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Abstract— This paper studies the problem of joint coding
for and control of a plant over a discrete or continuous noisy
memoryless channel. One main result the paper presents is
that under certain assumptions, optimal coding and control
policies exist and are stationary. It is also shown that for the
remote control of an open-loop unstable system over a discrete
noisy communication channel, if the system is driven by a
Brownian disturbance, stationary memoryless coding schemes
or innovation coding schemes lead to an unstable system.
This result is true even when the capacity of the discrete
channel is arbitrarily high, but finite. In particular, sensor and

controller designs for control of systems driven by noise over
communication networks when modeled as continuous alphabet
erasure channels, lead to instability when are applied to realistic
channels. Conditions ensuring stability leading to a recurrent
Markov chain are presented. To achieve this, one needs to use
coding policies with non-trivial memory constructions.

I. INTRODUCTION

The use of discrete channels such as the Internet or bus

lines (as in a Controller Area Network (CAN)) in control

systems have become common place. Some salient examples

include links in vehicle systems, large-scale printers and

aerospace applications. The presence of such channels makes

the traditional control approaches such as the principle of

separation of estimation and control (due to the possible dual

effect of control [1]), Kalman filtering (due to non-Gaussian

disturbances and the dual effect of the control), linear con-

trol design (due to the non-classical information structure

[2]) inapplicable or inefficient. There has been a period of

scholar productivity in this area under different models and

assumptions on the classes of systems considered. See [3]

for some references.

This paper studies the problem of optimal control over

a discrete noisy channel. The main contributions are an

existence result, some sufficiency results, and a negative

result.

In the following we describe the system model.

II. MODEL

We consider the discrete-time system

xt+1 = axt + but + dt (1)

where xt is the state at time t, and {dt} is a sequence of zero-

mean independent, identically distributed (i.i.d.) Gaussian

random variables. The controller action at time t, ut, is
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generated by partial access to the state of the system (Figure

1).
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Fig. 1: Control over a noisy channel with causal feedback.

A. Problem Formulation

The problem that we are interested is the minimization of

the infinite horizon average cost:

lim sup
T→∞

1

T

T
∑

t=1

Ex0
[x2

t + ru2
t ], (2)

where Ex0
[] denotes the expectation over all sample paths

with initial state given by x0 and r > 0. To obtain certain

specific results, we will also consider a quadratic cost func-

tional with r = 0 in the development of the paper.

The optimization is over all admissible sensor (quantizer)

and controller policies such that the sensor policies are

measurable with respect to the sigma algebra generated by

Is
t :

Is
t = {Is

t−1, xt, I
c
t },

with Is
0 = {x0} are are maps to Q, the set of quantizers

which will be described in the next section. The control

policies are measurable functions of Ic
t :

Ic
t = {Ic

t−1, q
′
t},

with Ic
0 = {q′0}.

B. Sensor Quantizer Classes for Discrete Channels

A channel coder maps the source symbols, state values,

to corresponding channel inputs. This is done via quantizers

in case the channel under consideration is discrete.

Definition 2.1: A quantizer, Q, for a scalar continuous

variable is a Borel-measurable mapping from the real line to
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a finite, characterized by corresponding bins {Bi} and their

reconstruction levels {qi}, such that ∀i, Q(x) = qi if and

only if x ∈ Bi. ⋄
We take Bi can be taken to be nonoverlapping semiopen

intervals, Bi = [δi, δi+1), with δi < δi+1, i = 0, 1, . . . , m,

where m = |M| is the cardinality of the channel input

alphabet. We also have that δ0 = −∞, δm = +∞. Here

{δi} are termed “bin edges”. Hence {δi} ∈ lm̄; the space

is an m-dimensional real vector space. We do not rule out

δi = δj , in which case, all are represented as δi, effectively

reducing the number of levels in the quantizer. We will also

impose a compactness condition later when studying stable

systems.

The quantizer outputs are transmitted via a noisy mem-

oryless channel, hence the receiver has access to noisy

versions of the quantizer/coder outputs for each time, which

we denote by {q′i} generated according to a probability

distribution for every fixed qi. In this case, the quantizer

design, in addition, needs to account for the errors in the

transmission. Hence, the quantizer is in essence a joint-

source-channel code.

In a dynamic, discrete-time setting, the construction of a

quantizer at any time t could depend on the past quantizer

values. In the following, we present five different classes of

quantizers, successively being more restrictive.

1) Causal Quantizers: Let R be the input and the output

space, and Q be the set of quantizers. Then, a causal

quantizer policy ΠC at time t, to be denoted by ft, is a

mapping from R
t+1 × Qt to Q, where R

s, s ∈ Z is the

s-product of R. Such a quantizer is said to be causal (that

is, it depends only on the past and present values of the

input process and the channel outputs), in addition to being

dynamic. Finally, we also introduce gt : Q0×Q1× . . .Qt →
R as the decoder function, which again has causal access

to the past received values. The class of quantizers we

have introduced above are deterministic causal quantizers,

in the sense that for each fixed t, and given ft and history

ht := {xs, fs s = 0, . . . , t − 1} and xt, the quantizer

induced, ft(x
t
0, q

′
0
t−1), is a uniquely defined element of Q.

Let σ(Q) be the σ-algebra of the set of quantizers. A more

general class quantizers is the randomized ones, which assign

a probability measure to selection of quantizers.

2) Markov Quantizers: A more restrictive class of quan-

tizers are Markov quantizers, ΠMR. Let P be the set of

conditional probability densities on R):

P (xt|f
t−1
0 , q′0

t−1).

A randomized Markov quantizer policy satisfies

P (.|πt = π, t) = P (.|ht, πt = π), a.s. ∀ht(w)

for each π ∈ P , with ht(w) denoting the sample paths for

the history process and that for each π ∈ P , q(.|π) is a

probability measure on σ(Q). For a deterministic Markov

quantizer, P (.|πt, t) is a dirac measure.

3) Stationary Quantizers: A further restrictive class of

quantizers are stationary quantizers ΠSR. Stationary quan-

tizers can be both deterministic and randomized. Let P be

the set of conditional probability densities on R):

P (xt|f
t−1
0 , q′0

t−1).

A randomized stationary quantizer policy satisfies

P (.|πt = π) = P (.|ht, πt = π), a.s. ∀ht(w)

for each π ∈ P , with ht(w) denoting the sample paths for

the history process and that for each π ∈ P , q(.|π) is a

probability measure on σ(P). For a deterministic stationary

quantizer, P (.|π) is a dirac measure.

4) Innovation Quantizers: An innovation quantizer policy

ΠI is a time-invariant quantizer which has

et = xt − aE[xt−1|f
t−1
0 , q′0

t−1],

as its input argument. Hence, an innovation quantizer policy

satisfies

P (.|et = x) = P (.|ht, et = x), a.s. ∀ht(w)

for each x ∈ R.

5) Memoryless Quantizers: A further restrictive class of

quantizers are memoryless quantizers QMS . A randomized

memoryless stationary quantizer policy satisfies

P (.|xt = x) = P (.|ht, xt = x), a.s. ∀ht(w)

for each x ∈ R and that for each x ∈ R, q(.|x) is a

probability measure on B(R), and if, for every fixed D ∈
B(R), q(D|.) is a well-defined function on R.

C. Separation of Estimation and Control

It follows that the sensor (encoder) has access to the infor-

mation available at the controller (decoder). The information

structure thus falls within the class of nested information

structures, for which it is known that, an optimal control

problem admits a dynamic program, and there is no dual

effect of control, as the control action is available at the

sensor. The control is solely acting on the minimization of

the infinite horizon cost, and the sensor is acting so facilitate

the improvement on the estimation. The control action will be

based on an intermediate partial observation: P (xt|q
′
0
t) and

will be solving a separate MDP problem given the statistics

of the partial observations.

We review some notions from the theory of Markov

Processes. A Markov chain with an invariant probability

distribution is recurrent. A Markov channel is transient if

the probability of return time of the state to a compact set

being finite is less than one.

Definition 2.2: An open set C ⊂ R is transient if

P

(

min(t > 0 : xt ∈ C) < ∞|x0 ∈ C

)

< 1.

⋄
Definition 2.3: A Markov chain is Lebesgue irreducible

if for every open set C ⊂ R , P (xt ∈ C|xt−1) > 0.

Under irreducibility, we define a Markov chain to be

transient if there exists an an open set which is transient.
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III. INSTABILITY UNDER MEMORYLESS POLICIES

In a discrete memoryless channel setting, at any given

time, the channel input has to have a finite cardinality. This

observation leads to the following result:

Theorem 3.1: Suppose a discrete-time linear system as in

(1), with |a| > 1, is being controlled over a discrete channel.

A memoryless coding policy over a finite, but arbitrarily

high, capacity leads to a transient Markov chain.

This theorem was essentially proved in [7] and [3], in

the context of memoryless coding and control. The result

extends to the current setting. Also see [6] for a similar

discussion in noiseless channels.

This result immediately leads to the following corollary to

Theorem 3.1:

Corollary 3.1: For the optimization problem (2), station-

ary memoryless policies are suboptimal.

IV. PERFORMANCE OF INNOVATION CODING POLICIES

AND INSTABILITY OF OPEN-LOOP UNSTABLE SYSTEMS

Innovation coding is a widely popular coding scheme,

and has variations, such as differential coding, predictive

coding and ∆−modulation, which has also recently been

investigated in [33]. Furthermore, for the Gaussian setting,

it is know that innovation coding is optimal, which was

observed in [10]. It should also be noted that the celebrated

Schalkwijk-Kailath [29] coding scheme also admits an inno-

vation coding interpretation.

Control systems connected over Controller Area Networks

use packets to communicate, and in certain applications these

packets can be assumed to be losslessly transmitted. These

packets usually have high numbers of bits. The following

result shows that, with the further condition that the source

has an invariant distribution and hence is stable, innovation

coding can be very efficient at high-data rates. A modification

of the analysis below can also be applied to communication

networks with erasure information made available to the

transmitter.

Theorem 4.1: For causal coding of the source given in

(1) with stable dynamics |a| < 1, a lower bound on the

average cost function lim supT→∞
1
T

∑T

t=1 x2
t , subject to a

discrete noiseless channel with capacity R, is given by:

D(R) ≥ Dlower(R) := a2 σ2

(22R − a2)
+ E[d2

t ]

When, the channel capacity is high, then there exists a coding

scheme such that the cost satisfies:

D(R) ≤ Dinnovation(R) := a2 2πeσ2

(1222R − 2πea2)
+ E[d2

t ]

Furthermore, Dinnovation(R) is achieved via innovation cod-

ing.

However, for this bound to be valid, it is necessary that

the source is stable. Unfortunately, these results do no extend

to discrete noisy channels. We have a corollary to Theorem

3.1, the proof of which follow very similar steps, and hence

is omitted.

Corollary 4.1: For causal coding of the source given in

(1) with unstable dynamics |a| ≥ 1, suppose a memoryless

innovation coder is used. This leads to a transient Markov

chain.

It should be noted that the arguments used above via

Comparison theorem leading to the recurrence of the chain

do not apply for the open-loop unstable sources. We will

observe, in the following sections that, the results connected

to the lower bound presented above applies for certain

continuous alphabet channels, even when the source is open-

loop unstable.

Upon observing these shortcomings, we now proceed to

design the optimal coders.

V. OPTIMAL TIME-VARYING CODERS: MARKOV AND

STATIONARY QUANTIZERS

We have two realistic assumptions that are used for the

existence result.

Assumption A: The filter at the decoder has arbitrarily

large, but finite memory: There exists d ≥ 1 such that

π′
t(x) := P (xt|f

t−1
t−d , qt−1

t−d) = P (xt|f
t−1
1 , qt−1

1 ).

⋄
Assumption B: The set of quantizer bin edges satisfy

supQ |δi| < M, for some arbitrarily large but finite M . ⋄
The above two assumptions will be used in the existence

result.

We observed that the main technical problem is the

existence of an invariant distribution. Toward this end we

provide the evolution of the conditional density of the state

as seen by the decoder. Properties of conditional probability

leads to the following expression for

πn(x) := P (xn = x|fn−1
0 , q′0

n−1)

∫

πn−1(xn−1)P (., .|., .)P (xn|xn−1)dxn−1
∫ ∫

πn−1(xn−1)P (., .|., .)P (xn|xn−1)dxndxn−1
.

with P (., .|., .) standing for P (fn−1, q
′
n−1|πn−1, xn−1), in

the above.

Let P be the space of such probability distributions on

R for the system considered, for πn(x), n ≥ 1, endowed

with the topology of weak convergence [20] (we will see

that for this space, uniform sup convergence may be used

to develop certain properties). Then the conditional density

and the quantization output process, (πn(x), fn), form a joint

Markov process in P ×Q.

Lemma 5.1: Under Assumptions A and B, the set of

conditional density functions is uniformly tight, uniformly

bounded and uniformly equi-continuous.

The above follows from the fact that the source is stable,

the system noise has a uniformly continuous density (as a

result of the effect of the Gaussian noise in the time update

in filtering) and Assumption B.

Lemma 5.2: There is a countable set which is dense in

the space of continuous and bounded functions on P .

Proof: Pick a compact set Kc = [−c, c]. Let Pc be a

compact support restriction of the elements in P to Kc. The
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restriction of all the density functions in this compact set

will have bounded support, furthermore be totally bounded

and uniformly equi-continuous. This is the Arzela-Ascoli

characterization of compactness ([20], Section 7). It follows

that there is a countable set that is dense in the set of

continuous and bounded functions on Pc, which we call

Cb(Pc). This can be shown by the construction of a countable

approximation of any element f(π) in Cb(Pc) as a result of

compactness. Now, let us increase the support set, by taking

the truncation to be c = c + 1 and the set to be Cb(Pc+1),
and continue this iteration countably many times. Since the

countable union of countable sets is countable, it follows

that there is a countable set, which is dense in the space of

continuous and bounded functions on P , Cb(P). ⋄

Theorem 5.1: For the system in (1), if |a| < 1, there ex-

ists an optimal stationary quantizer. Furthermore, the optimal

stationary quantizer, is the optimal causal quantizer over all

possible admissible policies.

We prove this result in the remainder of the section:

Proof:

Let QSR denote the set of stationary, randomized quan-

tizer policies. Let Gπ denote the set of ergodic occupation

measures on the state, that is the set which satisfies the

following for all continuous and bounded functions f : P →
R:

{v :

∫

f(π′)v(dπ′) =

∫

(

∫

f(π)PΠSR(π|π′)dπ)v(dπ′)},

where PΠSR(π|π′) stands for the transition kernel under

quantizer policy ΠSR and for all ΠSR ∈ QSR.

We now prove that this set is sequentially compact, and

convex. We showed that Cb(P) has a dense set which is

countable. Now, a diagonalization argument can be used to

show that the set of measures on P , P (P) is sequentially

compact [20]: Every sequence {< vn, f >} has a converging

subsequence, and by taking a further subsequence countably

many times, and since there is a countable dense set to

approximate every f ∈ Cb(P) the desired result follows.

Finally, we show that, the the cost function is continuous in

vn. This will imply the existence of a solution. Since the

space of occupation measures is closed and connected, this

can be achieved. But this is immediate from the definition of

continuity: if vn converges to v weakly, then < v,c > also

converges, with c being the second moment of the conditional

estimation error, which is bounded and continuous on P .

Finally, we show that the space of ergodic occupation

measures is convex, so that any point is reachable from

another point: By the arguments above, there is an optimal

occupation measure. This measure can be achieved from any

initial condition of states: Take a π∗ which is visited infinitely

often under a policy. Under the finite memory assumption,

such a point exists, since the the visited states are atomic due

to the finite memory assumption. One applies a quantizer

such that this point is visited once, and then one applies the

optimal quantizer policy thereafter.

⋄

Let Γ denote the steady state distribution of φt = (ft, πt),
and let < v, z > denote the inner product between two

functions v and z. One would then have the minimization

of

< Γ, C > (3)

over all admissible quantizers with a given number of levels,

where C(φ) is the second moment of the estimation error

applied to the conditional density.

By the infinite-dimensional linear programming approach,

an optimal stationary policy lies on the extremal points of

the convex set GΠ:

Proposition 5.1: The optimal sensor and controller poli-

cies for the optimal control problem are deterministic.

VI. EXISTENCE OF AN INVARIANT DISTRIBUTION

The following Lemma is a required technical result [3]:

Lemma 6.1: Let P be a set of uniformly continuous

probability distributions on (R,B(R)) such that for some

M < ∞,
∫

P (x)x2dx < M , for all P (·) ∈ P and

P (x) log2(P (x)) is uniformly integrable over P . Consider a

sequence of random variables {Xt} with densities {pt(xt)}
in P . If Xt → X weakly, then the differential entropy

satisfies h(xt) → h(x).
We have that the conditional density process is recurrent,

and hence P (xt|q
′
0
t) does converge. Furthermore, this pro-

cess lives in a uniformly integrable set: thus, the Lemma

above can be invoked and there exists a limit for the

conditional entropy sequence.

We have the following theorem:

Theorem 6.1: For the existence of an invariant density

with a finite second moment, with

lim
t→∞

E[x2
t ] ≤ d,

the channel capacity should satisfy:

C ≥
1

2
log(

a2d

d − σ2
).

Clearly, this expression for the capacity presents a relation-

ship between the achievable distortion and the information

rate needed. Most of the time, however, the results utilizing

entropy are unattainable. There are two immediate reasons

for this: one due to the fact that codes achieving such a bound

need to be codes of block length one, and the second one

is due to the presence of the disturbance which does not let

an invariant distribution exist when |a| > 1. We will observe

that this bound is tight for Gaussian sources connected over

Gaussian channels. As for the second issue, time-varying

coding schemes, as presented in [9] and schemes as such

[13] are necessary. In the following, we present a stochastic

drift argument for the existence of a recurrent chain.

Theorem 6.2: Let

V (π) = Eπ [x2] =

∫

π(x)x2dx,

where the expectation over the distribution π(x). If a sta-

tionary quantizer policy satisfies, for some ǫ > 0, K < ∞,
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and some set C weak* compact,

E[V (πt+1|πt, ft] ≤ (1 − ǫ)V (πt) + 1πt∈CK

Then, the process is positive recurrent in the sense that,

P

(

min{t : πt ∈ C|π0 ∈ C} < ∞

)

= 1

Proof:

Proof follows form stochastic drift characterization, and an

extension of the comparison theorem due to Meyn and

Tweedie [16].

It should be observed that, for Cv := {π : V (π) ≤ v},

which is a weak* compact set (this can be proved following

a similar discussion as in the proof of Theorem 5.1),

E[V (πt|πt, ft] ≤ (1 − ǫ)V (πt) + 1πt∈CK

implies the weaker statement that

E[V (πt)|πt, ft] ≤ V (πt) − c + 1πt∈Cv
K ′

for some constants c and K ′. This follows from the fact that

Cv ⊂ Cu for v < u. Further, define M0 := V (π0) and

Mk := V (πk) +

k−1
∑

i=0

(−c + K1πi∈C)

Hence,

E[M(k+1)|hk] ≤ Mk, ∀k ≥ 0

and thus, {Mk} forms a supermartingale. Define a stopping

time:

τN = min(N, min{i : V (πi)+ (1− ǫ)V (πi)+K1πi
≥ N})

This process is bounded in this interval. Hence, we have,

by the optional sampling theorem:

E[M(τN)] ≤ E[M0]

Hence, we obtain

E[

τN
−1

∑

i=0

]c ≤ V (π0) + KE[

τN
−1

∑

i=0

1πi∈C ]

Hence, cE[τN −1+1] ≤ V (π0)+K , and by the Monotone

convergence theorem,

c lim
N→∞

E[τN ] = cE[τ ] ≤ V (π0) + K

Hence the result follows. ⋄
One needs to come up with code-designs satisfying the

drift condition in Theorem 6.2. The main challenge is to

ensure that such an invariant distribution exists when the

source is unstable. We observed that using memoryless

policies lead to instability. One could use state-dependent

stochastic drift arguments [3], [9] for the existence of a

recurrent chain. The important observation to make is that,

one needs to use time-varying quantization schemes; or state-

dependent policies. It should be noted that, the time-varying

coding schemes in [3], the zooming-out technique in [28],

and schemes proposed in [13] can be interpreted from the

viewpoint of Theorem 6.2.

VII. CONTINUOUS ALPHABET CHANNELS

The issues presented above with regard to transience of the

chain do not arise in continuous alphabet channels. This is

because any element in the source can be transmitted, hence

the channel can be matched to the source. The problem with

Gaussian channels was considered in [10], [22], [19], where

it has been shown that innovation coders are optimal. For

the Gaussian setup, a power constraint is associated to the

encoder output, instead of a quantization bit constraint.

Hence, even when the open-loop source does not have a

finite invariant density, the system can be stabilized via an

innovation coder. We now show that the bound in (6.1) is

tight for Gaussian policies. Our proof can be interpreted as

an alternative derivation of the results presented in [10], [22]

and [32], regarding the optimality of innovation coding of

Gaussian first-order dynamic systems over Gaussian channels

with feedback.

Lemma 7.1: For the optimization problem, with a sta-

tionary distortion d, if x0, w0 are Gaussian and the channel

is a Gaussian channel with capacity C, the optimal stationary

distortion and the capacity satisfy

C =
1

2
log(

a2D + σ2

D
)

where D = (d − σ2)/a2

Proof: The bound in Theorem 6.1 provides a converse

theorem, which is a lower bound for the Gaussian case as

well. In the following we show that this bound is attainable

via linear policies. Proof follows from a standard argument

in joint source channel coding for Gaussian sources and

channels [10]. Let x be a Gaussian random variable trans-

mitted over a Gaussian channel with capacity C, and let

y = u + v, with u being the channel input, v channel

noise. The minimum estimation error covariance DG of a

Gaussian source transmitted over a Gaussian channel satisfies

the following set of inequalities:

C = sup
p(u)

I(u; y) ≥ I(x; E[x|y]) ≥
1

2
log2(1 + E[x2]/DG)

The above follow from the definitions of capacity, rate-

distortion function RDG
(x), and the directed data processing

inequality. See [10] for details. Furthermore, these all be-

come tight and the minimum attainable distortion is given

by DG = E[x2]
22C . Let the Gaussian channel have input

power constraint P , and the Gaussian channel noise be

{vt}. Clearly, C = 1
2 log(1 + P/σ2

v). This is achieved by

a linear scaling of the input. In particular, the coder applies

zt = α(xt − aE[xt−1|I
c
t−1]), with

α =
P

E[(xt − aE[xt−1|Ic
t−1])

2]
.

The optimal decoder policy leads to

E[xt|I
c
t ] = aE[xt−1|I

c
t−1]) +

P

P + σ2
v

(zt + vt).

In this case, the estimation error satisfies the recursion

E[(xt −E[xt|I
c
t ])2] =

E[a2(xt−1 − E[xt−1|I
c
t−1])

2] + σ2
w

1 + P/σ2
v

.
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Upon recognizing the capacity expression in the denomina-

tor: C = 1
2 log2(1 + P/σ2

v), the result follows. ⋄
Hence, the analysis of communication networks, driven

by possibly unbounded noise, requires the treatment that we

made earlier in this paper. This brings the question of using

alternative, time-varying coding and control schemes; such

as binning and variable length coding [3], [13].

VIII. CONCLUSION

In practice, all channels are discrete. Even Gaussian chan-

nels require modulation techniques and digitization: Despite

the fact that capacity achieving distributions are Gaussian,

the encoding schemes are capacity achieving infinite blocks

generated via a random Gaussian codebook, and hence, in

essence are discrete. We also observed the lack of robustness

in the assumption of regarding high-rate packet networks as

continuous alphabet channels; in practice, such a design leads

to instability almost surely.

Capacity, entropy and Bode-integral related arguments

have been presented in the literature as fundamental bounds,

but these only have operational meanings for channels which

require codebooks of length one to meet the rate-distortion

and capacity theorems, as they do for the transmission

of Gaussian sources over Gaussian channels, and as such

they are very limited as they only are applicable for such

sources. As had been observed by Walrand and Varaiya, and

Sahai and Mitter, capacity is not an appropriate measure for

control. Hence, there is a need for an operationally significant

approach. We tried to present an alternative look at this

problem within this perspective.
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[7] S. Yüksel and T. Başar “Achievable Rates for Stability of LTI Systems

over Noisy Forward and Feedback Channels”, Proc. Conference on

Information Sciences and Systems, Baltimore, March 2005.
[8] A.S. Matveev and A. V. Savkin, “Shannon Zero Error Capacity and

the Problem of Almost Sure Observability over Noisy Communication
Channels”, in Proc. IEEE CDC and ECC, 2005, Seville, Spain, pp:
3219 - 3224.
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[18] S. Yüksel and T. Başar, “Communication Constraints for Decen-
tralized Stabilizability with Time-Invariant Policies”, IEEE Trans.

Automatic Control, vol. 52, pp. 1060-1066, June 2007.
[19] C. D. Charalambous and A. Farhadi, “A Mathematical Framework

for Robust Control Over Uncertain Communication Channels,” in
Proc. IEEE Conference on Decision and Control/European Control

Conference, Sevilla, Spain, pp. 2530-2535, December 2005.
[20] P. Billingsley, Convergence of Probability Measures, New York, NY,

John Wiley, 1968.
[21] F. Fagnani and S. Zampieri, “Stability analysis and synthesis for scalar

linear systems with a quantized feedback,” IEEE Trans. Automatic

Control, vol. 48, pp.1569-1584, Sept. 2003.
[22] S. Tatikonda and S. Mitter, “Control under communication con-

straints,” IEEE Trans. Aut. Control, vol. 49, pp. 1056-1068, July 2004.
[23] V. S. Borkar, S. K. Mitter, and S. Tatikonda “Optimal sequential vector

quantization of Markov sources,” SIAM J. Control and Optimization,
vol. 40, pp. 135-148, 2001.

[24] O. Hernandez-Lerma, J. Gonzales-Hernandez, and R. R. Lopez-
Martinez, “Constrained average cost Markov control processes in
Borel spaces,” SIAM J. Control and Optimization, vol. 42, pp. 442-
468, 2003.

[25] G. N. Nair and R. J. Evans, “Exponential stabilisability of multidi-
mensional linear systems with limited data rates,” Automatica, vol.
39, pp. 585-93, Apr. 2003

[26] A. Mahajan and Demosthenis Teneketzis “On jointly optimal encod-
ing, decoding and memory update for noisy real-time communication
systems,” IEEE Transactions on Information Theory submitted for
publication.

[27] T. Linder and R. Zamir, “Causal coding of stationary sources and
individual sequences with high resolution,”IEEE Trans. Information

Theory, vol. 52, pp. 662-680, February 2006.
[28] D. Liberzon, “On stabilization of linear systems with limited infor-

mation”, IEEE Trans. on Automatic Control, vol. 48, pp. 304-307,
Feb 2003.

[29] J. P. M. Schalkwijk and T. Kailath, “A coding scheme for additive
noise channels with feedbackPart I: No bandwidth constraint, IEEE
Trans. Inform. Theory, vol. 12, pp. 172182, April 1966.

[30] N. C. Martins, M. A. Dahleh and N. Elia, “Feedback stabilization
of uncertain systems in the presence of a direct link,” IEEE Trans.

Automatic Control, vol. 51, pp. 438-447, March 2006.
[31] N. Elia, “When Bode meets Shannon: control-oriented feedback

communication schemes,” IEEE Trans. Automatic Control, vol. 49,
pp. 1477-1488, Sept. 2004.

[32] J.H. Braslavsky, R.H. Middleton and J.S. Freudenberg, “Feedback
Stabilization over Signal-to-Noise Ratio Constrained Channels”, IEEE

Transactions on Automatic Control, vol. 52, pp. 1391-1403, 2007.
[33] R.H. Middleton and G.C. Goodwin, “Improved finite word length

characteristics in digital control using delta operators”, IEEE Trans-

actions on Automatic Control, vol. 31, pp.1015-1021, Nov. 1986.

3119


