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Abstract—In many practical situations uncertain plants are
such that the unknown parameters do not affect the entire
state of the system, but only some of the state variables. A
question that arises in this context is the following: can a
reduced-order adaptive observer be designed based only on
the part of the dynamics affected by the uncertainty, such that,
when the corresponding parameter estimates are used in the
control law, the closed-loop stability is guaranteed? The related
objective is to design the adaptive observer that has the number
of adjustable parameters equal to the number of uncertain
paramaters, and whose order coincides with the lowest-order
subsystem affected by the uncertainty.

In this paper a new systematic procedure is developed for
the design of stable adaptive controllers using local reduced-
order adaptive observers. It is shown that, for the class
of plants considered in the paper, even when the unknown
parameters are estimated using such lower-order observers, the
resulting closed-loop system will be stable, and the asymptotic
convergence of the tracking error to zero is guaranteed.

I. INTRODUCTION

As it is well known, most of the adaptive control schemes

can be classified into direct and indirect [1]. In direct adaptive

control controller gain matrices are adjusted directly based

on the response of the closed-loop system, and the controller

parameter adjustment based on Lyapunov analysis results in a

stable system in which the convergence of the tracking error

to zero is guaranteed. One of the features of this approach is

that the Lyapunov matrix equation needs to be solved (off-

line) to calculate a matrix P that is needed to implement
the adaptive laws. In indirect adaptive control a suitable

observer is built and used to adjust the estimates of unknown

parameters. These estimates are in turn used in the control

law to assure the boundedness of all the signals in the system

and asymptotic convergence of the estimation and tracking

errors to zero.

In the present literature it is commonly assumed that the

adaptive observer is of the same order as the uncertain

plant. However, in many practical situations the dynamics

of only a part of the system state is affected by the uncertain

parameters. A good example is a system in the controllable

canonical form where only relative degree one states are

affected by uncertain paramaters. A question that arises in

this context is whether it is possible to design a stable

adaptive scheme using a reduced order observer for unknown

parameters. The design of such an observer is the main focus

of this paper.

II. ADAPTIVE CONTROL USING REDUCED-ORDER

OBSERVERS

In many practical situations the uncertain parameters do

not affect the entire state of the system, but only some

of the state variables. One good exaple is the system in

the controllable canonical form with the so-called matched

uncertainties (i.e. the uncertainties that appear in the same

equations as the control inputs). In that case the states

with the relative-degree two and higher are not affected

by the uncertainties. In this paper the main objective is to

demonstrate that it is possible to design the observer that has

the number of adjustable parameters equal to the number of

uncertain paramaters, and whose order coincides with the

lowest-order subsystem affected by the uncertainty.

In order to demonstrate the main ideas, the problem will

be divided into two parts: (i) Relative degree one plants; and

(ii) Plants with relative degree two.

A. Relative Degree One Plants

In this case the plant dynamics is described by:

ẋ =

[

Ā11 Ā12

A21 A22

]

x +

[

B̄1

B2D

]

u (1)

where x : IR+ → IRn, x = [xT
1 xT

2 ]T , x1 : IR+ → IRn1 ,

x2 : IR+ → IRn2 , n1 + n2 = n, u : IR+ → IRm, Ā11, A21 ∈
IRn1×n1 , Ā12, A22 ∈ IRn2×n2 , B1 ∈ IRn1×m, B2 ∈ IRn2×m,

and D = diag(d) where d = [d1 d2 ... dm]T . It is assumed
that A21, A22 and D are unknown, while all other matrices
are known accurately.

Assumption 1:

(i) State of the system is measurable.

(ii) d ∈ Sd = {d : 0 < ǫi ≤ di ≤ 1, i = 1, 2, ..., m}.
(iii) Let B̃ = [BT

1 (B2D)T ]T . Then rank(B̃) = n for all
d ∈ Sd.

The objectives are:

1. Design a control signal u(t) such that the state of the
plant follows asymptotically that of the following reference

model:

ẋm =

[

A∗
11 A∗

12

A∗
21 A∗

22

]

xm +

[

B∗
1

B∗
2

]

r, (2)

where xm : IR+ → IRn, xm = [xT
m1 xT

m2]
T , xm1 : IR+ →

IRn1 , xm2 : IR+ → IRn2 , n1 + n2 = n, denote the state of
the reference model, r : IR+ → IRn is a vector of bounded
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piecewise continuous reference inputs, the matrix

Am =

[

A∗
11 A∗

12

A∗
21 A∗

22

]

,

is asymptotically stable, and rank(Bm) = n.

2. Use only the x2 equation to design an adaptive observer

as a part of the overall adaptive control scheme.

Ideal Controller: Let:

A =

[

Ā11 Ā12

A21 A22

]

, B =

[

B1

B2D

]

, Bm =

[

B∗
1

B∗
2

]

.

In the case when A21, A22 and D are known, the following
controller achieves the objective:

u = BT (BBT )−1[−Ax + Amx + Bmr].

B. Parameter Estimation

In the case when these matrices are unknown, their esti-

mation will be carried out using the following reduced-order

adaptive observer:

˙̂x2 = Â2x + B2Ud̂ + Λê2, (3)

where ê2 = x̂2 − x2, Ud̂ = D̂u, A2 = [A21 A22], and
Λ = ΛT < 0.

Let ΦA = Â2 −A2 and φd = d̂− d. It can now be shown
using standard arguments [1] that the adaptive algorithms:

˙̂
A2 = Φ̇A = −ΓAê2x

T , (4)

˙̂
d = φ̇d = Proj

Sd
{−ΓdB2Uê2}, (5)

where ΓA = ΓT
A > 0 and Γd = ΓT

d > 0, result in
Â2, d̂ ∈ L∞ and ê2 ∈ L∞ ∩ L2. The objective now is to

show that the use of the parameter estimates, generated by

the reduced-order observer, in the control law will result in

a stable system and that the control objective will be met.

This is discussed in the following section.

C. Adaptive Control

Let:

Â =

[

Ā11 Ā12

Â21 Â22

]

, B̂ =

[

B1

B2D̂

]

,

and let the corresponding certainty-equivalence adaptive con-

troller be of the form:

u = B̂T (B̂B̂T )−1[−Âx + Amx + Bmr]. (6)

Now the following theorem is considered:

Theorem II.1: Closed-loop system (1), (6), (3), (4), (5) is

stable, and limt→∞ e(t) = 0.
Proof: The following coordinate transformation is chosen:

z1 = x1, z2 = x̂2,

so that z = [zT
1 zT

2 ]T = [xT
1 x̂T

2 ]T .

It follows that:

ż1 = Ā11x1 + Ā12x2 + B1u

ż2 = Â21x1 + Â22x2 + B2D̂u + Λ2ê2.

After substituting the control law (6) one obtains:

ż = Amz + Bmr + Mê2,

where M = [−A∗T
12 Λ2 − A∗T

22 ]T . Upon defining em =
z − xm and subtracting the reference model equation, one

obtains:

ėm = Amem + Mê2. (7)

It is noted that em1 = e1. Since ê is bounded, it follows that
em = z−xm and z are bounded, as well as x̂. It can now be
readily shown that all the signals in the system are bounded

and that limt→∞ e(t) = 0.

The main feature of the proposed adaptive control scheme

is that the number of parameters that needs to be adjusted is

equal to the number of unknown parameters. The order of

the associated adaptive observer is equal to the order of the

largest subsystem affected by the uncertainty. This results

in substantially decreased computation if a small number of

parameters are unknown.

Comment: The proposed approach for relative degree one

plants can be readily extended to the controllable canonical

form with matched uncertainties:

ẋ1 = x2

ẋ2 = x3

...

ẋn−1 = xn

ẋn = Ax + BDu,

where A and D are unknown and rank(BD) = dim(xn).
The observer is based on the last equation only:

˙̂xn = Ax + BUd̂ + Λên,

where Λ = ΛT < 0. Adaptive laws are of the form:

˙̂
A = −ΓAênxT

˙̂
d = Proj

Sd
{−ΓdUBT ên},

and the stability can be proved using the following coordinate

transformation:

z1 = x̄, z2 = x̂n,

where x̄ = [xT
1 xT

2 ... xT
n−1]

T . The state of the system will

follow the following reference model:

ẋ∗

1 = x∗

2

ẋ∗

2 = x∗

3

...

ẋ∗

n−1 = x∗

n

ẋ∗

n = −

n
∑

i=1

kix
∗

i + k1r,

where ki are chosen to assure the stability of the reference

model.
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III. PLANTS OF RELATIVE DEGREE TWO WITH

UNMATCHED UNCERTAINTIES

In this case the plant dynamics is of the form:

ẋ =

[

A11 A12

A21 A22

]

x +

[

0
B2

]

u, (8)

where x : IR+ → IRn, x = [xT
1 xT

2 ]T , x1 : IR+ → IRn1 ,

x2 : IR+ → IRn2 , n1 + n2 = n, u : IR+ → IRm, A11, A21 ∈
IRn1×n1 , A12, A22 ∈ IRn2×n2 , and B2 ∈ IRn2×m. It is

assumed that only A11 is unknown, while all other matrices

are known accurately. Hence one of the objectives is to

design an adaptive observer based on the x1 equation only.

Also, the extensions to the case when a part of the state x2

also affected by uncertainty are straightforward. The above

system corresponds to the systems in the so-called triangular

form (see e.g. [3]), where a part of the uncertainty is not

matched (i.e. it does not appear in the same equation as u),
but is associated only with the variables of relative degree

two or higher.

Assumption 2:

(i) State of the system is measurable.

(ii) rank(A12B2) = n1.

For the Assumption 2(ii) to hold, a necessary condition

is that n1 = n2. While this appears fairly restrictive,

some important classes of plants satisfy this assumption, for

instance:

ẋ1 = x2 + A11x1

ẋ2 = A21x1 + A22x2 + B2u,

which, for A11 = 0, reduces to the controllable canonical
form. In addition, most of the models describing the dom-

inant dynamics of aircraft, spacecraft, helicopters and other

systems are of multivariable relative degree two.

Control Objective: The objective is to design a control

signal u(t) such that the state x2(t) is bounded and the state
x1(t) of the plant follows asymptotically the state xm1(t) of
the reference model:

ẋm1 = xm2 (9)

ẋm2 = −K1xm1 − K2xm2 + K1r, (10)

where the matrices K1, K2 > 0 are chosen such that the
matrix

Am =

[

0 I
−K1 −K2

]

is asymptotically stable.

The main difficulty in this case is the fact that A11 is

unknown, and appears in the equation not affected by u. In
this case there are several possible approaches to the design

of stable adaptive controllers. One of those is the so-called

back-stepping [3] which results in a complex design, and a

full-order observer is needed to estimate the parameters. The

focus here will be on approaches that are based on reduced-

order observers. Two possible approaches will be considered

as discussed below - one without an explicit observer, and

the other one with a reduced-order observer. Before that the

ideal controller is derived first.

Ideal Controller: The following coordinate transformation

is introduced:

z∗1 = x1

z∗2 = A11x1 + A12x2.

Upon differentiating x1 from (8), one obtains:

ż∗1 = z∗2

ż∗2 = (A2
11+A12A21)x1+(A11A12+A12A22)x2+A12B2u.

The ideal controller is now chosen as:

u = (A12B2)(A12B2(A12B2)
T )−1(−(A2

11 + A12A21)x1

−(A11A12 + A12A22)x2 + Amz∗ + Bmr).

It is seen that z∗ rather than x is used in the control law.
This is because the entire state of the system cannot follow

a reference model in a controllable form, and only a part of

the system (i.e. x1) can follow a part of the reference model

state (i.e. xm1).

The resulting closed-loop system is now:

ż∗ = Amz∗ + Bmr,

so that limt→∞[z∗(t) − xm(t)] = 0, which implies that
limt→∞[x1(t) − xm1(t)] = 0, while x2(t) is bounded.

Local Observer: In this case the observer is chosen in the

form:

˙̂x1 = Â11x1 + A12x2 + Λ1ê1, (11)

where, to simplify the development, Λ1 < 0 is chosen as a
diagonal matrix, and ê1 = x̂1 − x1. Hence one can choose

Λ1 = −Λ, where Λ = diag[λ1 λ2 ...λn1
] and λi > 0.

Error Model: Upon subtracting (8) from the above expres-

sion, one obtains:

˙̂e1 = −Λê1 + ΦAx1, (12)

where ΦA = Â11 − A11.

The following coordinate transformation is now chosen:

z1 = x1,

z2 = Â11x1 + A12x2,

resulting in:

ż1 = z2 − ΦAx1

ż2 =
˙̂

A11x1 + Â11[(Â11 − ΦA)x1

+A12x2] + A12(A21x1 + A22x2 + B2Du)

=
˙̂

A11x1 + Â2
11x1 + Â11A12x2 − Â11ΦAx1

+A12(A21x1 + A22x2 + B2Du).

The control law is now chosen in the form:

u = BT (BBT )−1(−
˙̂

A11x1 − Â2
11x1 − Â11A12x2

−A12(A21x1 + A22x2) + v), (13)
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where v = −K1z1 − K2z2 + K1r. It is seen that the term
˙̂

A11 is kept as is for the time being. Upon substituting this

control law and subtracting the reference model, one obtains

the following error model:

ė1 = e2 − ΦAx1

ė2 = −K1e1 − K2e2 − Â11ΦAx1,

or

ė = Ame − B̂0ΦAx1.

Theorem III.1: Adaptive Law:

˙̂
A11 = −Γê1x

T
1 + γ0B̂

T
0 PexT

1 , (14)

where Γ = diag[γ1 γ2 ... γn1
], γi > 0, i = 1, 2, ..., n1, and

γ0 > 0, results in limt→∞ e(t) = 0.
Proof: The following tentative Lyapunov function is chosen:

V =
1

2
(êT

1 Γê1 + γ0e
T Pe + trace(ΦT

AΦA)).

It can be readily verified that if Am is stable, so is γ0Am,

where γ0 > 0. The Lyapunov Matrix Equation can now be
modified as:

γ0(A
T
mP + PAm) = −Q,

or AT
mP + PAm = −Q̄, where Q̄ = Q/γ0.

Taking the first derivative of V results in:

V̇ = −êT
1 ΓΛê1 + Γê1ΦAx1 − eT Q̄e

+γ0e
T PB̄ΦAx1 + trace(ΦT

AΦA)

= −êT
1 ΓΛê1 − eT Q̄e

+trace(ΦT
A(Γê1x

T
1 + γ0B̄

T PexT
1 + Φ̇A))

≤ −λΓΛ‖ê1‖
2 − λQ̄‖e‖2 ≤ 0.

Hence all the signals are bounded. By integrating V from 0
to∞, it can be readily shown that (ê1, e) ∈ L2. The theorem

can now be proved using standard arguments. �

Comments:

1. The controller (13) is implemented by replacing the term
˙̂

A11 with the expression (14) It can be readily verified that

this controller has the same structure as the ideal certainty-

equivalence controller (11), and only differs from the latter

in terms that are bounded and depend on ê1(t) that has been
demonstrated to tend to zero asymptotically.

2. It is important to note that the stability proof will go

through even in the case when γ0 is arbitrarily small. In

practice this means that one can adjust the parameters using

the observer only.

3. Case when A11 = 0 and A12 = I (controllable canonical
form), and when B2 = B̄2D where rank(B̄2D) = n2 and

A21, A22 and D are unknown, can be studied using the same
approach as for the relative degree one plants. The major

difference is the control law that would be of the form:

u = (B̄2D̂)−1(B̄2D̂(B̄2D̂)T )−1(−Â21x1 − Â22x2

−K1x1 − K2x2 + K1r),

and the parameter adjustment laws would have been derived

from the reduced-order observer:

˙̂x2 = Λ2ê2 + Â21x1 + Â22x2 + B̄2D̂u,

where Λ2 = ΛT
2 < 0.

4. The proposed approach can be readily extended to the

following case:

ẋ =





A11 A12 0
A21 A22 A23

A31 A32 A33



 x +





0
B2

B3D



u,

where xi : IR+ → IRni , n1 = n2,

rank([(A12B2)
T (B3D)T ]T ) = n1 + n3, and

A11, A31, A32, A33 and D are unknown.

IV. EXTENSIONS TO NONLINEAR SYSTEM DYNAMICS

In this section it will be shown that the extension of the

reduced-order observer approach to three classes of nonlinear

plants is straightforward. These classes include: (i) Relative

degree one plants; (ii) Plants in controllable canonical form;

and (iii) Relative degree two plants.

A. Relative Degree One Plants

In this case the plant dynamics is of the form:

ẋ1 = fo(x) + go(x)u (15)

ẋ2 = F (x)a + g(x)Du, (16)

where xi : IR+ → IRni , i = 1, 2, n1 + n2 = n, u :
IR+ → IRm, fo : IRn → IRn1 , go : IRn → IRn1×m,

F : IRn → IRn2×p, and g : IRn → IRn2×m. In the above

equation, vector a ∈ IRp and matrix D = diag[d1 d2 ... dn]
are unknown.

The following assumption is made regarding the plant:

Assumption 3:

(a) State of the system is available at every instant;

(b) fo(x), go(x), F (x) and g(x) are sufficiently smooth;

(c) m ≥ n;

(d) d ∈ Sd; and

(e) Let g̃(x) = [go(x)T (g(x)D)T ]T . g̃(x)g̃(x)T is invertible

for all x on a domain and all d ∈ Sd.

The reference model in this case is also of the form (2).

Now the following control objective is considered:

Control Objective: Design a control signal u(t) such that
all the signals in the system are bounded and the tracking

error e = x − xm converges to zero asymptotically despite

the uncertainty in a and D.

Ideal Controller Design: In the case when a and D are
known, the following controller achieves the objective:

u = g̃(x)T (g̃(x)g̃T (x))−1(−

[

fo(x)
F (x)a

]

+ Amx + Bmr).
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Parameter Estimation: In this case the observer is chosen

in the form:

˙̂x2 = F (x)â + g(x)Ud̂ + Λ2ê2,

where Λ2 = ΛT
2 < 0 and ê2 = x̂2 − x2.

Adaptive Laws:

˙̂a = −Γ1F
T (x)ê2

˙̂
d = Proj

Sd
{−Γ2UgT (x)ê2},

where Γi = ΓT
i > 0, can be readily shown to result in

boundedness of parameter estimates and ê2 ∈ L∞ ∩ L2.

Coordinate Transformation: The following coordinate

transformation is introduced:

z1 = x1, z2 = x̂2,

resulting in

ż1 = fo(x) + go(x)u

ż2 = F (x)â + g(x)Ud̂ + Λ2ê2.

Adaptive Control: Let ˆ̃g(x) = [go(x)T (g(x)D̂)T ]T . The
control law is now chosen as:

u = ˜̂g(x)T (˜̂g(x)˜̂gT (x))−1(−

[

fo(x)
F (x)â

]

+ Amx + Bmr).

resulting in:

ż = Amz + Bmr +

[

−A∗
12ê2

(Λ2 − A∗
22)ê2

]

.

Upon choosing emi = zi − xmi, i = 1, 2, and subtracting
the reference model, one obtains:

ėm = Amem +

[

−A∗
12

Λ2 − A∗
22

]

ê.

Using the BIBO arguments it follows that em is bounded,

and the proof that limt→∞ e(t) = 0 is straightforward. The
only difference with respect to the linear case is that z rather
than x is used in the control law.

B. Controllable Canonical Form

This class of plants requires special attention since many

of the practical systems can be transformed into this form.

Let the plant dynamics be of the form:

ẋ1 = x2

ẋ2 = F (x)a + g(x)Du,

where xi : IR+ → IRni , i = 1, 2, n1 = n2, n1 + n2 =
n, u : IR+ → IRm, F : IRn → IRn2×p, and g : IRn →
IRn2×m. In the above equation, vector a ∈ IRp and matrix

D = diag[d1 d2 ... dn] are unknown.

The following assumption is made regarding the plant:

Assumption 4:

(a) State of the system is available at every instant;

(b) F (x) and g(x) are sufficiently smooth;

(c) m ≥ n;

(d) d ∈ Sd; and

(e) (g(x)D)(g(x)D)T is invertible for all x on a domain
and all d ∈ Sd.

Let the reference model be of the form:

ẋm = Amxm + Bmr,

where x : IR+ → IRn,

Am =

[

0 I
−K1 −K2

]

, Bm =

[

0
K1

]

.

and r : IR+ → IRn2 , denotes a vector of bounded piece-wise

continuous reference inputs.

Now the following control objective is considered:

Control Objective: Design a control signal u(t) such that
all the signals in the system are bounded and the tracking

error e = x − xm converges to zero asymptotically despite

the uncertainty in a and D.

Ideal Controller Design: In the case when a and D are
known, the following controller achieves the objective:

u = (g(x)D)T (g(x)D(g(x)D)T )−1(−F (x)a − K1x1

−K2x2 + K1r).

Parameter Estimation and Adaptive Laws: In this case the

observer and adaptive laws for parameter adjustment are the

same as in the case of relative degree one nonlinear plants.

Coordinate Transformation is the same as above

z1 = x1, z2 = x̂2,

but in this case it results in:

ż1 = z2 + ê2

ż2 = F (x)â + g(x)Ud̂ + Λ2ê2.

Adaptive Control: The control law is now chosen as:

u = (g(x)D̂)T (g(x)D̂(g(x)D̂)T )−1(−F (x)â − K1x1

−K2x2 + K1r),

resulting in:

ż1 = z2 + ê2

ż2 = Λ2ê2 − K1x1 − K2x2 + K1r

= −K1z1 − K2z2 + K1r + (Λ2 + K2)ê2.

Upon choosing emi = zi − xmi, i = 1, 2, and subtracting
the reference model, one obtains:

ėm1 = em2 + ê2

ėm2 = −K1em1 − K2em2 + (Λ2 + K2)ê2.

Using the BIBO arguments it follows that em is bounded,

and the proof that limt→∞ e(t) = 0 is straightforward.
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C. Relative Degree Two Plants with Unmatched Uncertainty

In this case the system model is of the form:

ẋ1 = F (x1)a + fo(x2) (17)

ẋ2 = f(x) + g(x)u (18)

where xi : IR+ → IRni , i = 1, 2, n1 = n2, n1 + n2 = n,
u : IR+ → IRm, F : IRn → IRn1×p, fo : IRn → IRn1 ,

f : IRn → IRn2 , g : IRn → IRn2×m. In the above equation,

vector a ∈ IRp is unknown.

It is first noted that F (x1)a =
∑N

i=1
fi(x1)ai, and that

Jx1
(x1, a) =

∂F (x1)a

∂x1

=

N
∑

i=1

ai

∂fi(x1)

∂x1

where F (x1) = [f1(x1) f2(x1) ... fN (x1)]. We also have:

Jx2
(x2) =

∂fo(x2)

∂x2

.

Assumption 5: Jx2
(x2)g(x) is invertible ∀x on a domain.

Control Objective: Similarly as in the linear case, the

objective is to design a control signal u(t) such that x2(t)
is bounded and the state x1(t) of the plant follows asymp-
totically the state xm1(t) of the reference model (9), (10).

The ideal controller is designed next. Let

z1 = x1, z2 = F1(x1)a + fo(x2).

It follows that

ż1 = z2

ż2 = Jx1
(x1, a)(F (x1)a+fo(x2))+Jx2

(x2)(f(x)+g(x)u).

Ideal Controller: Ideal controller is now chosen in the form:

u = g̃T
o (x)(g̃o(x)g̃T

o (x))−1(−Jx1
(x1, a)(F (x1)a + fo(x2))

−Jx2
(x2)f(x) − K1z1 − K2z2 + K1r),

where g̃o(x) = Jx2
(x2)g(x), and can be readily shown to

achieve the control objective.

In this case the focus will be on minimal parameterization

with a local observer.

Local Observer: The observer is chosen in the form:

˙̂x1 = F (x1)â + fo(x2) − Λê1, (19)

where Λ = diag[λ1 λ2 ...λn1
] and λi > 0.

Error Model: Upon subtracting (17) from the observer

equation, and defining φa = â − a, one obtains:

˙̂e1 = −Λê1 + F (x1)φa. (20)

The coordinate transformation is now chosen in the form:

z1 = x̂1, z2 = F (x1)â + fo(x2),

resulting in:

ż1 = z2

ż2 = F (x1) ˙̂a + Jx1
(x1, â)(F (x1)(â − φa)

+fo(x2)) + Jx2
(x2)(f(x) + g(x)u)

The control law is now chosen in the form:

u = g̃T
o (x)(g̃o(x)g̃T

o (x))−1(−F (x1) ˙̂a

−Jx1
(x1, a)(F (x1)â + fo(x2)) − Jx2

(x2)f(x) + v)

Upon substituting this control law and subtracting the refer-

ence model, one obtains:

ė1 = e2

ė2 = −K1e1 − K2e2 − (Jx1
(x1, â) + Λ)F (x1)φa.

By choosing B̄ = [0 I]T , this can be rewritten as:

ė = Ame − B̄(Jx1
(x1, â) + Λ)F (x1)φa.

Theorem IV.1: Adaptive Law:

˙̂a = −Γê1x
T
1 + γ0(Jx1

(x1, â) + Λ)B̄T PexT
1 , (21)

where Γ = diag[γ1 γ2 ... γn1
], γi > 0, i = 1, 2, ..., n1, and

γ0 > 0, results in limt→∞ e(t) = 0.
This theorem can be proved along the same lines as

theorem III.1.

V. CONCLUSIONS

In this paper a new systematic procedure is developed

for the design of stable adaptive controllers using local

reduced-order adaptive observers. It is shown that, for the

class of plants considered in the paper, even when the

unknown parameters are estimated using such lower-order

observers, the resulting closed-loop system will be stable,

and the asymptotic convergence of the tracking error to zero

is guaranteed.

It is shown in the paper that the proposed approach is

applicable to the plants whose multivariable relative degree

is up to two. In the case of relative degree one plants,

the proposed approach is based on a suitable coordinate

transformation after which the analysis is carried out on

a system that combines actual and estimated states. In the

case of relative degree two plants, the approach is based

on a coordinate transformation and a local observer, and is

shown to result in parameter adjustment that depends on both

the estimation and tracking errors. It is also shown that the

adaptive gain for the tracking error adjustment can be made

arbitrarily small, so that, in practice, the adjustment can be

carried out using the estimation error only. This demonstrates

that the certainty-equivalence principle carries over to this

case as well.

Our future work includes extensions of the proposed ap-

proach to nonlinear plant models of higher relative degrees.
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