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Abstract—This paper studies semi-stability for
Kalman filters in the context of linear time-varying
systems with incorrect noise information. Semi-
stability is a key property, as it ensures that the actual
estimation error does not diverge exponentially. As
the main result of the paper we present a necessary
and sufficient condition for the recursive Kalman filter
to be semi-stable, relying on the relevant data of
the system and noise. The condition does not involve
limiting gains nor the solution of Riccati equations, as
they can be difficult to obtain numerically and may
not exist.

I. Introduction

It is a well-known fact that Kalman filters (KFs) may
present the phenomena of divergence under incorrect
model and noise information, in such a manner that the
state estimate diverges from the actual value with a high,
sometimes exponential, rate. There may be no indication
of divergence when calculating the KF, making the phe-
nomena more problematic.

Divergence was studied for KFs in the context of time-
invariant, periodic and time-varying systems, see e.g. [7],
[5], [8], [9]. The available conditions for avoiding diver-
gence present some degree of conservativeness, as they
rely on detectability/uniform observability assumptions
or on the existence of a stationary solution to the filtering
problem (equivalently, a solution to an algebraic Riccati
equation (ARE)). However, there may exist neither a
solution to the ARE nor a limiting gain, even in time-
invariant context, see Example 3. Moreover, the available
results concern only the stability of the KF, meaning
(from the standpoint of divergence analysis) that the ac-
tual covariance matrix of the estimation error is bounded
for any incorrect noise covariances. However, incorrect
initial error covariance Σ can be handled without re-
quiring stability and we mention, as illustration, that
Σ > 0 ensures bounded error but does not ensure stability,
see Example 1; furthermore, in many situations it may
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be acceptable that the actual error does not diverge
exponentially, or diverges with a “specified” rate.

In this paper we fill some of the aforementioned gaps.
We start showing that exponential divergence makes
no distinction among the incorrect data being related
to persistent or non-persistent noise, see Lemma 3. We
derive some links between the actual and calculated error
covariances, provided the latter structurally describes the
former, in the sense of Lemma 1 and Lemma 4, which
allows to present the exact role of the condition Σ > 0.
We also present, in Corollary 3, an orthogonality result
involving the Kalman gain and the covariance matrix
of the plant. These results are combined to obtain our
main result: a necessary and sufficient condition for semi-
stability of the KF (equivalently, for avoiding exponential
divergence) relying on the nominal data employed in
the KF calculation, and involving neither detectability
assumptions, nor existence of limiting gains, nor calcu-
lations of the Kalman gain and of the solution of the
associated Riccati difference equation (RDE).

Since we are concerned with actual error divergence in
absence of nominal error divergence, we assume that the
nominal error covariance matrices are bounded, which is
much weaker than detectability or existence of solution
to the ARE. We also require “structural invariance” of
unstable subspaces, in the sense of Assumption 2, which
holds trivially for time-invariant or periodic systems.

The paper is organised as follows. Section II presents
some preliminary results, and Section III presents sta-
bility notions and some related results. In Section IV
we address a link between the Kalman gain and the
plant. The main result is presented in Section V. Finally,
Section VI provides some conclusions, and the Appendix
contains the proof of a technical fact.

II. Preliminary results

Let R
n denote the n−th dimensional Euclidean space.

Let Rr,s (respectively, Rr) represent the normed linear
space formed by all r×s real matrices (respectively, r×r)
and Rr∗ (Rr0) the cone {U ∈ Rr : U = U ′} (the closed
convex cone {U ∈ Rr : U = U ′ ≥ 0}) where U ′ denotes
the transpose of U . For U ∈ Rn, λ (U) stands for the
eigenvalues of U and, for U ∈ Rn0, λ−(U) is the smallest
positive eigenvalue of U . Let D (respectively D̄) be the
open (closed) unit disk in the complex plane. Following
the terminology of [1] we say that A ∈ Rn is semi-stable
(stable) if λ (A) ⊂ D̄ (λ (A) ⊂ D), and we say that v ∈ R
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is an unstable1 eigenvector when it is associated with
λi(A) /∈ D̄. Let Hr,n denote the linear space formed by
sequences of matrices H = {Hi ∈ Rr,s; i ∈ Z} such that
supi∈Z

||Hi||< ∞; also, Hn ≡Hn,n and ‖H‖∞ = supi∈Z
‖Hi‖.

Consider the linear, time-varying, stochastic system
defined in a fundamental probability space (Ω,F,P) by

Φ :

{
x(k + 1) = Akx(k)+ Bkw(k), x(0) = x0,

y(k) = Ckx(k)+ Dkv(k),
(1)

where x ∈ R
n is the state, y ∈ R

r is the observed variable,
w ∈ R

p and v ∈ R
q form stationary zero-mean indepen-

dent white noise processes satisfying E{w(k)w(k)′} = I

and E{v(k)v(k)′}= I, and the (independent) random vari-
able x0 has Gaussian distribution satisfying E{x0} = x̄0

and E{x0x′0} = Ψ. It is assumed that A ∈ Hn, B ∈ Hn,p,
C ∈ Hr,n and D ∈ Hr,q, with DiD

′
i > 0, i ≥ 0 (nonsingular

measurement noise). Much attention has been devoted
to the problem of estimating x and the associated RDE

Pk+1 = Ak[Pk −PkC
′
k(CkPkC

′
k + DkD′

k)
−1CkPk]A

′
k + EkE ′

k

(2)
with initial condition P0 = Σ∈Rn0, where E ∈Hn,p. Σ and
E are the available information on the actual Ψ and B,
respectively. The state estimate is given by x̂(0) = x̄0 and

x̂(k + 1) = Ak x̂(k)+ Lk[y(k)−Ckx̂(k)] (3)

where

Lk = AkPkC
′
k[CkPkC

′
k + DkD′

k]
−1. (4)

Results concerning existence of solutions, uniqueness,
convergence and other aspects of RDEs and AREs can
be traced back to the sixties, and were extended at
some degree to periodic, time-varying and other classes
of systems, as well as to generalised RDEs and AREs.
We mention for illustration [1], [10], [11].

Assumption 1. For each Σ ∈ Rn0 there is X̄ ∈ Rn0 such
that Pk ≤ X̄ , k ≥ 0.

Remark 1. Assumption 1 holds trivially provided that
Pk in (2) converges as k → ∞ or that (A,C) is detectable
[1], thus generalising assumptions in literature. It is
connected to the fact that we address divergence of the
actual error in absence of divergence of the nominal error.

Consider the state transition matrix A(k + t,t) =
Ak+t · · ·At , k,t ≥ 0, and let M(k+ t,t) stand for the orthog-
onal projection onto the space spanned by the unstable
eigenvectors of A(k + t,t).

Assumption 2. There exists T such that M((k +
1)T,kT ) = M(T,0), k ≥ 0.

Remark 2. Assumption 2 is related to the structure of
semi-stable and unstable eigenvectors. The assumption
holds trivially for time-invariant or periodic systems,
T being the period. Systems that do not satisfy the

1We prefer the terminology “unstable” to the terminology “anti-
stable” used in [1].

assumption are difficult to deal with; even conditions like
Σ > 0 are not relevant for avoiding divergence, e.g. Σ = 1,
A0 = 0, Ak = 2, k ≥ 1, B = 0 and C = 1 lead to an unstable
KF with Ak + LkCk = 2, k ≥ 1.

The actual estimation error is directly obtained from
(1) and (3): x̃(0) = x(0)− x̄0 and

x̃(k + 1) = (Ak −LkC)x̃(k)+ Bkw(k)−LkDkvk, (5)

where Lk is the Kalman gain (4). Next we present a well-
known result, see e.g. [8].

Proposition 1. Consider the Kalman gains Lk associ-
ated with the available data E and Σ, and the sequence
defined by X̃(0,0) = Ψ, and

X̃(k + 1,t,B,Ψ) = (Ak −LkCk)X̃(k,t,Ψ)(Ak −LkCk)
′

+ LkDkD′
kL′

k + BkB′
k, k ≥ t ≥ 0.

(6)

Then E{x̃(k)x̃(k)′} = X̃(k,0,B,Ψ).

It is simple to check by inspection that X̃(k,0,E,Σ) = Pk

and X̃(k,k0,E,Pk0
) = Pk, k ≥ k0, thus connecting (2) and

(6). The homogeneous solution of (6) is given by

X̃h(k,t,V ) = (Ak −LkCk) · · · (At −LtCt)V ·

· (At −LtCt)
′ · · ·(Ak −LkCk)

′, k ≥ t ≥ 0.
(7)

For convenience we define X̃h(k−1,k,V ) = V and X̃h(k−
1,k + ℓ,V ) = 0, ℓ ≥ 1. Similarly to Proposition 1, if we
define X(0,0,B,Ψ) = Ψ and

X(k + 1,t,B,Ψ) = AkX(k,t)A′
k + BkB′

k, k ≥ t ≥ 0, (8)

then X(k,0,B,Ψ) = E{x(k)x(k)′}. We also define

Xh(k,t,V ) = Ak · · ·AtVA′
t · · ·A

′
k, k ≥ t ≥ 0.

We omit the variables t, V and B when t = 0, Ψ = Σ
and Bk = Ek, k ≥ 0, respectively. For instance, we denote
X̃(k,0,E,Σ) simply by X̃(k). We now gather, without
giving the proofs, some inequalities relating the above
quantities, which are either basic ones or are adapted
from the literature of RDEs, see e.g. [1].

Proposition 2. The following statements hold.
(i) For each Σ ∈Rn0 there exists ρ ≥ 0 such that ‖Lk‖ ≤ ρ
for k ≥ 0.
(ii) For each Σ ∈Rn0 there exists δ ,ε ≥ 0 such that X̃(k+
1,k,Σ) ≤ δ‖Σ‖+ ε.
(iii) Let 0 ≤ α ≤ 1 and V0,V1 ∈ Rn0 and assume V1 ≥ V0.
Then X̃(k,αV1)≥αX̃(k,V0), k ≥ 0. Similarly, X̃h(k,αV1)≥
αX̃h(k,V0), k ≥ 0.
(iv) Let M = M(T,0) be as in Assumption 2 and V ∈ Rn0.
There exist ν,µ > 0 such that λ−(MPtT M′) ≥ ν, X̃h((k +
t)T,tT,MM′) ≥ µMM′, k,t ≥ 0. Also, X̃h((k + t)T,tT,(I−
M)V (I−M)′) ≤ (I−M)V (I −M)′, k,t ≥ 0.
(v) for V,H ∈ Rn0 and for each scalar ε we have that
(1 − ε2)HVH ′ +

(
1− ε−2

)
(I − H)V (I − H)′ ≤ V ≤ (1 +

ε2)HVH ′ +
(
1 + ε−2

)
(I −H)V(I−H)′.
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III. Divergence and stability for the KF

The following stability notion is standard for the KF
and parallels mean square stability for linear systems
with additive noise, see e.g. [6].

Definition 1 (KF stability). We say that the KF is stable
if, for each B ∈Hn,p and Ψ ∈Rn0, there exists X̄ such that
X̃(k,B,Ψ) ≤ X̄, k ≥ 0.

We extend stability to semi-stability, in a parallel with
the fact that A ∈ Rn is semi-stable if and only if ξ A is
stable for all 0 ≤ ξ < 1. Semi-stability only requires that
E{x̃(k)′x̃(k)} = X̃(k,B,Ψ) does not diverge exponentially;
polynomial divergence is allowed, as in Example 1.

Definition 2 (KF semi-stability). We say that the KF is
semi-stable if, for each B ∈ Hn,p, Ψ ∈ Rn0 and 0 ≤ ξ < 1,
there exists X̄ such that X̃(k,B,Ψ) ≤ ξ−2kX̄ , k ≥ 0.

For the study of semi-stability we can assume that
Ψ = I and B = E. That is, under Assumptions 1 and 2,
the occurrence of divergence (in opposition to the rate
and the degree of the divergence) makes no distinction
between the incorrect noise being related to Σ or E,
i.e., between non-persistent and persistent noise incorrect
data. We make this notion precise, as follows. Consider
X̃ξ (k), k ≥ 0, defined recursively by

X̃ξ (k + 1) = (ξ (A−LkC))X̃ξ (k + 1)(ξ (A−LkC))

+ LkDD′L′
k + BB′, X̃ξ (0) = I.

(9)

Lemma 1. The KF is semi-stable if and only if, for each
0 ≤ ξ < 1, there exists X̄ such that X̃ξ (k) ≤ X̄, k ≥ 0.

Proof. (Necessity). For ρ as in Proposition 2 (i) let
κ = ρ‖D‖, in such a manner that κ2I = ρ2‖D‖2I ≥
LkDD′L′

k. One can check from (6) and (9) that X̃ξ (k) ≤

ξ 2kX̃(k,B + κI, I), and from the semi-stability of the KF
we obtain X̃ξ (k)≤ ξ 2kX̃(k,B+κI, I)≤ X̄ , hence the claim.
(Sufficiency). Assume that B = E, that is, there is no error
in the persistent noise data. For each Ψ∈Mn0 there exists
κ ≥ 0 for which Ψ ≤ κI, hence from Proposition 2 (iii)
and (9) we obtain

X̃(k,Ψ) ≤ κξ−2kXξ (k) ≤ ξ−2k(κX̄). (10)

In order to incorporate B 6= E, we make use of the fact
that there is always a “margin of semi-stability” (in the
sense that for each 0 ≤ ξ < 1 there exists ξ < ξ̄ < 1 and,
by hypothesis, X̃ξ̄ (k)≤ X̄) that allows for accommodation
of persistent noise. Assume now that the inequality

X̃h(k + t,t,BB′) ≤ δ 2T ξ̄−2k̄T ¯̄X‖B‖2, k,t ≥ 0. (11)

holds, where δ is as in Proposition 2 (ii), T is as in
Assumption 2 and k̄ is defined in such a manner that
k + t − k̄T ≥ 0. This assumption is shown to hold in the
Appendix. Setting χ such that ξ̄ = (1 + χ)ξ , yields

ξ 2kX̃(k,B, I) = ξ 2kX̃(k,B, I)+

+(1 + χ)−2k
(
ξ̄ 2kX̃h(k−1,k−2,BB′)+

+ · · ·+ ξ̄ 2kX̃h(k−1,1,BB′)
)
,

k

‖X̃(k,B,Ψ)‖

‖X̃(k,Ψ)‖

0

0.5

1

1.5

2

2.5

10 20 30 40 50

Fig. 1. Error covariances for the KF in Example 1.

hence (11) with t = 0 leads to

ξ 2kX̃(k,B, I) ≤ ξ 2kX̃(k,B = 0, I)+

+(1 + χ)−2k
(
ξ̄ 2kξ̄−2k̄T δ 2T ¯̄X‖B‖2+

+ · · ·+ ξ̄ 2kξ̄−2k̄T δ 2T ¯̄X‖B‖2
)

= ξ 2kX̃(k,B = 0, I)

+ (1 + χ)−2k(k−1)ξ̄ 2(k−k̄T )δ 2T ¯̄X‖B‖2

≤ X̄ +(1 + χ)−2k(k−1)δ 2T ¯̄X‖B‖2

≤ X̄ +

(
δ 2T ¯̄X‖B‖2(1 + χ)−2

1−2(1 + χ)−2 +(1 + χ)4

)
.

The proof for (11) is in the Appendix.

Dissimilarly to Lemma 1, there is a distinction between
accommodation of non-persistent and persistent noise
incorrect models, as stability is concerned, and the next
stability notion is specific to the latter case.

Definition 3 (KF stability w.r.t. Ψ). We say that the
KF is stable with respect to (w.r.t.) Ψ when, for each
Ψ ∈ Rn0 there exists X̄ such that X̃(k,Ψ) ≤ X̄, k ≥ 0.

Lemma 2. Stability w.r.t. Ψ is weaker than stability,
stronger than semi-stability and equivalent to stability
w.r.t. I.

Proof. The first statement follows from Definitions 2 and
3. The second statement follows straightforwardly from
Lemma 1. The proof for the third statement is analogous
to the proof of Lemma 1, in particular the part where
B = E.

Example 1. Consider system Φ,

Ai =




0 −1 0

1 0 1

0 0 1



 , Ei = 0 and Σ = Ci = Di = I, i ≥ 0.

The KF leads to bounded X̃(k,Ψ = I) (it is enough to
consider Ψ = I, according to Lemma 2) and linearly
divergent X̃(k,B = 0.2I,Ψ = I), see Figure 1, yielding that
the KF is stable w.r.t. Ψ but, clearly, not stable.

One interesting property of the KF related to stability
w.r.t. Ψ is that, provided that at time instant k the actual
error covariance is structurally described by the nominal
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P, then it remains described by P at successive instants,
as discussed hereafter.

Lemma 3. Assume that V ∈ Rn0 and t ≥ 0 are such
that ker{Pt} ⊂ ker{V}. Then there exists X̄ such that
X̃(k + t,t,V) ≤ X̄, k ≥ 0. Moreover, ker{Pk+t} ⊂ ker{X̃(k +
t,t,V )}, k ≥ 0.

Proof. For V such that ker{V} ⊃ ker{Pt} we can pick a
scalar 0 < κ ≤ 1 such that κV ≤Pt . Therefore, Proposition
2 (iii) (with α = 0) and Assumption 1 yield

X̃(k + t,t,κV) ≤ X̃(k + t,t,Pt) = Pk+t ≤ X̄ , k ≥ 0, (12)

We set α = κ and V0 = V1 = V in Proposition 2 (iii)
to obtain κX̃(k + t,t,V ) ≤ X̃(k + t,t,κV); this and (12)
provide

X̃(k + t,t,V) ≤ κ−1X̄ , k ≥ 0.

Regarding the second statement, it follows immediately
from (12) that

ker{Pk+t} = ker{X̃(k + t,k,Pt)} ⊂ ker{X̃(k + t,t,κV)}.
(13)

Now, for η ∈ ker{X̃(k + t,t,κV)} we can write

0 = η ′X̃(k + t,t,κV)η

= η ′
(
X̃h(k + t,t,κV)+ X̃(k + t,t,Ψ = 0)

)
η

= η ′
(
κX̃h(k + t,t,V)+ X̃(k + t,t,Ψ = 0)

)
η

yielding that X̃h(k + t,t,V )η = 0 and
X̃(k + t,t,Ψ = 0)η = 0, which lead to
X̃(k + t,t,V)η =

(
X̃h(k + t,t,V)+ X̃(k + t,t,Ψ = 0)

)
η = 0,

i.e., η ∈ ker{X̃(k + t,t,V )}. We have shown that
ker{X̃(k + t,t,κV)} ⊂ ker{X̃(k + t,t,V)}, and substituting
this relation in (13) yields the result.

Lemma 3 leads immediately to the next result, retriev-
ing the well-known fact that KFs for periodic or time-
invariant systems are semi-stable when Σ > 0, see e.g. [4]
and [8], and making clear the role of Σ > 0.

Corollary 1. If Σ > 0, then the KF is stable w.r.t. Ψ.

The upper bound on X̃ provided by Lemma 3 is
dependent on V and t. This lack of uniformity can not be
removed in general. However, for the non-forced solution
X̃h of (6) we can employ the second statement of Lemma
3 to derive the following result, the proof of which is
omitted.

Lemma 4. Let t ≥ 0 and Pt be given by (2). There exists
X+ such that X̃h(k + t,t,V ) ≤ ‖V‖X+, k ≥ 0, for all V for
which ker{V} ⊃ ker{Pt}.

IV. A structural link between the Kalman

gain and the plant

This section addresses the connection among the
Kalman gain L and the covariance matrices X and P. We
start showing an orthogonality result involving LkCk and
the null space of X(k + 1), with the interpretation that
the KF behaves exactly as the plant in subspaces with no
associated noise. Then we show that the null spaces of P

and X coincide, thus extending the orthogonality result
to P; in the time-invariant case, this is to some extent
analogous to [5, Theorem 1].

Lemma 5. The following statements hold.

(i) ker{Pk+1} = ker{X(1,0,Pk}, k ≥ 0.
(ii) For each v ∈ R

n, LkCkv is orthogonal to ker{Pk+1}.

Proof. We start showing that ker{Pk+1}⊃ ker{X(1,0,Pk)}.
By optimality of the KF, we have that

Pk+1 = X̃(k + 1)≤ X(k + 1,k, X̃(k)) = X(1,0,Pk),

hence for η ∈ ker{X(1,0,Pk)},

η ′Pk+1η ≤ η ′X(1,0,Pk)η = 0. (14)

Conversely, if we pick an arbitrary η ∈ ker{Pk+1}, we can
employ Proposition 1 to write

0 = η ′Pk+1η = η ′X̃(k + 1)η

= η ′[(Ak + LkCk)X̃(k)(Ak + LkCk)
′ + LkDkD′

kL′
k + EkE ′

k]η
(15)

which, in particular (and recalling that DiD
′
i > 0, i ≥ 0),

means that

L′
kη = 0, η ∈ ker{Pk+1}, (16)

allowing to re-evaluate (15) as

0 = η ′[(A + LkC)X̃(k)(Ak + LkCk)
′ + LkDkD′

kL′
k + EkE ′

k]η

= η ′[AkX̃(k)A′
k + EkE ′

k]η = η ′X(1,0,Pk)η ,

completing the proof of (i). For (ii), note that (16) im-
mediately leads to η ′(LkCkv) = 0 for each η ∈ ker{Pk+1},
thus LkCkv is orthogonal to ker{Pk+1}.

Corollary 2. ker{Pk} = ker{X(k)}, k ≥ 0.

Proof. We proceed inductively. For k = 0, P0 = X(0,0,Σ)=
Σ by definition. Now assume that ker{Pk} = ker{X(k)}
holds for k, and note that

ker{AkPkA′
k + EkE ′

k} = ker{AkX(k)A′
k + EkE ′

k}. (17)

Lemma 5 and (8) yield

ker{Pk+1} = ker{X(k + 1,k,Pk)} = ker{AkPkA′
k + EkE ′

k}.
(18)

Hence (17) and (18) lead to ker{Pk+1} = ker{AkX(k)A′
k +

EkE ′
k} = ker{X(k + 1)}, completing the induction.

We conclude this section with one more result.

Corollary 3. The following statements hold:

(i) for each v ∈ R
n, LkCkv ⊥ ker{Pk+1};

(ii) Hk+1LkCk = 0;

where Hk ∈Rn, k ≥ 0, represents the orthogonal projection
onto ker{Pk}.

Proof. Statement (i) follows immediately from Lemma 5
(ii) and Corollary 2. Regarding (ii), since Hk+1 stands for
the orthogonal projection onto ker{Pk+1}, we have that
ker{Hk+1}⊥ ker{Pk+1}. On the other hand, the statement
(i) leads to LkCkv ⊥ ker{Pk+1}. Then, LkCkv ∈ ker{Hk+1},
and Hk+1LkCkv = 0, v ∈ R

n.
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V. Semi-stability for the KF

In this section we present a necessary and sufficient
condition for the KF to be semi-stable relying on semi-
stability of an auxiliary system, defined as follows. Recall
that Hk stands for the projection onto ker{Pk} (equiva-
lently onto ker{X(k)} as stated in Corollary 2, which is
easier to calculate). Let Zk ∈ Rn0, k ≥ 0, be defined by
Z0 = H0H ′

0 and

Zk = (HkAk)Zk−1(HkAk)
′, k ≥ 1. (19)

Zk is strongly linked with the KF dynamics, as follows.

Lemma 6. Zk = [Hk(Ak + Lk−1Ck)]Zk−1[Hk(Ak +
Lk−1Ck)]

′, k ≥ 0.

Proof. The result is immediate from Corollary 3.

The next lemma provide some useful evaluations in-
volving X̃ξ , X̃h (defined in (7) and (9)) and Z, the proofs
of which are omitted.

Lemma 7. The following statements hold for any ε 6= 0:

(i) X̃ξ (k,0, I) ≤ X̃ξ (k,0,0)+ ξ 2k(1 + ε−2)k+1Zk

+ ξ 2k(1 + ε2)X̃h(k−1,0,(I−H0)I(I−H0)
′)

+ ξ 2k(1 + ε2)
k

∑
ℓ=1

[×(1 + ε−2)ℓ

× X̃h(k−1, ℓ,(I−Hℓ)X̃h(ℓ−1, ℓ−1,Zℓ−1)(I −Hℓ)
′)],

(ii) X̃ξ (k,0, I) ≥ X̃ξ (k,0,0)+ ξ 2k(1/2)(1− ε−2)kZk

− ξ 2kX̃h(k−1,0,(I−H0)I(I−H0)
′)

− ξ 2k(ε2 −1)
k

∑
ℓ=1

[(1− ε−2)ℓ×

× X̃h(k−1, ℓ,(I−Hℓ)X̃h(ℓ−1, ℓ−1,Zℓ−1)(I −Hℓ)
′)].

Theorem 1. The KF is semi-stable if and only if there
exists Z̄ ∈ Rn0 such that ξ 2k

Z Zk ≤ Z̄, k ≥ 0, 0 ≤ ξZ < 1.

Proof. (Sufficiency). For each 0 ≤ ξ < 1 we set ε > 0 and
0 ≤ ξZ < 1 in such a manner that

ξ 2ξ−2
Z (1 + ε−2) < 1.

We start taking into account each term on the right hand
side of statement (i) of Lemma 7, separately. For the first
term Proposition 2 (iii) yields

X̃ξ (k,0,0) ≤ X̃ξ (k,0,Σ) ≤ Pk ≤ X̄ . (20)

For the second term it is simple to check that

(ξ 2(1 + ε−2))k(1 + ε−2)Zk

≤ (ξ−2
Z ξ 2(1 + ε−2))k(1 + ε−2)Z̄ ≤ (1 + ε−2)Z̄.

(21)

For the third term, since H0 is the projection onto
ker{P0}, we have that ker{(I −H0)I(I −H0)

′} ⊃ ker{P0}
yielding, from Lemma 4,

ξ 2k(1 + ε2)X̃h(k−1,0,(I−H0)I(I−H0)
′)

≤ ξ 2k(1 + ε2)‖(I−H0)I(I −H0)
′)‖X+

≤ ξ 2k(1 + ε2)X+.

(22)

For the last term Proposition 2 (ii) and (iii) lead
to ‖X̃h(ℓ − 1, ℓ − 1,Zℓ−1)‖ ≤ ‖X̃h(ℓ − 1, ℓ − 1,ξ−2ℓ

Z Z̄)‖ ≤
ξ−2ℓ

Z δ‖Z̄‖+ γ, ℓ = 1, . . . ,k, and

‖(I−Hℓ)X̃h(ℓ−1, ℓ−1,Zℓ−1)(I −Hℓ)
′‖ ≤ (ξ−2ℓ

Z δ‖Z̄‖+ γ)I.

Then, we employ Lemma 4 (note that, similarly to the
case k=0, ker{(I −Hℓ)X̃h(·)(I −Hℓ)

′} ⊃ ker{Pk}) and the
above inequality, respectively, to evaluate

(1 + ε2)ξ 2k
k

∑
ℓ=1

[(1 + ε−2)ℓ×

× X̃h(k−1, ℓ,(I−Hℓ)X̃h(ℓ−1, ℓ−1,Zℓ−1)(I −Hℓ)
′)]

≤ (1 + ε2)ξ 2k
k

∑
ℓ=1

[(1 + ε−2)ℓ×

×‖(I−Hℓ)X̃h(ℓ−1, ℓ−1,Zℓ−1)(I−Hℓ)
′‖X+]

≤ (1 + ε2)ξ 2k
k

∑
ℓ=1

[(1 + ε−2)ℓ(ξ−2ℓ
Z δ‖Z̄‖+ γ)X+]

≤ (1 + ε2)X+
k

∑
ℓ=1

(ξ 2ξ−2
Z (1 + ε−2))ℓ(δ‖Z̄‖+ γ)≤ ζX+,

(23)
where we have defined ζ = (1 + ε2)(δ‖Z̄‖+ γ)q(1− q)−1

with q = ξ 2ξ−2
Z (1 + ε−2) < 1. Substituting (20)–(23) in

statement (i) of Lemma 7 we obtain, for k ≥ 0:

X̃ξ (k,0, I) ≤ X̄Σ +(1 + ε−2)Z̄ + ξ 2k(1 + ε2)X+ + ζX+

(24)
and Lemma 1 leads to the result.
(Necessity.) Assuming that the KF is semi-stable, we
have in particular that for each 0 ≤ ξ < 1/2 there exists
X̄ such that Xξ (k,0, I) ≤ X̄ , k ≥ 0, and from Lemma 7
(ii), with ε > 1 such that ξ 2(1− ε−2) < 1, we obtain

X̄ ≥ X̃ξ (k,0, I) ≥ X̃ξ (k,0,0)+ ξ 2k(1/2)(1− ε−2)kZk

− ξ 2kX̃h(k−1,0,(I−H0)I(I−H0)
′)

− ξ 2k(ε2 −1)
k

∑
ℓ=1

(1− ε−2)ℓ×

× X̃h(k−1, ℓ,(I−Hℓ)X̃h(ℓ−1, ℓ−1,Zℓ−1)(I −Hℓ)
′).
(25)

Similarly to the proof of the sufficiency, one can check
that the third and fourth terms on the right hand side of
(25) are bounded from bellow by −X+ and −ηX+ where
η is set similarly to ζ in the proof of sufficiency. Note
that X̃ξ (k,0,0) ≥ 0. These elements can be combined to

obtain X̄ ≥ (1/2)ξ 2k(1− ε−2)kZk −X+ −ηX+, and if we
set ε = 2 and ξZ = 2ξ , we get that for each 0 ≤ ξZ < 1,

Zk ≤ 2ξ−2k
Z [X̄ +X+ +ηX+].

Example 2 (Example 1 continued). Example 1 has
already established that the KF is not stable. Since (A,C)
is detectable, one can easily check that Assumption 1
holds, e.g. by employing the results in [1], [2]. Assumption
2 holds trivially, see Remark 2. Stability w.r.t. Ψ follows
from Corollary 1, since Σ = I. Moreover, Σ > 0 yields
H0 = 0 and from (19) it follows that Zk = 0, and semi-
stability is confirmed by Theorem 1.
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Example 3. Consider system Φ,

Ai =

[
0 −1

1 0

]
, Σ =

[
1 0

0 0

]
, Bi = Ci = 0, Di = I, i ≥ 0.

Implementing the KF one can check that Pk is periodic
(and conditions available in the literature can not be
employed). Thus Pk is bounded and satisfies Assumption
1. Assumption 2 holds trivially, see Remark 2. It is simple
to check that Zk is bounded (in fact, Zk = Pk+1), in such a
manner the KF is semi-stable, as stated in Theorem 1.

Example 4 (A simple non-observable, non-periodic sys-
tem). Consider T ≥ 1 and a sequence of discrete random
variables Km, m ≥ 0, satisfying 0 ≤ Km(ω) ≤ T , ω ∈ Ω.
Given a realization {K0(ω),K1(ω), . . .}, let AKm = 0, m≥ 0;
for each i 6= Km, m ≥ 0, let Ai be defined in such a manner
that Ai ≤ Q, Q ∈ Rn. Let Ci = Ei = Σ = 0 and Di = I,
i ≥ 0. Assumptions 1 and 2 are satisfied with X̄ = 0 and
M(T,0) = 0. One can check from (19) that Zk = 0, k ≥ T ,
hence Theorem 1 shows that the KF is semi-stable.

VI. Concluding remarks

In this paper we explored the structure of the KF from
the perspective of divergence of the actual error covari-
ance X̃k under incorrect noise measurements, assuming
that the calculated error covariance Pk is bounded. We
have shown that stability w.r.t. Ψ (accommodation of
incorrect Σ, exclusively) is weaker than stability, whereas
semi-stability makes no distinction between imprecise Σ,
E or both, see Lemma 1. These results and some struc-
tural properties of KF (as the one in Lemma 3 and the
orthogonality property of the Kalman gain Hk+1LkCk = 0)
together allow us to derive a necessary and sufficient
condition for semi-stability of the KF or, equivalently,
for avoiding exponential divergence of X̃k. The condition
relies on the existence of an upper bound for the auxiliary
system in (19), the dynamics of which only involves the
relevant data A, E and Σ, and involves neither conditions
on C (hence are valid for non-detectable systems) nor
calculations of RDEs. The results in this paper provide
the basic elements to investigate, as detailed in [3],
algebraic necessary and sufficient conditions for stability,
stability w.r.t. to Ψ and semi-stability of KFs in the time-
invariant context.
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Appendix

Proof of Lemma 1 (continued). We now prove inequality
(11). From Proposition 2 (v) we have that BB′ ≤ (1 +
ε2)MBB′M′ +

(
1 + ε−2

)
(I−M)BB′(I −M)′ and employing

Proposition 2 (iii) we evaluate

X̃h((k + t)T,tT,BB′) ≤ X̃h

(
(k + t)T,tT,(1 + ε2)MBM′

+
(
1 + ε−2

)
(I−M)BB′(I−M)′

)

= (1 + ε2)X̃h((k + t)T,tT,MBB′M′)

+
(
1 + ε−2

)
X̃h((k + t)T,tT,(I−M)BB′(I −M)′)

(26)
For the first term on the right-hand side of (26), setting µ
as in Proposition 2 (iv) yields µ‖B‖−2MBB′M′ ≤ µMM′ ≤
X̃h(tT −1,0,MM′), while Proposition 2 (iii) leads to

X̃h((k + t)T,tT,µ‖B‖−2MBB′M′)

≤ X̃h((k + t)T,tT, X̃h(tT −1,0,MM′))

= X̃h((k + t)T,0,MM) ≤ X̃((k + t)T,0, I).

As a result, from (10) with κ = 1 and ξ replaced by ξ̄ =
(1+χ)ξ , recalling that χ > 0 is defined in such a manner
that ξ < ξ̄ < 1, we obtain

X̃h((k + t)T,tT,µ‖B‖−2MBB′M′)

≤ X̃((k + t)T,0, I)≤ ξ̄−2(k+t)T X̄ .
(27)

For the second term on the right-hand side of (26) we
have from Proposition 2 (iv) that

Xh((k + t)T,kT,(I −M)BB′(I −M)′) ≤

≤ (I−M)BB′(I −M)′ ≤ ‖B‖2I.
(28)

By substituting (27) and (28) in (26), we obtain

X̃h((k + t)T,tT,BB′) ≤ ξ̄−2(k+t)T‖B‖2 ¯̄X (29)

where ¯̄X = (1 + ε2)µ−1X̄ +
(
1 + ε−2

)
I. Note that (29)

represents an evaluation for the maximal expansion of
X̃h along time intervals of the form [tT,(k + t)T ]. The
inequality (11) follows by extending the above evaluation
to general intervals [t,k + t], defining k̄ as the largest
integer for which k̄T ≤ k + t and replacing k + t in (29)
by k̄, combined with the evaluation for the expansion of
X̃ provided in Proposition 2 (ii).
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