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Abstract— Fractional differentiation models have proven
their usefulness in representing high dimensional systems with
only few parameters. Generally, two elementary fractional
functions are used in time-domain identification: Cole-Cole and
Davidson-Cole functions. A third elementary function, called
Havriliak-Negami, generalizes both previous ones and is partic-
ularly dedicated to dielectric systems. The use of this function is
however not very popular in time-domain identification because
it has no simple analytical impulse response. The only synthesis
method of Havriliak-Negami elementary functions proposed in
the literature is based on diffusive representation which sets
restrictive conditions on fractional orders. A new synthesis
method, with no such restrictions, is based on the splitting
the Havriliak-Negami function into a Davidson-Cole function
and a complementary one. Both functions are then synthesized
in a limited frequency band using a recursive distribution of
poles and zeros developed by [Ous95].

Havriliak-Negami function is then applied to model a thermal
flux in the field of machining by turning, in the time domain.

I. INTRODUCTION

Although fractional (non integer) operators remained for a
long time a purely mathematical concept, the rise of digital
computers offered an easy way for simulating numerically
non integer integro-differentiation of mathematical functions.
The last two decades have witnessed considerable develop-
ments in the use of fractional differentiation in various fields.
Fractional differentiation is now an important tool for the
international scientific and industrial communities. The use
of fractional differentiation models in system identification
was initiated in the late nineties and the beginning of this
century ([Lin01], [Coi02], [Aou05]). They are now widely
used in representing some diffusive phenomena (thermal
diffusion, electrochemical diffusion) and in modeling vis-
coelastic materials.

Based on the synthesis of two elementary functions, the
Cole-Cole ([CC41]) and Davidson-Cole ([DC51]) functions,
both defined later, the objective of this paper is to propose
a synthesis method for Havriliak-Negami function ([HN66],
[HN67]). Although this function is particularly dedicated to
diffusive systems and generalizes both previous ones, it is,
up to now, seldom used because its synthesis is problematic.

The paper is organized as follows. First, a mathematical
background on fractional differentiation is presented. Then
in section II, principles of the frequency-band-fractional-
integrator synthesis is explained. Part III is devoted to the
synthesis of the Davidson-Cole function extended to complex
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zeros. Next in section IV, the Havriliak-Negami function is
split into two functions each of which is then synthesized.
In part V, the synthesis for internal order ∈ R+. Finally,
a Havriliak-Negami function is applied to model a thermal
system in the field of machining by turning.

II. MATHEMATICAL BACKGROUND

The concept of differentiation to an arbitrary order (non-
integer),

Dν Δ
=

(
d

dt

)ν

(1)

was defined in the 19th century by Riemann and Liouville.
The ν fractional derivative of f (t) is defined as being an
integer derivative of order �ν� + 1 (�.� stands for the floor
operator) of a non-integer integral of order ν−�ν� [SKM93]:

Dνf (t) = D�ν�+1
(
I�ν�+1−νf (t)

)
Δ
=

1

Γ (�ν� + 1 − ν)

(
d

dt

)�ν�+1 t∫
0

f (τ) dτ

(t − τ )
ν−�ν�

(2)

where t > 0, ∀ν ∈ R
∗
+, and the Euler’s Γ function is defined

as:

Γ (x) =

∞∫
0

e−ttx−1dt, ∀x ∈ R
∗\{N

−}. (3)

A more concise algebraic tool can be used to represent
fractional systems: the Laplace transform. The Laplace trans-
form of a ν order derivative (ν ∈ R

∗
+) of a signal x(t)

relaxed at t = 0 is obtained by taking the Laplace transform
of (2) [OS74]:

L {Dνx (t)} = sνX (s) if x(t) = 0 ∀t < 0. (4)

Two elementary fractional-differentiation functions are
generally used for representing fractional transfer functions:
the Davidson-Cole function ([DC51])

Fdc (s) =
A

(s + ωu)
ν , (5)

and the Cole-Cole function ([CC41])

Fcc (s) =
A

sν + ωu

, (6)

where ωu ∈ R+ and A ∈ R.
Fcc (s) has one sν-pole at −ωu and, as shown by [Ous83],

[Ous95], Fcc (s) might have s-poles at:

Pk = (ωu)
1
ν ejπ 2k+1

ν , (7)
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Fig. 1. Pole locus of Fcc versus differentiator order for 1 < ν ≤ 3. Fcc

has two complex conjugate poles, unstable beyond ν = 2.

provided there exists k ∈ Z such that:

−
(1 + ν)

2
< k <

(1 + ν)

2
. (8)

Hence, the number of s-poles equals:

• 0 when ν < 1,
• 1 when ν = 1,
• 2 when 1 < ν < 3,
• 3 when ν = 3,
• 4 when 3 < ν < 5.

The s-pole locus is plotted in fig. 1 versus differentiation
order ν varying from 1 to 3. For 0 ≤ ν < 1, Fcc is stable
since it has no s-pole. When 1 < ν < 2, Fcc has two stable
complex conjugate poles. Beyond ν = 2, it has at least two
unstable poles.

A third elementary function (Havriliak-Negami) was pro-
posed by [HN66], [HN67]:

Fhn (s) =
A

(sν1 + ωu)
ν2

. (9)

Although, it generalizes the two previous ones, it is rarely
used in time domain-simulations because of the difficulty of
its synthesis.

A rational realization of the Havriliak-Negami elementary
function is proposed in [Lau03] for (ν1, ν2) ∈ (]0, 1[)

2 and
is based on diffusive representation. Nevertheless, this rep-
resentation does not allow to have a band limited fractional
behavior, which is generally present in physical systems,
i.e. physical systems do not have an infinite band fractional
behaviour.

The objective of this paper is to develop a rational
realization of Havriliak-Negami elementary function on a
bandlimited frequency for ν1 ∈ R+ and ν2 ∈ R, and to
prove its capability to model diffusive systems, such that
thermal system, with very few parameters.

This new realization is based on the splitting of Havriliak-
Negami elementary function into a Davidson-Cole and a

complementary function. Then, the rational realization of
both functions is obtained by using the principle of recur-
sive poles and zeros synthesis of a bandlimited fractional
integrator as described by [Ous83], [Ous95].

III. SYNTHESIS OF FRACTIONAL OPERATORS IN A

BANDLIMITED FREQUENCY

Considering the bandlimited fractional behavior of real
physical systems and the practical limitations of input and
output signals (Shannon’s cut-off frequency and the spec-
trum of the input signal), fractional operators are usually
approximated by high order rational models within a limited
frequency band. As a result, a fractional model and its
rational approximation have the same dynamics within a
limited frequency band. The most commonly used approx-
imation of the fractional integro-differentiator sν in the
bandlimited frequency [ωA, ωB] is the recursive distribution
of zeros and poles proposed by [Ous83] and explained below.
Rational realization of fractional operators in the bandlimited
frequency [ωA, ωB] induces deterioration around the edge
frequencies ωA and ωB as shown in fig. 2 and 3. This
deterioration is known as edge effect and is generally reduced
by extending the frequency band on which the realization is
carried out from [ωA, ωB] to [ωb, ωh], where

ωb = ωA

σ

ωh = ωB · σ
. (10)

A dedicated study [Ous95] has shown that the edge
effect is considerably reduced by choosing a frequency-band
spreading factor (σ) up to 10 (the approximation is then
closer to the fractional behavior on [ωb, ωh]). As a result,
sν is approximated on the frequency band [ωA, ωB] by:

sν → sν
[ωA,ωB ] = C0

(
1 + s

ωh

1 + s
ωb

)ν

≈ C0

N∏
k=1

1 + s
ω′

k

1 + s
ωk

(11)

where

ω′
0 = α

1
2 ωb, ω0 = α

1
2 η ωb, (12)

ωk+1

ω′
k

= α,
ω′

k+1

ωk

= η, (13)

C0 =

(
ωh

ωb

)ν (
1 + ω2

b

1 + ω2
h

) ν

2

. (14)

N is the number of poles and zeros used to approximate
sν
[ωA,ωB], which tends theoretically to ∞. But, an approxi-

mation with 2 poles and zeros per decade leads already to
an acceptable error. The real parameters α and η define by
their own the differentiation order ν:

ν =
log (α)

log (α · η)
. (15)
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based
on recursive poles and zeros realization [Ous95], for σ = 10in (10)
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ν = −0.2,−0.5,−0.8 and − 1.1, for σ = 10

IV. SYNTHESIS OF HAVRILIAK-NEGAMI FUNCTION

In this paper, Havriliak-Negami function:

Fhn (s) = (sν1 + ωu)
ν2 (16)

is synthesized for ν2 ∈ R, and (ν1, ωu) ∈ R
2
+.

Considering M as the number of s-roots P1, P2, . . . , PM

of Fhn (s) (M depends on ν1 as explained in part I). Hence,
Fhn (s) can be written as:

Fhn (s) =

[
M∏

m=1

(s − Pm)
ν2

(
s + ωu

1
(ν1−M)

)ν2(ν1−M)
]

κ (s)

(17)
where the asymptotic behaviors of Fhn (s) and the function
between the squared brackets are the same. Moreover, this

asymptotic behavior and a Davidson-Cole lead to the same
formulation of their approximation.

κ (s) is defined as the ratio of Fhn (s) and the function
between the squared brackets.

Thus, since it is not a s-root for ν1 ∈ [0, 1], Fhn (s) can
be split into the product of two functions:

Fhn (s) = F1 (s) · κ (s) (18)

where F1 corresponds to a Davidson-Cole elementary func-
tion:

F1 (s) =

(
s + ω

1
ν1
u

)ν1·ν2

. (19)

The asymptotic behaviors of Fhn (jω) and F1 (jω) when ω →
0 and ω → +∞ are the same, since

lim
ω→0

Fhn (jω) = lim
ω→0

F1 (jω) = ων2
u . (20)

lim
ω→∞

Fhn (jω) = lim
ω→∞

F1 (jω) = j∞. (21)

Moreover, in the vicinity of ω → ∞, both functions converge
to the same rate:

Fhn (jω) ∼ (jω)
ν1ν2 , as ω → ∞ (22)

F1 (jω) ∼ (jω)ν1ν2 , as ω → ∞. (23)

As seen previously, F1 (s) is approximated by a recursive
distribution of poles and zeros. The additional function

κ (s) =
Fhn (s)

F1 (s)
, (24)

plotted in Fig. 4, plays a significant role in median frequen-

cies (around ω
1

ν1
u ). Its synthesis is developed in section IV-A.

Remarks
1) When ν1 tends to 1, the Havriliak-Negami function

(16) tends to the Davidson-Cole function (19), κ (s)
tends to 1, and hence, Fhn (s) tends to F1 (s).

2) When ν1 tends to 0, the Havriliak-Negami function
(16) is far from the Davidson-Cole function, κ (s)
tends to Fhn (s) (18), and hence, F1 (s) tends to 1.

A. Basic synthesis of κ (s)

The gain diagram of κ (s), is log-symmetric with respect

to ω
1

ν1
u (fig. 4). The principle of poles and zeros recursive

distribution underlined in section III is now used to synthe-
size κ (s) in the frequency band

[
ωu

Δ , ωu Δ
]

where

Δ = max (Δ1, Δ2) , (25)

Δ1 = max

(
ωu

σ · ωh

,
σ · ωh

ωu

)
, (26)

Δ2 = max

(
σ · ωu

ωb

,
ωb

σ · ωu

)
. (27)

and σ = 100.
This frequency band

[
ωu

Δ , ωu Δ
]

is subdivided into 2N

bands, namely
[
ωek

, ωek+1

]
for k = 1, 2..., 2N , such as

ωe1 =
ωu

Δ
, (28)
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and
ωek+1

ωek

= Δ
1
N . (29)

Then, a recursive distribution of Mk poles and zeros is
applied on every

[
ωek

, ωek+1

]
frequency band. Hence, for

each mth frequency band:

ω′
k,0 = α

1
2

k ωek
, ωk,0 = α

1
2

k ηk ωek
, (30)

ωk,m+1

ω′
k,m

= αk,
ω′

k,m+1

ωk,m

= ηk. (31)

The real parameters αk and ηk define a local differentiation
order νk:

νk =
log (αk)

log (αk · ηk)
. (32)

Thus, the approximation κ1 (s) of κ (s) in the frequency
band

[
ωu

Δ , ωu Δ
]

is given by:

κ (s) ≈ κ1 (s) =

2N∏
k=1

Mk∏
m=1

s + ω′
k,m

s + ωk,m

(33)

2 poles and zeros per decade are typically enough to synthe-
sis κ and F1 functions.

Finally, by ordering all the poles and all the zeros as a
global non recursive distribution, κ1 (s) can be written as
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−1.5 on the frequency
band [0.01, 100] (� symbols) with two poles and two zeros per decade and
the frequency band spreading factor σ = 100.

the following product:

κ1 (s) =

2N ·Mk∏
i=1

s + ω′
i

s + ωi

. (34)

B. Improved synthesis of κ (s)

While synthesizing κ1 (s), the modulus of the error

(κ (jω) − κ1 (jω)), ω ∈
[

ωu

Δ , ωu Δ
]
, is maximum at ω

1
ν1
u .

For ν1 → 0, the gain of the Davidson-Cole function is

much less than the gain of κ1 (s) at ω
1

ν1
u .

In the opposite case, for ν1 → 1, the gain of κ1 (s) is
much less than the gain of the Davidson-Cole function at

ω
1

ν1
u .
An improved synthesis of κ (s) is obtained by using κ2 (s),

which is a weighted κ1 (s) approximation:

κ2 (s) = ν1 · κ1 (s) . (35)

The use of κ2 (s) allows to reduce considerably the synthesis

error around ω
1

ν1
u . Fig. 5 shows the improvements introduced

by the approximation κ2 (s) of κ (s) as compared to the
approximation κ1 (s).

C. Synthesis of Havriliak-Negami elementary function using
κ2 approximation

Syntheses for Fhn (s) = (sν1 + 1)
ν2 with ν2 = −0.5

and ν1 respectively equal to 0.1, 0.25, 0.5, 0.75 and 0.9 are
presented on Fig. 6. The frequency band used for synthesis
is symbolized by squares and corresponds to [0.1, 10] rad/s.

V. EXTENSION OF THE METHOD FOR ν1 ∈ R+

As explained in section II, a function

Fcc (s) = sν
1 + λ (36)
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has M s-roots, depending on the fractional order ν1. The
synthesis when ν ≥ 1, which implies M ≥ 1, is then
developed.

Due to these M s-roots, the Havriliak-Negami function,
Fhn (s) becomes (17). Thus, every Davidson-Cole function,
such that (s + ωa)ν (with ωa = λk or λ), are approximated
with recursive poles and zeros distributions (section III).
Indeed, as ωb is replaced by λ and considering ωh >> λ,
equation (11) leads to

(s + λ)ν ≈

(
s + λ

s + ωh

)ν

≈

N∏
k=1

s + ω′
k

s + ωk

. (37)

where ω′ and ω are calculated by the relations (12)-(15). It
leads to the following relation for ν > 0:

F̃hn (s) =
M∏

m=1

K1∏
k1=1

s+ω′

mk1

s+ωmk1

∣∣∣∣∣
ν1>1

K2∏
k2=1

C2
s+ω′

k2

s+ωk2

∣∣∣∣∣
.

K3∏
k3=1

C3
s+ω′

k3

s+ωk3

∣∣∣∣∣
κ2(s)

(38)

and finally, by ordering all poles and all zeros, to the relation:

F̃hn (s) =

M·K1K2·K3∏
i=1

s + ω′
i

s + ωi

. (39)

The result of this synthesis is shown on the Bode diagram
for Fhn (s) = (sν1 + 1)

−0.5 with ν1 = .1, 0.25, ..., 0.9
(Fig. 6) and for Fhn (s) = (sν1 + 1)

−1.5 with ν1 =
1.1, 1.3, ..., 1.9 (Fig. 7).

VI. EXAMPLE

Thermal systems have a fractional nature. Cole-Cole
function had been previously used to model the thermal
flux in a thermal bench with few parameters ([SMO05],
[MASO06]). A model based on Havriliak-Negami functions
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heated surface
insert tool

sensor

tool holder

thermocouple T

q

Fig. 8. Description of operation

allow even more to reduce the number of model parameters
([SMMO08]).

In this paper, the example concerns a thermal application
in the field of machining by turning (See [BCPO01] for a
more complete description of the experimental protocole).
The goal is to estimate the heat flux φ (t) during machining,
by using an inverse model obtained off-line and using system
identification (as direct measurement of heat flux is not
possible).

To obtain the machining tool model, a thermocouple (type
T) is embedded close to the tip of the insert tool (Fig. 8).
Heat flux is then generated using a heat resistor formed by
a platinum film (10 μm) placed on a thin ceramic substrate
(250 μm). This leads to neglect the thermal inertia of such
a resistor compared to the sampling interval (h=0.4s). Two
sequences have been generated, one for parameter estimation
and the second one for model validation. A first pseudoran-
dom binary sequence is used as input signal. The system
is identified by applying output error model. Due to its
flexibility in the frequency domain with only 4 parameters,
our model is then based on the Havriliak-Negami function.
In fact, a fractional integrator proved to be necessary, and
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Fig. 10. Validation data and modeling error using Havriliak-Negami
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the model is therefore set to:

F (s) =
k

sν (sν1 + ωu)
ν2

. (40)

sν is then approximated as in section III and (sν1 + ωu)ν2

as in IV. The spreading factor is set to σ = 100 to reduced
edge effect and the number of poles and zeros, used to
synthesize κ2 (s) and F1 functions, is set to 2 per decade.

The system is identified by applying output error model.
Parameter vector [k, ν, ν1, ν2, ωu] is optimized by using
the non-linear Simplex optimisation algorithm ([Sub89],
[Woo85]). The obtained model has then only five parameters:

M (s) =
T (s)

φ (s)
=

2.54 103

s0.27 (s0.93 + 0.29)
1.49 (41)

for a variance σ2 = 1.41 10−5. Fig. 9 shows model/system
outputs and error. Model validation with the second pseudo-
random binary sequence is shown on Fig. 10.

VII. CONCLUSION

Fractional (non integer) operators has proven their useful-
ness in representing high dimensional systems with only few
parameters.

Among different fractional elementary functions, the
Havriliak-Negami function is not very popular because of
the difficulty of its synthesis. Hence, a new synthesis method
is developed in this paper. Havriliak-Negami function is first
split into a Davidson-Cole function and a complementary
one, both of which are then synthesized in a limited fre-
quency band using a recursive distribution of poles and zeros
developed by [Ous95].

Finally, to prove the capability of this function for diffusive
systems identification, a real thermal system in the field of
machining by turning is modeled.
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