r1 −0.0375 nm/rad

r3 0 Nm.min2/rad3

f 0.86 1/min

W 0.067 nm/rad2

The control objective is to steer the ship from any initial

condition to a neighborhood around the origin described by

a circle with a radius 0.1 (nm) with a minimum energy con-

sumption and control effort. Moreover, there is an obstacle

described by a circle centered at (x1, x2) = (1.5, 0) with

radius 2.5 (nm). The obstacle is represented by the following

inequality constraint, which depends only on the state,

(x1 − 1.5)2 + x2
2 ≥ (0.25)2.

To implement MPC to solve this problem, since the con-

sumed energy is proportional to ut(·)
3/2, we define the cost

(1) with

L(x(k), u(k)) = 0.1ur(k)2 + 10ut(k)3/2,

Φ(x) = 2000(x2
1 + x2

2).
(59)
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Fig. 2. Ship position on x1-x2 plane (top) and time history of the propeller
thrust (bottom). Dashed lines indicate constraints.
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Fig. 3. Time history of the rudder angle. Dashed lines indicate constraints.

Figure 2 shows the ship trajectory in x1 − x2 plane and

the propeller’s thrust using IPA-SQP approach for initial

condition of x(0) = [3, 0, π/3, 0, 0.25]. It is shown that the

obstacle is avoided. In addition, Figure 3 shows the trajectory

of the rudder angle.

VI. CONCLUSION

In this paper we have extended the neighboring extremal

control method for constrained discrete-time systems to

handle broader classes of constraints, including pure state

constraints and more general mixed input-state constraints.

Our approach is based on the use of Riccati-like backward

recursive equations and a constraint back-propagation ap-

proach. Thanks to our use of Riccati-like backward recursive

equations the computing effort grows only linearly in the

length of the optimization horizon. The proposed method

can be incorporated into Model Predictive Control, and a

simulation example, based on a 5th order nonlinear ship

maneuvering model, has been reported.
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