
  

  

Abstract—This paper presents a stabilization control system 
of a 2-DOF inverted pendulum. The challenge is to realize a 
control with a contact-less feedback including a low cost CCD 
camera. The global control system uses two feedback loops. 
The first one (inner loop) includes the delayed and sampled 
inverted pendulum’s top coordinates, obtained from the CCD 
camera and the second one (outer loop) concerns the cart’s 
position in continuous time (obtained from encoders). With this 
feedback scheme, we propose a specific control method by 
choosing an optimal balancing plane at each camera’s sampling 
instant, in view of transforming the 2-DOF pendulum problem 
to a 1-DOF one. Then in this balancing plane, we realize two 
control loops: The inner loop, relative to the pendulum’s angle, 
is controlled by a linearization and stabilization method based 
on an innovative observer called Piecewise Continuous 
Reduced-Order Luenberger Observer (PCROLO). The outer 
loop uses a Lyapunov function based control scheme with 
slower internal dynamics compared to that of the pendulum, 
considering that the global controlled system (cart + pendulum) 
is an unstable non-minimum-phase system. Numerical 
simulations show that the stabilization control of the inverted 
pendulum on an x-y robot that are strongly non linear is 
successful. 

I. INTRODUCTION 
he inverted pendulum system is a perfect benchmark for 
the design of a wide range of nonlinear control theories 

because of it’s inherent instability with highly non-linear 
dynamics. The most considered inverted pendulums are: 
single, double or triple inverted pendulum on a cart [2], [4], 
[7], [9], [15], [18], [22], a rotational single-arm or two-link 
pendulum [20] and an inverted pendulum on an x-y robot 
[13], [5], [6], [24]. In almost all cases, controllers use 
continuous accurate sensors which are in physical contact 
with the pendulum. 

However, in numerous applications it is impossible to put 
sensors in direct contact with the controlled object. Vision 
systems are a means to avoid this physical constraint. 
Moreover, from an economical point of view it may be 
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interesting to develop robust control methods that do not 
require high accuracy and expensive sensors. 

Therefore, our challenge is to consider low cost CCD 
cameras as contactless pendulum sensor. The problem is that 
these sensors are less accurate and often deliver sampled and 
delayed signals due to their digital nature and computation-
transfer time (image processing) respectively. 

Using visual feedback to control a robot is commonly 
termed as visual servoing [12]. For example visual (image 
based) features such as points, lines and regions can be used 
to enable the alignment of a manipulator/gripping 
mechanism with an object. Hence, vision is a part of a 
control system providing feedback. However, traditionally 
visual sensing and manipulation are combined in an open-
loop configuration, ‘looking’ and ‘moving’ [20], or just for 
visualizations and animations [1]. Recently, visual 
supervision has been gradually combined in the closed 
control loop particularly for cart-inverted pendulum control 
such as in [8], [23]. Unfortunately there is no real successful 
application reported on controlling the pendulum and the 
cart’s position by visual servoing till now. Only a fuzzy-
logic based controller was reported in [16], but just for 
controlling the pendulum. The PID+Q controller has been 
applied to antisway control of crane lifter modeled by the 
structure of an inverted pendulum [17]. Unfortunately, there 
is no research work related to an inverted pendulum on an x-
y robot using visual feedback has been reported. 

Analyzing difficulties of previous vision based research 
works related to inverted pendulum control; it seemed that 
the camera signal has not been sufficiently exploited. 
Therefore, our efforts have been focused on the 
development of the accurate observer using the theory of 
Piecewise Continuous Systems (PCS) [14] to compensate 
the delayed, imprecise sampled data of the vision system. 
The improved signal is generated in continuous time. 

The research results presented here are an extension and 
development of the previous works [14], [3], [21], especially 
relative to the use of the PCS in order to design a PCROLO 
that compensates the time delay and the sampling effects 
introduced by the visual feedback. 

In this article, the control scheme implemented via a 
cascade combination method is inspired by the work of K. 
Guemghar et al. [10]. The control method based on a 
PCROLO and linearization and stabilization control applied 
to control the pendulum’s angle form the inner loop. In 
parallel, a Lyapunov based control for the unstable non-
minimum-phase internal system (cart) with slower dynamics 
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comparing to the pendulum dynamics constitutes the outer 
loop. Simulation results are given at the end of the paper. 

II. EXPERIMENTAL PLATFORM 
The vision based control platform of the 3D inverted 

pendulum presented in Fig. 1 contains the next four parts: 

A. The Mechanical X-Y table (Fig. 1) 
The system is composed of an X-Y aluminum chassis and 

a plastic inverted pendulum mounted on the mobile cart. 
Between the pendulum and the cart, a circular shock 
absorber preventing the pendulum from completely falling 
to horizontal position is installed. It allows the pendulum to 
have a maximum angle of ±50° with respect to the vertical 
position. 

Axes are actuated by AC servo motors via notched belt. 

B. Vision system 
Instead of using hi-tech digital cameras capable of higher 

sampling rates, higher spatial resolution and improved 
signal/noise ratio, we used a low cost IR CCD (Jai M50 IR) 
camera with a sampling rate of 25 frames/sec and a low 
resolution of 640 × 480 pixels in non-interlaced mode. The 
measurements of the camera are available at a sampling rate 
of T = 40 ms (acquisition-processing-transferring time). In 
order to simplify the data sensing, an infrared LED has been 
added on the upper tip of pendulum. 

The vision computer is equipped with an image 
acquisition card (ELTEC PC-EYE 4). Image processing is 
realized by software called TEKVIS that detects the inverted 
pendulum’s upper tip (x, y) coordinates and transmits them 
to the control computer via the RS-232 serial 
communication. In order to synchronize the camera with the 
controller, the camera is triggered by an external periodical 
pulse signal, generated via the dSpace card with a sampling 
period equal the acquisition-processing-transferring time. 

As soon as the control computer receives the pendulum’s 
coordinates, a four step “TSAI” calibration method [11] is 
carried out. It supports not only the real inverted pendulum 
top position but also the compensation of the deformations 
caused by the camera’s lenses. Moreover, the difference in 
the height of the pendulum's upper tip plays an important 
role in the projective imaging geometry of the camera. 
Hence, two points with a same coordinate in x-y plane but in 
different height project to two different points in the image, 
affecting the sensing results and accuracy. 

C. The controller 
The controller is implemented on a dSpace DS1103 card 

on a control computer. The ControlDesk module integrated 
with Matlab/Simulink, enables the modeling, the supervision 
and the development of direct control methods for the real 
system using control card’s variables and parameters. The 
control signals are sent to power amplifiers via ± 10 V DAC. 

D. The actuators 
This part of the system is composed of two servo motors 

(SANYO DENKI PY2A015A3-A3), whose configurations 
can be modified and parameterized via the RS-232 serial 
communication by the PY software in the control computer. 
AC motors P50B050020DXS00M, driven by a dSpace 
computer input/output card via a power amplifier, are 
actually mounted on each axis of the X-Y table. The 
amplifier is supplied with 240 V. The AC motors deliver a 
nominal couple of 3.0 Nm with a power of 200 W. The 
platform provides the cart’s x, y position through encoders. 

III. MODELING THE INVERTED PENDULUM SYSTEM 
In [13], [5], [6], [24], the authors propose an 

approximately decoupled modeling method for a 2-DOF 
inverted pendulum with the constraint of working in a small 
angle inclination. As compared to this method, we propose 
here a different modeling approach without any restriction. 
Its main idea consists in choosing an optimal plane in view 
of transforming a 2-DOF inverted pendulum problem in a 1-
DOF problem. 

A. Inverted Pendulum (cf. Fig. 2) 
Initially, we consider the Px’y’z’ reference parallel to the 

Oxyz reference of the cart-pendulum system, with point P 
being the pivot of the pendulum. At any time, the inverted 
pendulum can be projected onto two orthogonal planes: r-z’ 
(including the entire inverted pendulum) and x-y plane 
(parallel to two directions of the X-Y table), as illustrated in 
Fig.2. According to the main modeling idea, the r-z’ plane 
has been chosen as the optimal one to balance the pendulum. 
Therefore, the 2-DOF problem is reduced to a 1-DOF one. 

By referring to the methods proposed in [2], [7], the 2-
DOF inverted pendulum can be modeled as follows 
 

22 sin cosn n K rθ ζω θ ω θ θ+ − = −  (1) 
 

where: 2( )n mgl J mlω = +  natural frequency ,

 2[2 ( )]r nB J mlζ ω= +  damping ratio, 

 2( )K ml J ml= +  the gain, 
with: θ the angle of the pendulum with z-axis in the r-z’ 
plane, l the length from the pendulum’s center of gravity to 
the pivot, m the mass of the pendulum, Br the viscous 
damping constant between the pendulum and the cart, g the 
gravitational acceleration, J=(ml2)/3 the pendulum 
momentum of inertia and r the cart’s position on r-axis, 
considering the origin of this axis to be O’ which is the 
orthogonal projection of O on r-axis. Naturally, the 
displacement on r-axis is the result of a combination on x 
and y axes. 

Moreover, by considering the projection of the pendulum 
on the x-y plane, as shown in Fig. 3, we can find the 
geometrical relationship between x, y and r: 
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cos sinr x yα α= +  (2) 
 
with α the angle between r and x axes and calculated by (5). 

B. Motor-Cart System 
On x-axis, the motor-cart model which considers the 

motor terminal voltage ux as its input and the motor’s 
horizontal displacement x as its output, can be modeled as 
follows 
 

( )x x xx x k u τ= − +  (3) 

 
where: kx the overall gain of the motor-cart on x-axis, 
 τx the time constant of the motor-cart on x-axis. 

In the same way, the motor-cart on y-axis is modeled as 
 

( ) .y y yy y k u τ= − +  (4) 

C. Pendulum’s Angles Computation (α and θ) 
According the structure of our platform, the only 

accessible information are the coordinates (xC, yC) of the 
pendulum’s upper tip projection on the x-y plane via the 
vision system and the pendulum’s pivot coordinates (x, y) 
via x and y encoders. 

In these conditions, according to Fig. 2 and Fig. 3, the α 
and θ angles can be computed as follows 
 

[ ]1tan ( ) ( ) ,C Cy y x xα −= − −  (5) 

[ ]{ }1sin ( )cos ( )sin 2 .c cx x y y lθ α α−= − + −  (6) 

 
In our case, only sampled and delayed measurements of 

the camera are available 
 

, ,( ( ), ( )) ( , )C e e C e e C k q C k qx kt T y kt T x y− −− − =  (7) 

 
with te the camera’s sampling cycle, and Te=qte. where: q is 
an integer number and Te represents the delay time 
corresponding the time necessary for data acquisition, 
processing and transfer. For our vision system, te=40 ms and 
q=1. 

Finally, from (5), (6) and (7), αk-1 and θk-1 are computed. 

IV. INVERTED PENDULUM CONTROL 
The main control architecture for the 2-DOF pendulum is 

presented in Fig. 4. The hybrid feedback generates the 
continuous cart coordinates (x, y) and the delayed and 
sampled pendulum’s angular position θk-1. The control 
principle is that at each sampling instant an optimal 
balancing plane r-z’ is selected by using αk-1. Then, in this 
balancing plane, the control system is built considering two 
loops. The first one (inner loop) realizes a linearization and 
the stabilization control of the pendulum based on the 
innovative observer of PCROLO coupled with a 

linearization module. The second one (the outer loop) 
realizes a Lyapunov based control for the unstable internal 
system having slower dynamics than that of the pendulum. 

The aim is to find two controls ux and uy by introducing an 
intermediate pendulum’s reference angle θref  which ensures 
the global stability of the 2-DOF cart-pendulum system. 

A. Stabilization of the Inverted Pendulum 
Under the assumption that the inverted pendulum’s 

angular position θ and velocity θ  are precisely estimated via 
the PCROLO, the 1-DOF inverted pendulum’s dynamic 
equations in (1) lead to 
 
r v= , (8) 

22 sin cos .n n K vθ ζω θ ω θ θ+ − = −  (9) 
 
In order to stabilize the pendulum, a stable dynamics can be 
imposed by introducing a new control v, a new gain 2K , a 
new natural frequency nΩ  and a new damping ratio Ζ  
defined as follows 
 

2 2
22 sin cos 2 .n n n nK v K vζω θ ω θ θ θ θ− + − = − ΖΩ − Ω +  (10) 

 
From (10) the relation between v  and v is 
 

2 2
2[ 2( ) sin ] cosn n n nv K v Kζω θ θ ω θ θ= − − ΖΩ + Ω + −  (11) 

 
with: 2.θ π<  After the transformation, one has 
 

2 2
2[ 2( ) sin ] cos ,n n n nr K v Kζω θ θ ω θ θ= − − ΖΩ + Ω + − (12) 

2
22 .n n K vθ θ θ+ ΖΩ + Ω =  (13) 

 
Thus, from (13), the linearized pendulum’s state equation is 
 

( ) ( ) ( )t A t Bv tΘ = Θ +  (14) 
 

with 
2

0 1

2n n
A

Ω ΖΩ

⎡ ⎤
= ⎢ ⎥

− −⎢ ⎥⎣ ⎦
, 

2

0
B

K
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 and ( )
( )

( )
t

t
t

θ
θ

⎡ ⎤
Θ = ⎢ ⎥

⎣ ⎦
. 

B. PCROL Observer 
The problem is to estimate the continuous position θ and 

velocity θ  from the visual feedback θk-1. In order to resolve 
this problem, a specific PCROLO is designed. This observer 
combines a Reduced-Order Discrete Luenberger Observer 
(RODLO) and two Piecewise Continuous Systems (PCS) as 
defined in [12]. A PCS Σ({kte}, A, B, C) is symbolized by 
Fig. 5. It is characterized by a first continuous input ϕ(t), a 
second input ψ(t) sampled at discrete instants kte, three state 
matrices A, B and C, a state vector x(t) and an output vector 
y(t). In these conditions, the functioning equations are as 
follows 
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[ [

( ) exp( ( )) ( ) exp ( ) ( ) ,

( ) ( ),  , ( 1)  .                   
e

t
k e e

kt

k k e e

x t A t kt kt A t B d

y t Cx t t kt k t

ψ τ ϕ τ τ= − + −

= ∀ ∈ +

∫  (15) 

 
In order to observe Θ(t), we choose A and B as in (14) and 
C=I2 . 

According to Fig. 6, the PCROLO is constructed as 
follows: 
First step: PCS I 

Using the PCS I, with ϕ(t)=v(t) and ψ(t)=0, one has 
 

1
( 1)

( ) exp ( ) ( ) .
e

t
k

k t
M t A t Bv dτ τ τ−

−
= −∫  

 
By sampling (ZOH) at each kte, one obtains 

 

1
1

( 1)
1

1
exp ( ) ( )

2

e

e

kkt kk
k e kk t

k

m
M A kt Bv d

m
τ τ τ −

−
−

−

⎡ ⎤
= − = ⎢ ⎥

⎢ ⎥⎣ ⎦
∫ . 

 
Second step:RODLO 
Θk-1 is estimated by a RODLO defined below 

 

-1 1 1 1( 2 1 ),k k
k k k k kz Fz G m Lmθ − − −= + + −  

1 1 1
ˆ ,k k kz Lθ θ− − −= −  

 
where F, G and L are defined from as follows: 

11 12

21 22
exp( )e

f f
At

f f
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 22 12( )F f Lf= − , 

22 12 21 11( ) ( )G f Lf L f Lf= − + − , 22 12( )L f f R= ∈  
(imposed value to maximize the RODL Observer’s 
convergence speed). 

Estimating 1kθ −  by 1 1 1k̂ k kz Lθ θ− − −= + , one gets 1
ˆ

k −Θ , 

then ˆ
kΘ , by integration of (14) on the time interval 

[( 1) , [e ek t kt−  
 

1 1
ˆ ˆexp( ) k

k e k kAt M− −Θ = Θ + . 
 
Third step: PCS II 
Using the PCS II, with ϕ(t)=v(t) and ˆ( ) kktψ = Θ , one has 
 
ˆ ˆ( ) exp( ) exp ( ) ( ) .

e

t
k

kt
t At A t Bv dτ τ τΘ = Θ + −∫  (16) 

C. Lyapunov Function Based Cascade Control  
The main idea of the control scheme is to introduce an 

angular reference θref as an intermediate for the pendulum 
angular position in the aim of finding the two controls (ux, 
uy). 

Applying the quasi-steady state assumption in (12) and 
(13), the inverted pendulum system is brought to 0θ θ= = , 

and θ=θref. Thus the simplified dynamic system becomes 
 

2[ tan( )] ,n refr v Kω θ= =  (17) 
2

2( ) .n refv Kθ= Ω  (18) 

 
Based on this internal 2-DOF pendulum system, a 

Lyapunov candidate function is defined as follows 
 

2 2( , ) ( ) 2,V r r r rχ δ= + with , 0χ δ ≥ . 
 
In order to ensure the Lyapunov derivation’s negativity 
 

( , ) ( ) ( ) 0V r r r r r r r vχ δ χ δ= + = + < , 
 
a particular function which stabilizes its internal dynamics is 
selected 
 

2 2( ) 2( ) [1 ] , 0r rr v e r− ++ = − − >χ δχ δ μ μ . 
 
Therefore, we have 
 

2 2( ) 2)[ (1 ) ]r rv r e r− += − + − χ δχ μ δ  (19) 
 
and then replacing (19) in (17), the intermediate value θref 
can be computed. Then, by substituting θref in (18), the 
control v is given 
 

2
1 1 2( , ) ( )nv f r r f K= = Ω  (20) 

 
with { }2 21 ( ) 2 2

1 tan [ (1 ) ] ( )r r
nf K r e r− − += − + − χ δχ μ δω . 

The last step is to find the relations between the control v  
and the two controls ux and uy as illustrated in Fig 4. 

Considering (2) (3) and (4) with local input/output 
injection for each motor, we can obtain: kx=ky=k and 
τx=τy=τ. In these conditions, the balancing of the pendulum 
in the r-z’ plane is ensured by imposing the following 
additional condition for the cart’s accelerations 

tany x α= . 
Finally ux and uy are defined as follows 

 
( cos ) ,xu x v kατ= +  (21) 
( sin ) .yu y v kατ= +  (22) 

V. NUMERICAL SIMULATIONS 
The mass of the pendulum is 38 g and its length is 31.5 

cm, the viscous friction between the pendulum and the cart 
on the x-y robot is supposed zero. Therefore, according to 
the modeling procedure, the inverted pendulum is 
characterized by 0.002=ζ  and 6.781nω = . Moreover, 
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2.92k =  and 0.008τ =  have been chosen. For the controller 
part, 2

2 nK ω= , 1.2ξ = , n nΩ ω= , 1χ = , 2δ =  and 0.5μ =  
by taking into account the performance and stability. 

A. Simulation Results 
As indicated in Fig. 7, an initial conditions for {α, θ, x, y} 

as { 0 3α π=  rad, 0 6θ π=  rad, 0 1x =  m and 0 0.2y =  m} are 
adopted to validate our method. Figures include: (a) 
balancing plane projected in x-y plane, (b) x, y and r 
displacements, (c) pendulum’s angles ( 1kθ − , θ , θ̂ ) (d) 

pendulum’s angular velocities ( θ , θ̂ ) and finally (e) 
controls (ux, uy). 

The proposed two loops control leads to the stabilization 
of the entire cart-pendulum system. Note that the cart is 
stabilized around O’ (projection of O on the balancing plane 
and origin of r axis). The results illustrate the theoretical 
aspects of our method, showing precision and reactivity of 
the PCROLO. Moreover, it shows that the use of the 
Lyapunov function used in the outer loop assures the whole 
system’s larger convergence stability compare to the 
standard PID or linearization feedback controls. 

B. Robustness consideration 
In the real vision system, there always exists a not 

ignoring measuring error, especially when we use a low-cost 
camera (40 ms). In order to demonstrate the effective and 
robustness of the method, we add the same perturbations 
0.03sin(2 )tπ  and white noise [0.0001] to the measurements 
{θk-1, αk-1}. The simulation results are given in Fig. 8 under 
the same initial condition like Fig.7. 

VI. CONCLUSION AND PERSPECTIVES 
The numerical simulations demonstrated the effectiveness 

and robustness of our method for a class of underactuated 
non linear system with a non-minimum internal dynamics 
even with a big measuring error of the vision based system. 

The assumptions made for the vision system mainly 
depending on the real successful application of a low-cost 
vision based Cart-inverted pendulum control under a big 
initial condition. Illustrative videos are available on 
http://www-lagis.univ-lille1.fr/~wang/Research_eng.html. 
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 (a) (b) (c) (d) (e) 

Fig. 7. Simulation result: { 0 3α π= rad, 0 6θ π= rad, 0 1x = m and 0 0.2y = m} 

 
Fig. 1. Experimental platform. 
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Fig. 2. Inverted pendulum on the r-z and x-y-z planes 
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Fig. 3. Projection of inverted pendulum on the x-y plane 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4. The 2-DOF Inverted pendulum control architecture 
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Fig. 6. Piecewise Continuous Reduced Order Luenberger Observer 

 
 

 
 (a) (b) (c) (d) (e) 

Fig. 8. Simulation result under measuring error and white noise { 0 3α π= rad, 0 6θ π= rad, 0 1x =  m and 0 0.2y = m} 
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