
Non-deterministic Reconfiguration of Tree Formations

John-Michael McNew Eric Klavins

Abstract— We consider a network of mobile agents in an

initially unknown acyclic network configuration and the prob-

lem of reconfiguring them into a desired network topology

and formation geometry while maintaining connectivity in an

asynchronous network. We model the system and solution as an

embedded graph grammar and use a method of lexicographically

ordered Lyapunov functions to show the system converges non-

deterministically regardless of the initial network structure and

the order of the communication events.

I. INTRODUCTION

Systems of networked mobile agents of increasing com-

plexity are found in automotive, aircraft, and military appli-

cations. Many of these systems are safety-critical and the

design of correct, safe and fault-tolerant communication and

control protocols that are robust to initialization is essential.

The interplay between constraints on control, geometry, and

communication and the asychrony in the network make

designing solutions difficult. Verification of correct behavior

is also problematic because the large state spaces.

To begin to address such issues, we examine a simple

class of cooperative control algorithms that captures some of

the complexity of these systems . The problem we consider

exhibits hybrid dynamics over an asynchronous network,

decentralized control under constrained communication, and

requires robustness to unknown initial conditions and incom-

plete information.

In particular, we consider a network of mobile agents

in an initially unknown acyclic network configuration and

the problem of reconfiguring them into a desired network

topology and formation geometry while maintaining connec-

tivity in an asynchronous network. Our goal is to show that

the system converges on the desired final state, regardless

of the initial condition and the order of the communica-

tion events. We model the system as an embedded graph

grammar and use a method of lexicographically ordered

Lyapunov functions to show the system converges. We note

that embedded graph grammars provide an appropriate level

of abstraction in that the algorithm presented here involves

explicit cooperation among groups of three agents, and so

would be cumbersome to express as a message passing

protocol between individual agents.

II. PREVIOUS WORK

The formation control problem where the objective is to

drive the formation error to zero is a central one in multi-

JM McNew (jmmcnew@ee.washington) is a graduate student in Electrical
Engineering at the University of Washington.

Eric Klavins (klavins@ee.washington.edu) is an Assistant Professor in
Electrical Engineering at the University of Washington, Seattle, WA, 98195.

agent control [1]. The relationship between graph structure

and convergence is explored in [2] and [3] shows that for-

mation control can be reformulated as a consensus problem.

Solutions for formation control under communication and

sensing constraints are proposed for centralized systems

in [4] and decentralized system in [5].

Most of these results apply to formation control problems

where the assignment of an agent to fulfill a role in the

formation is known a priori. In this paper, we consider

the dynamic assignment of roles in a network where the

initial topology is unknown and where network connectivity

limits allowable motion. The optimal assignment of agents

to formation targets is examined in [6], where the prob-

lem is discretized over weighted graphs but communication

constraints are not considered. The work in [7] frames

the problem as an optimal control problem over target

rotations, target translations and target permutations. Both

papers require global information and the second suggests

sub-optimal methods due to the intractability of the problem.

Additionally [7], requires first the agents be driven to a

stage where the communication graph is fully connected. Our

paper presents a decentralized algorithm for restructuring

the network which does not require the agents begin in any

particular network structure.

In [8], a set of local interactions (a graph grammar) is syn-

thesized to solve the self-assembly problem where isomor-

phic copies of a desired graph are assembled from an initially

disconnected graph. Embedded graph grammars(EGGs) [9],

[10] augment the graph grammar formalism by including

local geometric pre-conditions on switching and continuous

controllers to form an suitable for modeling cooperative con-

trol scenarios undergoing asynchronous communications. In

this paper we present a control and communication protocol

to drive a set of agents from an unknown tree formation to

a desired one while maintaining connectivity in the graph

using only local communication and control. Additionally,

we simplify the notation for EGGs, building upon among

others, the notation for I/O Automata [11].

III. FRAMEWORK

A. Labeled Graphs

A labeled graph is a tuple G = (V,E, l, e) consisting

of a set V of vertices, E of edges, a function l assigning

information l(i) to each vertex i ∈ V , and a function

e assigning information e(ij) to each edge ij ∈ E. In

this paper, a considerable quantity of information may be

associated with each vertex or edge, and thus we use dot

notation, common in data structures, to keep track of it.

For example, if a vertex i has a field called mode having

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

WeBI01.9

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 690

a value a, then we write i.mode = a. Similarly, if the edge

ij has a field called offset taking values in R
2, then we write,

for example, ij.offset = (1.1, 3.0). In summary, we use dot

notation instead of a more cumbersome notation involving

l(i) or e(ij). If A ⊆ V , we write G[A] to be the subgraph

of G induced by the vertices in A. We use T (for “tree”) to

represent a connected acyclic labeled graph. And we denote

by NG(i) the neighbors of i in graph G.

The following definition allows comparison between

graphs possessing different vertex sets and possibly different

vertex and edge label fields.

Definition 3.1: Suppose G and H are two graphs and Q is a

set of vertex and edge label fields. We define an equivalence

relation
Q
∼, where G

Q
∼H if

1) If there exists a bijective function h : VG →
VH called a domain witness and for each ver-

tex (respectively edge) field q a bijective mapping

νq : Range(lq) → Range(l′q) (respectively νq :
Range(eq) → Range(e′q) called range witnesses and

2) For every q ∈ Q, if q is a vertex field, for every i ∈ VG,

i.q = ν−1
q (h(i)H .q). Otherwise for every ij ∈ EG,

ij.q = ν−1
q (h(i)h(j)H .q).

Then we say G is structurally equivalent to H over the fields

in Q via the witnesses {h, {nuq}Q}. If a range witness νq
is not provided, it is assumed to be identity.

B. Robotic Networks and Communication

Consider a system of N kinematic agents, where each

agent i has a continuous state xi(t) ∈ R
2. We denote the

continuous state of the entire system by x(t) ∈ R
2N = X .

An embedded graph is the pair (x, G). We use embedded

graphs to model the state of a robotic network as follows.

The vertices of G represent the id’s of the N agents. A vertex

label, l(i), abstracts the current software states, hardware

configuration and operational mode of agent i. An edge label

e(ij) represents information required by pairs of cooperating

robots (for instance inter-robot spacing constraints) and can

only be altered by mutual agreement.

We capture the notion of communication constraints using

a proximity function ψ : X × G → G. When its dependence

on (x, G) is clear we write Gψ to mean ψ(x, G) and call

this graph the communication graph. For example, if robots

can communicate when they are less than 10 meters apart

and H = ψ(x, G), then VH = VG and ij ∈ EH if and only

if ||xi−xj || < 10. Typically we require EG ⊆ EH , meaning

that pairs of robots sending information can actually receive

it.

A formation graph F is an undirected edge labeled graph

containing a field ij.offset ∈ R
2 and a field ij.head ∈ VF

where we require that ij.head takes values in {i, j}. We

interpret these two fields as a constraint. For instance, if

(x, F) is an embedded graph and ij ∈ EF such that

ij.head = j, the constraint is satisfied when xi − xj +
ij.offset = 0, that is when j is offset from i by ij.offset .

If the constraint is satisfied for every edge in EF , we say

that x is consistent with F . Associating directionality with

a label in an undirected graph guarantees the graphs never

have edges ij and ji with contradictory offset fields.

A continuous controller u for a robotic network is a

mapping from X × G → TX (the tangent space). A

decentralized controller u is considered well defined with

respect to the communication constraints if agent i ∈ V

can calculate its control from the subgraph induced by its

neighbors in the graph G ∩Gψ [9].

IV. EMBEDDED GRAPH GRAMMARS

In this paper, the state of a system is represented by an

embedded graph (x, G). The graph G, the discrete part of

the state (x, G), can be operated on by rules that update G.

A rule is expressed syntactically by

Rule r

Vertices : i1, ..., ik
Precondition:

P1 1

...

Pm m

Effect:

var1 := value1 m+1

...

varn := valuen m+n

symbols i1, ..., ik are free variables that can be

instantiated by vertices in G. The preconditions

P1, ..., Pm denote propositions about vertex labels,

edge labels, vertex embedding (continuous state), or graph

topology and use i1, ..., ik as free variables. The effects

var1 := value1, ..., varn := valuen are updates, using

i1, ..., ik as free variables, of vertex or edge fields, or they

are updates to the graph topology. Examples of rules can

be found in Section VI, where the tree transformation

algorithm is described.

A rule r defines a relation
r
−→ where

(x, G)
r
−→ (x, G′)

if (1) there exist vertices j1, ..., jk ∈ VG such that P1, ..., Pl
evaluate to true in G when the free variables i1, ..., ik are in-

stantiated with j1, ..., jk respectively; (2) G′ is obtained from

G by applying the updates var1 := value1, ..., varm :=
valuem instantiated the same way; and (3) all information

and structure in G not mentioned in the updates is preserved

in G′. Note that, in this paper, x does not change upon

the application of a rule. A function h that maps each free

variable ik to a vertex jk ∈ VG is called a witness and

describes where the rule is applied.

A set Φ = {r1, ..., rn} is referred to as a graph grammar.

If a (local) controller u : X × G → TX is also supplied,

then (Φ, u) is referred to as an embedded graph grammar.

A system is a tuple ((x0, G0),Φ, u, ψ) where

1) The pair (x0, G0) ∈ X is the initial state is a set of

allowable initial graphs

2) Φ is a graph grammar

3) u is a controller

4) ψ is a proximity function.

691

Systems produce trajectories in the usual hybrid fashion:

(1) the continuous state evolves according to ẋ = u(x, G);
(2) the discrete part G of (x, G) can (but not must) change

to G′ if there exists a rule r ∈ Φ with G
r
−→ G′; (3) no rule in

Φ can be infinitely often applicable without eventually being

applied (i.e. fair trajectories); (4) all vertices instantiating the

application of a rule r must be able to communicate in Gψ.

We denote the set of trajectories of a system as σ ∈
T (x0, G0,Φ, u, ψ) where for each trajectory σ we denote by

xσ(tk) and Gσ(tk) denote the continuous and graph states

at time tk. We omit the subscript σ when clear.

V. PROBLEM STATEMENT

The tree reconfiguration problem can be expressed for-

mally in the embedded graph grammar model as follows.

Suppose Tdes is a desired formation tree where the offset

contains the desired formation offsets. Suppose F is the set

of fields offset , head . The main goal is:

Task 5.1: Design Φ and u so that every trajectory of

(Φ, u, ψ) converges to some (xf , Tf) where Tf
F
∼Tdes under

a witness {h, νhead = h}, and xf is consistent with Tf .

Our approach in Section VI is to temporarily abstract away

the continuous state x and the proximity function ψ, and

consider the following task.

Task 5.2: Given a desired formation tree Tdes and any initial

tree T0, design a graph grammar Φ such that for every non-

deterministic trajectory: 1) every graph in every trajectory is

a tree, and 2) every trajectory has a final graph Tf , where

Tf
F
∼Tdes.
In Section VIII, we consider the continuous state and

communication constraints. First we lift the solution Φ to

Task 5.2 to an embedded graph grammar Φ̃ by adding the

appropriate preconditions on geometry and connectivity in

the communication graph Gψ. We then show what conditions

ψ, u, and (x0, T0) must satisfy in order for the system

((x0, T0),Φ
′, u, ψ) to achieve Task 5.1. This method allows

us to build a single grammar that converges for a class of

systems with different communication constraints.

Finally we show the effectiveness of decoupling of the

asynchronous tree grammar from the continuous controller

by proposing a ψ and u that satisfy these sufficient condi-

tions. In Section IX simulation results for this specific choice

of system are shown.

VI. A GRAPH GRAMMAR FOR UNIVERSAL

TREE-TO-TREE CONVERSION

The goal in this section is to solve Task 5.2. The following

simple lemma provides constraints on the type of rules we

can use.

Lemma 6.1: The set of all connected acyclic labeled graphs

of size N is closed under the application of rules of the form

j

k
JJ

i

 ⇀

j

ki

.

Proof: Suppose T is any tree. The graph T −{ij, jk, ik} is

a forest containing 3 trees Ti, Tj and Tk. The transformation

Field Description

ij.offset The field ij.offset ∈ R
2 is the desired offset of j from i.

ij.head The field ij.head ∈ {i, j} establishes an order on the
edge that is useful for formation control.

ij.order The function ij.order : {i, j} → {1, 2, ..., N}. In

particular, ij.order(i) = |T j
i | and ij.order(j) = |T i

j |

i.tree The field i.tree is either undefined (⊥) or it contains some
tree Td ∈ Tdes describing the desired topology.

i.role The field i.role takes values in Vi.tree or it is undefined,
(denoted ⊥). If i.role = v, the interpretation is that i
assumes the role of v in i.tree.

i.mode The labels i.mode ∈ {t, m, a} are used by the solution
grammar as follows. The label i.mode = t indicates i
should reconfigure its neighborhood to one structurally
equivalent to the vertex identity in i.role. The label m
implies that vertex i should merge two of its subtrees.
The label a is the initialization label.

TABLE I

LABEL FIELDS FOR THE SOLUTION GRAMMAR Φ.

above preserves the property that there is exactly one path

between i, j, and k and hence between Ti,Tj , and Tk.

We begin by reviewing results and terminology from

previous work [9]. Suppose T is any tree and ij is any

edge in ET . If we remove the edge ij, two trees remain,

one containing vertex j but not vertex i (denoted T ij) and

the other containing i but not j (denoted T
j
i). In [9], we

developed a graph grammar that given any connected graph

G, marks G with a spanning tree T and labels each edge

ij with |T ij | and |T ji |. Here, we build on that approach and

assume an edge field ij.order contains these values.

Our algorithm involves two sets of trees. The first set

of trees T ∈ Tagent models the agents, their connectivity,

and operational mode. The set Tagent is formally defined

in Definition 7.3 and Table I defines the vertex and edge

fields and the type of information they contain. The second

set of trees Td ∈ Tdes (formally defined in Definition 7.2)

corresponds to copies of the desired tree structure. Trees of

the type Tdes appear in the i.tree field. Define the set of

fields Q = {offset , head , order}. The algorithm uses local

information and edge deletions and additions to reconfigure

the agent tree so it is structurally equivalent to the trees in

Tdes over the fields in Q and hence satisfies Task 5.2. To

avoid confusion, if T ∈ Tagent is an agent tree, we denote

vertices corresponding to agents by {i, j, k...} ∈ VT . On the

other hand, we denote vertices in trees in Tdes by the set

{r, v, w, x, ...}, where r denotes the root vertex.

Initialization: We define the set of initial trees T0 ⊂ Tagent,

where each T0 ∈ T0, has only one vertex labeled mode = t,

role = r, and tree = T 0
d where T 0

d ∈ Tdes indicates vertex

r is labeled r.mode = t and all other vertices z ∈ T 0
d are

labeled z.mode = a. For each T0 ∈ T0 all other vertices are

labeled mode = a, role = ⊥, tree = ⊥. Figure 1 panel (a)

shows an initial graph.

Description: The algorithm is straightforward. The initial

graph contains one vertex (say i) that knows the desired tree

(contained in the field i.tree) and knows its role in forming

the desired tree is as node v (indicated by the field i.role = r.

Node i has access to the number of vertices contained in each

692

Rule r1 (Pass a Role)

Vertices : i, j
Precondition:

i.mode = t ∧ j.mode = a 1
Denote i.role by v. ∃w ∈ Ni.tree(v) such that
(w.mode = a ∧ vw.order(w) = ij.order(j))

2

G[{i, j}] = i − j 3
Effect:

w.mode := t, j.tree := i.tree 4
j.mode := t, j.role := w 5
ij.offset := vw.offset, ij.head := j 6

Rule r2 (Split Branch)

Vertices : i, j, k
Precondition:

i.mode = t ∧ j.mode = a ∧ k.mode = a 1
ij.order(j) > bi 2
jk.order(k) ≥ bi ∨ ij.order(j) − jk.order(k) ≥ bi 3

j

k
JJ

i

G[{i, j, k}] =

4
Effect:

j

ki

G[{i, j, k}] :=

5

Rule r3 (Merge Branches)

Vertices : i, j, k
Precondition:

i.mode = t ∧ j.mode = a ∧ k.mode = a 1
ij.order(j) < bi ∧ ik.order(k) < bi 2

j

ki

G[{i, j, k}] =

3
Effect:

j

k
JJ

i

G[{i, j, k}] :=

4

Rule r4 (Request Merge)

Vertices : i, j, k
Precondition:

i.mode = t ∧ j.mode = a ∧ k.mode = a 1
ij.order(j) > bi 2
jk.order(k) < bi ∧ ij.order(j) − jk.order(k) < bi 3

j

k
JJ

i

G[{i, j, k}] =

4
Effect:

i.mode := m 5

Rule r5 (Merge Ahead)

Vertices : i, j, k
Precondition:

i.mode = m ∧ j.mode = a ∧ k.mode = a 1

j

ki

G[{i, j, k}] =

2
Effect:

j

k
JJ

i

G[{i, j, k}] :=

3
i.mode := a 4

TABLE II

RULES IN THE TREE RECONFIGURATION GRAMMAR Φ.

of its subtrees, information stored in the order edge field.

The node uses operations allowed by Lemma 6.1 splitting

and merging branches until a branch beginning with edge

(say ij) contains the same number vertices as one (say rw)

in the desired tree (that is ij.order(j) = rw.order(w). If

this is the case, ij update there edge so it is structurally

equivalent to rw over the order , offset , and head fields, and

then vertex j assumes the role w. Now vertex j can begin

rebalancing its branches. Groups of two or three agents may

employ asynchronous communications to apply the rules of

Φ and execute the following basic operations.

Detailed Grammar:The non-deterministic tree reconfigu-

ration grammar Φ implementing the interactions above is

shown in Table II. Suppose i is any vertex in an agent tree,

v and w are any vertices in i.tree and i.role = v, then bi
denotes the largest branch in N(v) remaining to be matched.

That is

bi = max
vw∈Ei.tree | w.mode=a

vw.order(w).

The actions of each rule in Φ are briefly described.

Pass a role– Rule r1 establishes structural equivalence

between branches in the agent tree and branches in the ideal

tree and is applied to the tree in Figure 1, Panel (a) via the

witness h , {i 7→ i, j 7→ k}. That is we apply rule r1 by

replacing j with k and i with i. The tree representing the

agents is seen above the dashed line. Clearly the tree satisfies

the pre-condition i.mode = t and k.mode = a. The value of

i.tree is pictured below the dashed line. In the rule the vertex

w is a variable. Since ik.order(k) = 1, we can satisfy the

precondition in line 3 of rule r1 by associating variable w

in the rule with vertices v, w,x in i.tree. Vertex x is chosen

non-deterministically and the “Effect” of rule r1 is applied

resulting in Figure 1, Panel (b). That is x.mode is given

the value t in i.tree. Then k.mode is set to t, k.role is set

to x, ik.offset is set to the value of rx.offset and ik.head

becomes k. Now the edge ik is equivalent to the edge rx

in the desired formation and agent k knows its “role” in

reconfiguring the topology is that of vertex x.

Split a branch– Suppose a branch beginning with edge

i − j with mode labels t − a contains too many vertices

to match any of the unmatched branches of i.role ∈ i.tree

(line 3 of the pre-condition of rule r2). Suppose additionally,

splitting the branch beginning with i− j−k via r2 results in

one of the two branches containing at least as many vertices

as bi (line 4 of the pre-condition). This implies rule r2 is

applicable. Rule r2 is applied to the tree in Figure 1 panel

(b) via h , {i 7→ i, j 7→ l, k 7→ j} to yield the tree in

panel(c).

Merge two branches– If i is labeled i.mode = t and

there are two branches beginning with edges ik, ij where

ij.orderj < bi and ik.orderk < bi. Then applying rule

r3 merges these branches into a larger branch (as shown

in Figure 2(f)-2(g)). Alternatively when a branch i − j − k

with mode labels t− a− a and ij.order(j) > bi cannot be

split because the resulting branches would both be smaller

than bi, rules r4 and r5 are applied to merge subtrees of j

693

order(j)=1

order(l)= 2

order(k)=1

k

t,r,T
d

0i

l

a,^,^j

traw

av

ax

t,x,T
d

1k

t,r,T
d

1i

l

j

traw

av

tx

t,x,T
d
1k

t,r,T
d
1i

l

j

traw

av

tx

t,x,T
d

1k

t,r,T
d
1i

t, v, T
d
2 l

j

traw

tv

tx

T
0

T
1

T
2

T
3

i.tree(0) = T
d

0 i.tree(1) = T
d

1 i.tree(2) = T
d

1 i.tree = T
d

2

r
1

r
2 r

1

(a) (b) (c) (d)

order(2)= 1

order(4)=1

order(3)=1

mode, role, treevertex

a,^,^

a,^,^
a,^,^

a,^,^

a,^,^

a,^,^

a,^,^

...

modevertex

order(2)= 1

order(4)=1

order(3)=1

order(2)= 1

order(4)=1

order(3)=1

order(2)= 1

order(4)=1

order(3)=1

order(j)=1

order(l)= 2

order(k)=1

order(j)=1

order(l)= 1

order(k)=1

order(j)=1

order(l)= 1

order(k)=1

Fig. 1. A partial trajectory the sequence of graphs Tk representing the agents is shown above the dashed line. The value of the field i.tree at time k is
shown below the dashed line. The green edges and vertices indicate the growing isomorphism between Tk and i.tree(k). For every edge ij, the relevant
values of ij.order(j) are shown. Panel (a) shows the initial graph where agent i is labeled with i.role = r. Since ij.order(j) = 1 and rx.order(x) = 1,
rule r1 is applied via the witness i 7→ i, j 7→ k and vertex w in rule r1 is associated with vertex x. The resulting tree T1 appears in panel (b). In panel
(b), the largest unmatched branch order bi = 3. Since il.order(l) > bi, rule r2 is applied yielding T2 in panel (c). No update of i.tree occurs. Finally
rule r1 is applied to il. Note in panel (d), l.tree 6= k.tree but the structural equivalence witnessed by i.role, l.role, k.role is consistent.

(as shown in Figure 2(a) - 2(c)).

VII. PROOF OF CORRECTNESS

Theorem 7.1: Let Tdes be any desired formation tree and

T0 ∈ T0 an initial tree such that |Tdes| = |T0|. Then every

reachable graph of the system of the system (T0,Φ) is a tree

and every trajectory has a final graph Tf such that Tf
F
∼Tdes.

A. Method of Proof

In graph grammars the order in which actions are applied

is non-deterministic. The resulting state spaces are large

and directly exploring them using a method such as model

checking is daunting [12]. In [9] we introduced the notion

of a lexicographically ordered discrete Lyapunov function as

a method for proving that systems converge to a desired set

of graphs. We briefly describe the method here.

Definition 7.1: Suppose Φ is a set of rules and A ⊂ G is

closed under applications of rules in Φ. Let � be an ordering

on R
k with an unique zero element. A function U : A→ R

k

is a discrete Lyapunov function for the graph grammar Φ if

for all G ∈ A,

i U(G) ≻ 0 implies at least one rule is applicable.

ii U(G) = 0 implies no rule is applicable.

iii When U(G) ≻ 0, every applicable rule r decreases

U.

Theorem 7.2 (from [9]): Suppose (G0,Φ) is a system, P

is a set of desired final graphs, A is set of graphs invariant

to the application of rules in Φ and U is a discrete Lyapunov

function such that A ∩U
−1(0) ⊆ P . If G0 ∈ A, then every

trajectory converges to a final graph in P .

We use the lexicographic ordering (Rn,�) defined by

(a1, a2, ..., an) ≺ (b1, b2, ..., bn)

if a1 < b1 or there exists an k such that ai = bi for all i ≤ k

and ak+1 < bk+1. Additionally if any rule r is applied to

any tree T , we denote by T ′ and field′ the new tree and the

value of field in the new tree.

B. Invariant Set

The notation V t(T) represents the set {i ∈ VT | i.mode =
t}. We next define the set of values that can appear in the

field i.tree.

Definition 7.2: Define Td ∈ Tdes by: (1) Td
Q
∼Tdes under the

identity mapping; (2) the label field v.mode ∈ {t, a}; and

(3) Td[V t(Td)] is a directed tree rooted at vertex 1.

We denote by T 0
d ∈ Tdes the unique tree where only vertex

1 is labeled by l(1).mode = t. We denote by T ∗
d ∈ Tdes the

unique tree where every vertex v is labeled v.mode = t.

Definition 7.3: Define a set of trees Tagent having the fields

in Table I, such that if T ∈ Tagent it satisfies the following

labeling constraints.

i. There exists B ⊂ VT∗
d

such that T [V t]
Q
∼T ∗

d [B] via the

witness η.

ii. If i ∈ V t, T [V t∩N(i)]
Q
∼i.tree[N(i.role)∩V t(i.tree)]

where for each i ∈ V t, the witness is i 7→ i.role.

iii. If i ∈ V t, then i.role ∈ VT∗
d

and i.tree ∈ Tdes.

iv. If j.mode = m, N(j) contains exactly one vertex i

such that i ∈ V t.

v. If i.mode = m, then r5 is applicable to i.

We next show that Tagent is an invariant set.

Lemma 7.1: If T is a connected acyclic graph, the applica-

tion of any action in Φ results in a connected acyclic graph.

Proof: An inspection of the preconditions and effects of

the reconfiguration rules in Table II shows they satisfy

Lemma 6.1.

Lemma 7.2: If T ∈ Tagent, then after the application of any

rule, conditions (i), (ii) and (iii) of Definition 7.3 are true.

Proof: We need only consider applications of rule r1, be-

cause it is the only rule to alter V t. Suppose r1 is applicable

to some T ∈ Tagent where the vertices y and z instantiate the

vertices i and j in r1. Condition (i) requires T [V t(T)] ≃
T ∗
d [B] via witness η for some B and condition (ii) guarantees

that for all i ∈ V t, T [V t ∩ N(i)]
Q
∼i.tree[N(i.role) ∩

V t(i.tree)]. Since line 3 requires w.mode = a, B clearly

does not contain w. Since the effect in line 4 is w.mode := t,

694

it follows that T ′[V t(T)∪z] ≃ T ∗
d [B∪w]. Additionally since

this rewrite is recorded in the new value of z.tree it follows

that T [V t ∩N(y)] ≃ y.tree[N(y.role) ∩ V t]. Furthermore,

since w ∈ N(v), condition (iii) holds.

Lemma 7.3: If T ∈ Tagent, then after applying any rule in

Φ, conditions (iv) and (v) of Definition 7.3 hold.

Proof: Suppose T ∈ Tagent, ij ∈ E, i ∈ V t(T) and

j.mode = m. Since no rule change a mode label of t,

V t(T) ⊆ V(T ′). This implies vertex j is connected to at

least one vertex labeled mode = t. Now suppose vertices y

and z instantiate vertices i and j in rule r4. The precondition

of rule r4 requires z be connected to a vertex y with

y.mode = t and the effect is to change y.mode to m,

thus y will be connected to at least one vertex labeled

mode = t. Furthermore any vertex j with j.mode = m

can be connected to at most one vertex with mode = t

since condition (ii) and Definition 7.2 imply that T [V t] is

connected. Thus condition (iv) of Definition 7.3 is true. Since

the precondition of rule r4 line 3 implies the existence of two

branches jk, jl, condition (v) is met.

Proposition 7.1: The set Tagent is invariant.

Proof: The proposition follows from Lem-

mas 7.1, 7.2, and 7.3

C. Discrete Lyapunov Function

The following sets are useful in constructing a discrete

Lyapunov function satisfying Definition 7.1.

Symbol Description

Eta = {ij ∈ E | i.mode = t ∧ j.mode = a}. If rule r1 can be
applied, members of this set must be involved.

E>bi
= {ij ∈ Eta | j.mode = a ⇒ ij.order(j) > bi}. If rule r2

or r4 can be applied, a member of this set must be involved.

Et¬ta = {i − j − k ∈ T | i.mode = t ∧ j.mode 6= t ∧ k.mode =
a∧ i− j ∈ gbi}. This is the number of size three branches
beginning with a vertex labeled mode = t. If rules r2, r4,
and r5 can be applied, members of this set must be involved.

E≥bi
= {ij ∈ Eta | j.mode = a ⇒ ij.order(j) ≥ bi}.

E<bi
{ij ∈ Eta | j.mode = a ⇒ ij.order(j) < bi}. If rule r3

can be applied, it must be applied to two members of this
set.

Etma = {i − j − k ∈ ENo Split | j.mode = m}.

TABLE III

SETS USED IN THE DISCRETE LYAPUNOV FUNCTION, U

Define a function U : G → R
6 as follows

• U1(T) = |T |− |V t|. This is the number of vertices that

have yet to be matched to the target graph.

• U2(T) = (U1)(N − 1 − |E≥bi |). The number of edges

that can be used in an application of r2.

• U3(T) = 1
|E>bi |

∑
E>bi

ij.order(j) − bi. The average

distance from bi by the branches that are too large.

• U4(T) =
∑

E<bi
bi− ij.order(j), the summed distance

of all sites to which r3 applies.

• U5(T) = |Et¬ta|.
• U6(T) = |Et¬ta| − |Etma|

We now show that this function meets the requirements of a

discrete Lyapunov function for our system.

Lemma 7.4: For every T ∈ Tagent, if U ≻ 0, then some

action is applicable to T .

Proof: Assume to the contrary that U ≻ 0 but no rule is

applicable. By condition (v) of Definition 7.3, Etma 6= ∅

implies rule r5 is applicable. Assume Etma is empty, but

U5 > 0. Since any element of Et¬ta − Etma satisfies either

the precondition of rule r5 or of rule r2, it must be that

U5 = 0 and U6 = 0. But this implies that U3 is zero. Since

line 4 of rule r4 is not satisfied, line 4 of rule r2 is satisfied.

Now assume U3, U5, and U6 are zero, but U4 > 0 and

i.mode = t. If r3 is not applicable, then there can be

at most one vertex j with ij ∈ Eta and ij.order(j) <

bi. Furthermore, if i is the head of k then |T ik| − 1 =∑
ij∈E,j 6=k ij.order(j). It follows that U4 > 0 implies E>bi

is non-empty which contradicts our assumption that U3 = 0.

Thus Uk = 0 for k ≥ 3 if no rule is applicable. However, we

have shown that the sets E<bi and E>bi are empty. Therefore

if U1 > 0, then rule r1 is applicable. Since U1 = 0 implies

Ui = 0 for all other i, U ≻ 0 implies an action is applicable.

Lemma 7.5: For every T ∈ Tagent, U = 0 implies no action

is applicable.

Proof: When U1 = 0, every vertex is labeled i.mode = t.

Since the precondition for every rule contains at least one

vertex not labeled mode = t, no rule is applicable.

Lemma 7.6: For every T ∈ Tagent, if U ≻ 0, then the

application of any action decreases U.

Proof: We must show that if T ∈ Tagent and r ∈ Φ,

then U(T) ≺ U(T ′). Table IV summarizes the information

proved below, indicating the relative change for each Ui
when each rule rj is applied. Here we prove this by explicitly

looking at an application of each rule.

r1) Rule r1 labels a vertex by mode = t, decreasing U1.

r2) Suppose ij.order(j) > bi is the order of the branch

before r2 splits the branch. There are two cases. In

the first case, when the branch i − j − k is split,

ij.order(j)′ ≥ bi and ik.order(k)′ ≥ bi, which

implies U ′
2 < U2. In the second case, U ′

2 = U2

because only one branch (say ij.order(j)′) is greater

than or equal to bi. Since ij.order(j)′ < ij.order(j),
U3 decreases and U1 is unchanged.

r3) Suppose ij and jk are merged as in rule r3 and

ij.order(j)′ = ij.order(j) + ik.order(k). Suppose

ij.order(j)′ < bi. Then bi − ij.order(j)′ = bi −
(ij.order(j)+ ik.order(k)) < bi− ij.order(j)+ bi−
|T ik|, implying U ′

4 < U4. Now suppose ij.order(j)′ >
bi, then |E≥bi |

′ = |E≥bi | + 1, and U ′
2 < U2.

r4) Applying r4 implies U ′
6 = |E′

No Split| − |E′
tma| =

|ENo Split| − (|Etma| + 1) < U6. This relabeling does

not alter Ui for i < 6.

r5) Applying r5 implies U ′
5 = |E′

No Split| = U5 − 1 since

the merge eliminates one branch. The operation does

not alter Ui for i < 5.

Proposition 7.2: U under the lexicographic ordering � is

a Lyapunov function for the grammar Φwith respect to the

invariant set Tagent.

695

U1 U2 U3 U4 U5 U6

r1 ↓ ↓ 0 0 0 0
r2 0 (0, ↓) (↓,?) ? ? ?
r3 0 (↓, 0) (?, 0) ↓ ? ?
r4 0 0 0 0 ↓ ↑
r5 0 0 0 0 0 ↓

TABLE IV

DIRECTION OF CHANGE IN U1, ..., U6 WHEN RULES IN Φ ARE APPLIED.

Proof: The proof follows directly from Definition 7.1 and

Lemmas 7.4, 7.5, and 7.6.

D. Proof of Theorem 7.1

For Tf ∈ Tagent, U = 0 implies every node is labeled by

i.mode = t. By condition (i) of Definition 7.3, Tf
Q
∼Tdes.

Proposition 7.1 establishes Tagent as the invariant set and

clearly T0 is in the invariant set. By Proposition 7.2, U is a

Lyapunov function, the proof of Theorem 7.1 then follows

from Theorem 7.2.

VIII. CONTINUOUS CONTROLLER SPECIFICATIONS

Section VI develops an abstract grammar Φ for reconfig-

uring formation trees. Since the goal is “formation”, here

we lift the abstract grammar Φ to Φ̃ by including the ap-

propriate geometric constraints. We then construct a system

((x0, T0), Φ̃, u, ψ) that converges to the desired formation.

Definition 8.1: For every rule in r ∈ Φ and for every edge

ij that appears in r, we construct r̃ ∈ Φ̃ by adding the

precondition ij ∈ EGψ .

Proposition 8.1: Suppose a controller u and a proximity

function ψ satisfy the following specifications

i Local Safety–For any (x0, T) such that T ∈ A ⊂ Tagent

and ET ⊆ ETψ , if ẋ = u(x, T) then for all t > 0,

ij ∈ ET ⊆ ETψ .

ii Local Progress–Suppose T ∈ A ⊂ Tagent, r ∈ Φ and h

maps L into T . If T is static and ẋ = u(x, T), then

there exists a tf such that for all t ≥ tf and all edges

ij in rule r, ij ∈ EGψ .

Then Gσ ∈ T (x0, T0, Φ̃, u, ψ) ⇔ Gσ ∈ T (T0,Φ).
Proof: Suppose there is a trajectory Gσ ∈
T ((x0, T0), Φ̃, u, ψ) that is not in T (T0,Φ). This implies

that Gσ has a final graph Tf , but in the system (T0,Φ)
there exists a rule r whose precondition is satisfied by

Tf . However, the local progress condition guarantees the

precondition of the embedded graph grammar rule r′

in Definition 8.1 is satisfied. Furthermore any sequence

of graphs can be generated simply by waiting until

the controllers satisfy the geometric precondition of

Definition 8.1.

Essentially, Φ̃ guarantees that when a rule is applied, if

the rule adds an edge ij the controller u is still well-defined

since ij ∈ Gψ . The local safety condition guarantees the

controller remains well-defined.

Proposition 8.2: Suppose u satisfies Proposition 8.1. Addi-

tionally suppose that for any T ∈ Tagent, T
F
∼T ∗

d and any x0

such that ET ⊆ Eψ(x0,T). If the limit of x(t) as t → ∞
under the dynamics ẋ = u(x, T) is some x

∗ where x
∗

is consistent with T , then, the limit as t → ∞ of every

trajectory σ of a system ((x0, T0), Φ̃, u, ψ), is some (x∗, T ∗)

where T ∗T∼des and x
∗ is consistent with T ∗.

The proposition implies that local progress and local safety

are sufficient conditions on the controllers until the tree is

structurally equivalent to Tdes.

Any number of proximity functions and controllers satisfy

the requirements of Theorem 8.2. Here we consider the disk

graph proximity function {ij ∈ ETψ ⇔ ||xi − xj || < ∆}
In [5], graph based controllers for connectedness preserving

formation control on the disk graph communication topology

were introduced. The controllers have the form

ẋi = −
∑

j∈N(i)

2(∆ − ||α||) − ||xi − xj − α||

(∆ − ||α|| − ||xi − xj − α||)2
(xi − xj − α)

(1)

where α ∈ R
2 such that ||α|| < ∆. The global hybrid

scheme introduced first sets the value of α on every edge to

drive the agents towards consensus. Once the robots sense the

global condition ψ(x, G) = KN , the variable α is given the

desired formation offset values. The scheme we propose here

uses the labeling changes propagated via the graph grammar

to switch the value of α locally.

α =

{
(0, 0)T if i.mode = t and j.mode = a

ij.offset otherwise.
(2)

Proposition 8.3: Suppose T0 ∈ Tagent, ψ is the disk graph,

u is defined by Equations 1 and 2, and x0 satisfies ij ∈
ET0

=⇒ ij ∈ EGψ . Then every trajectory σ of the

system ((x0, T0), Φ̃, u, ψ) converges to some (x∗, T ∗) where

T ∗F∼Tdes and x
∗ is consistent with T ∗.

Proof: In [5], they introduce an edge tension Vij =
||xi−xj−off ||

∆−||off ||−||xi−xj ||
and show that V =

∑
ij∈E Vij is a

Lyapunov function for the system. In particular they show

that

i Since Vij → ∞ as ||xi − xj || → ∆, if T is static if

ij ∈ ψ(x0, T) then ∀t > 0, ij ∈ ψ(x(t), T) otherwise

V must increase.

ii If the local safety condition is met at time t = 0,

then limt→∞ x(t) satisfies the formation constraint α

on every edge. The proof is by LaSalle’s invariance

principle.

Since α = (0, 0)T on edges ij where i.mode = t and

j.mode = a and since ||α|| is strictly less than ∆, there

exists a finite time tf satisfying the local progress condition

of Proposition 8.1.

IX. SIMULATION

Matlab simulations of the system (x0, T0,Φ
′, u, ψ) were

run on randomly generated initial trees and target trees,

Td. All simulations converged on the desired formation tree

under isomorphism.

696

t

a

aa

a

a

a

a

a

a

(a) Initial State. The
letters indicate the
value of the mode
label.

t
aa

a

a

a

a

a

a

m

(b) Rule r4 changes
the mode label of a
vertex to m.

...

t
aa

a

a

a

a

a

a

a

(c) Rule r5 merges two
branches of the vertex la-
beled m in the previous
snapshot.

t
aa

a

a

a

a

a

a

a

(d) Another merge
operation has
occurred via rule r4

and r5.

t aa

a

a

a

a

a

a

a

(e) Rule r2 splits a
branch.

t

t

aa

a

aa

a

a

a

(f) Rule r1 labels a
vertex mode = t.
Dashed edges occur
between vertices in
Vt.

t

t

a

aa

aa

a

a

a

(g) Rule r3 merges
two branches.

t

t

a

aa

a
a

a

a

a

(h) Another merge
via r3

...

t
t

t

a

a

a
a

a

a

a

(i) After one more
merge, rule r1

labels another vertex
mode = t.

t

t

t

t
tt

t

t

t

t

(j) The system con-
verges to the desired
tree and formation
shown here.

Fig. 2. A sample trajectory for a 10 vertex system.

Figure 2 shows a sample trajectory for a system containing

10 vertices. Each rule is applied at least once. Figure 3 shows

the values of U3 and U4 and a “normalized” value for U

under the lexicographic ordering.

X. FUTURE WORK

There are a number of obvious extensions to the simple

grammar presented here. For instance, the reconfiguration

algorithm we present requires a single initialization vertex,

where in general one might prefer any number of vertices to

begin the reconfiguration process. Another natural extension

is to add rules to the grammar to make it more robust to

the addition of deletion of vertices or edges. Furthermore,

there are reasonable proximity functions where the elemen-

tary moves of the reconfiguration algorithm must result in

disconnection in the communication graph. Whether or not

one may make a general grammar for these systems similar

to what was done here is not currently known.

XI. ACKNOWLEDGEMENT

Eric Klavins and John-Michael McNew are partially sup-

ported by the AFOSR via the 2006 MURI award Design,

Specification and Verification of Distributed Embedded Sys-

tems.

REFERENCES

[1] B. Young J. Lawton, R. Beard. A decentralized approach to formation
maneuvers. IEEE Trans. on Robotics and Automation, 2003.

[2] R. Olfati-Saber and R. Murray. Consensus problems in networks of
agents with switching topologies and time delays. IEEE Transactions

on Automatic Control, 2004.
[3] J. Alexander Fax and Richard Murray. Graph laplacians and stabiliza-

tion of vehicle formations. In 15th IFAC Congress, 2002.
[4] G. Pappas M. Zavlanos. Potential fields for maintaining connectivity

of mobile networks. IEEE Trans. on Robotics and Automation, 2007.

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

N
o
rm

a
li
z
e
d
 L

y
a
p
u
n
o
v
 V

a
lu

e
s

U3

U4

U

Fig. 3. Values of the discrete Lyapunov function components U3 and
U4 for the trajectory in Figure 2 and “normalized” values of U under the
lexicographic ordering. Note that U decreases with the application of every
rule. Also note that often when U4 increases, U3 decreases.

[5] M. Ji and M. Egestedt. Distributed formation control whil preserving
connectedness. In Conference on Decision and Control, 2006.

[6] M.E. Broucke. Disjoint path algorithms for planar reconfiguration of
identical vehicles. In American Control Conference, 2003.

[7] S. Azuma M. Ji and M. Egerstedt. Role-assignment in multi-agent
coordination. International Journal of Human-friendly Welfare Robotic

Systems, 2006.
[8] Eric Klavins, Robert Ghrist, and David Lipsky. A grammatical

approach to self-organizing robotic systems. IEEE Transactions on

Automatic Control, 2006.
[9] J. M. McNew and E. Klavins. Locally interacting hybrid sytems using

embedded graph grammars. In Proceedings of the Conference on

Decision and Control, 2006.
[10] J. McNew, E. Klavins, and M. Egerstedt. Solving coverage problems

using embedded graph grammars. Hybrid System:Computation and

Control, 2007.
[11] N. Lynch. Distributed Algorithms. 1996.
[12] John-Michael McNew and Eric Klavins. Model-checking and control

of self-assembly. In American Control Conference, 2006.

697

