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Abstract— This paper investigates the problems of robust
stability analysis and state feedback control design for discrete-
time linear systems with time-varying parameters. It is assumed
that the time-varying parameters lie inside a polytopic domain
and have known bounds on their rate of variation. By exploiting
geometric properties of the uncertainty domain, linear matrix
inequality conditions that take into account the bounds on
the rates of parameter variations are proposed. A feasible
solution provides a parameter-dependent Lyapunov function
assuring the robust stability of this class of systems. Extensions
to deal with robust control design as well as gain-scheduling
by state feedback are also provided in terms of linear matrix
inequalities. Numerical examples illustrate the results.

I. INTRODUCTION

The robust stability analysis and control design of un-

certain linear systems have deserved special attention in

the last years, mainly due to the development of numerical

tools based on parameter-dependent Lyapunov functions. For

instance, it is notorious the large number of methods devoted

to the problem of robust stability analysis that have recently

appeared in the literature [1–8].

Particularly in the context of uncertain linear systems with

time-varying parameters, the use of parameter-dependent

Lyapunov functions that consider finite bounds on the rates

of the parameter variations provided less conservative results

than the methods (e.g. quadratic stability approach) assuming

arbitrary parameter variation. For continuous-time systems

with bounds on the time-derivatives of the parameters, it is

worth of mentioning the results in [9–13].

Concerning discrete-time systems, most of the existing

results consider that the uncertain parameters can vary ar-

bitrarily inside the uncertainty domain. In this special case,

quadratic Lyapunov functions with a parameter-independent

(constant) matrix can provide sufficient conditions for robust

stability and state feedback control [14, 15]. In [16], a set

of linear matrix inequality (LMI) conditions that provide

an affine parameter-dependent Lyapunov function assuring

the robust stability of a discrete-time system with arbitrary

parameter variation inside a polytope has been proposed. The

results are only sufficient, but contain the conditions based on

quadratic stability as a particular case and can provide less

conservative robust stability evaluations. Moreover, an ex-

tension to cope with control design has also been presented.

More recently, it has been shown in [17, 18] that the asymp-

totic stability of discrete-time systems with arbitrary time-
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varying parameters can be characterized by an increasing

union of LMI conditions, based on path-dependent Lyapunov

functions, encompassing both the quadratic stability based

conditions and the LMIs given in [16].

On the other hand, when the time-varying parameters

have bounds on their rate of variation, the literature presents

few results. As remarked in [19], this situation occurs quite

frequently in real world applications [20]. In [21], the

case of affine parameter-dependent systems with one single

parameter is considered. Sufficient conditions are given by

dividing the interval where the parameter lies accordingly

to the variation rates. This technique has been extended to

the case of multi-affine parameter-dependence in [19], where

a gain-scheduling state feedback controller that assures a

prescribed L2 performance for the closed-loop system is

also provided. It is also worth of mentioning the robust filter

design LMI conditions given in [22] for affine parameter-

dependent systems with bounded rates of variation.

This paper investigates the robust stability of discrete-time

linear systems with time-varying parameters lying inside

a polytope and having bounded rates of variation. LMI

conditions that take into account the bounds on the rates

of parameter variations and exploit the geometry of the un-

certainty domain are given, providing a parameter-dependent

Lyapunov function to assess the robust stability of the time-

varying system. By means of numerical experiments, it is

shown that the use of recent results concerning polynomial

matrices with parameters in the simplex [8, 23] to solve the

proposed conditions can effectively improve the robust sta-

bility evaluations for this class of systems. Design conditions

for robust and gain-scheduling state feedback control are also

given and illustrated by examples.

II. PRELIMINARIES

Consider the time-varying discrete-time linear system de-

scribed by

x(k +1) = A(α(k))x(k) (1)

where x ∈ IRn is the state vector, A(α(k)) ∈ IRn×n is the

dynamic matrix given in the form

A(α(k)) =
N

∑
i=1

αi(k)Ai

and α(k) ∈ [α1(k) · · ·αN(k)]′ is the vector of time-varying

parameters lying in the unit simplex ΛN for all 0 ≤ k ∈ N,

where

ΛN =
{

α ∈ IRN :
N

∑
i=1

αi = 1, αi ≥ 0, i = 1, . . . ,N
}

. (2)
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For stability analysis purposes, the time-varying vector of

parameters is supposed to be uncertain.

The rate of variation of the parameters is given by

∆αi(k) = αi(k +1)−αi(k), i = 1, . . . ,N (3)

An immediate consequence from (2) and (3) is that

N

∑
i=1

∆αi(k) = 0 (4)

Moreover, it is assumed that ∆αi(k) is bounded and satisfying

the following condition

−b ≤ ∆αi(k) ≤ b, b ∈ IR, b ∈ [0,1]. (5)

The case b = 0 in (5) (i.e. frozen parameters) corresponds

to the classical robust stability analysis problem of time-

invariant uncertain discrete-time linear systems in polytopic

domains (also known as polytopic systems), for which con-

vergent LMI relaxations based on the existence of homoge-

neous polynomial solutions [23] are available in the literature

[6, 8].

On the other hand, the case b = 1, where the parameters are

allowed to vary arbitrarily inside ΛN from the instant k to the

instant k+1, has been handled by affine parameter-dependent

Lyapunov functions in [16], yielding less conservative results

than quadratic stability [14]. A more general result has been

given in [18], encompassing both the quadratic stability and

the results from [16] and also presenting convergent LMI

relaxations to assess robust stability of time-varying discrete-

time systems, a class which include switched systems. To

the best of authors’ knowledge, the situation 0 < b < 1 was

not investigated in the literature for polytopic systems and is

the main concern of the present paper. As a matter of fact,

many discrete-time systems with time-varying parameters

have known bounds on their variation, as discussed for

instance in [19, 22], which investigate robust stability and

control/filtering design methods for affine or multi-affine

linear systems with uncertain parameters with bounded rates

of variation.

Next section discusses some geometric aspects concerning

the constraints (5) and proposes a convex model to represent

the vector ∆α(k) = [∆α1(k) · · · ∆αN(k)]′ taking into account

that α ∈ ΛN for all k ∈ N.

A. Parameter variation modeling

Following some of the lines that have been used in the

continuous-time case [11, 12], i.e. to model the space where

the bounds on time-derivatives can lie, the vector ∆α(k) can

be assumed to belong, for all k ≥ 0, to the compact set

Γb =
{

δ ∈ IRN : δ = co{h1 · · ·hM},
N

∑
i=1

h
j
i = 0, j = 1, . . . ,M

}

(6)

defined as the convex combination of vectors h j, j =
1, . . . ,M, given a priori. Since ∆α(k) ∈ Γb (and α(k) ∈ ΛN)

for all k ≥ 0, from this point on the explicit dependence

on k will be omitted whenever no confusion arises. Notice

that this definition of Γb ensures (4) for all k ≥ 0 and that

0 ∈ IRN belongs to Γb. The vectors h j ∈ Γb, j = 1, . . . ,M can

be constructed in a systematic way from a given b. Basically,

the procedure searches recursively for all possible solutions

of (4) using the extreme points of the constraints given in

(5) for i = 1, . . . ,N.

At this point, the procedure used here would be similar

to the one used in the continuous-time case [11, 12], except

that the value of b is limited to 1 for the discrete-time case.

However, this representation introduces conservativeness by

considering that the bounds ∆αi are independent of αi.

Actually, the values of ∆αi are highly dependent of αi,

as illustrated in Figure 1. By considering (5), the whole

gray region would be taken into account (thus producing

conservative results), while in fact only the dashed region

represents feasible values of (∆αi,αi).

αi

∆αi

b

−b

1

Fig. 1. Region on the plane ∆αi ×αi where ∆αi can assume values as a
function of αi (dashed region).The gray region is unreachable since α ∈ΛN .

To consider only the valid region (dashed), ∆αi must be

bounded by

−bαi ≤ ∆αi ≤ b(1−αi), i = 1, . . . ,N. (7)

In this case, the algorithm used to solve (4) under (5) can be

easily adapted to cope also with (7), producing the set Γbα

with columns h j, j = 1, . . . ,M which now depend on both b

and α .

Actually, the columns h j of the set Γbα are given by

[

h1 h2 · · · hM
]

= b











1−α1 −α1 −α1 · · ·
−α2 1−α2 −α2 · · ·

...
...

. . . · · ·
−αN −αN −αN 1−αN











(8)

Taking the convex hull of the M columns of matrix Γbα , one

has for each ∆αi the following expression

∆α j = b
(

β j −α j(β1 + · · ·+βM)
)

= b
(

β j −α j

)

(9)

since (β1 + · · ·+βM) = 1 (i.e. β belongs to ΛM) and M = N.

Next section proposes LMI conditions based on parameter-

dependent Lyapunov functions to investigate the robust sta-

bility of system (1), i.e. if x(k) = 0 is a (global) uniformly

asymptotically stable equilibrium point of system (1) for all

α ∈ ΛN and ∆α ∈ Γbα .
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III. ROBUST STABILITY ANALYSIS

Next theorem presents a sufficient condition for the robust

stability analysis of (1) based on the existence of a quadratic

in the state Lyapunov function.

Lemma 1: System (1) is robustly stable if there exists a

bounded positive definite matrix sequence P(α(k)) verifying

the inequality

Φ ,

[

P(α(k)) A(α(k))′P(α(k +1))
⋆ P(α(k +1))

]

> 0 (10)

for all α(k) ∈ ΛN and ∆α(k) ∈ Γbα , k ≥ 0 (⋆ stands for

symmetry).

Proof: Follows from the evaluation of the first

difference of the Lyapunov function v(x(k),α(k)) =
x(k)′P(α(k))x(k) along the solutions of system (1) and the

use of Schur complement.

Since the dependence of matrix P(α(k)) on the parameters

α(k) is not known a priori, the conditions of Lemma 1

are not numerically verifiable. By considering the particular

structure

P(α(k)) = α1(k)P1 + · · ·+αN(k)PN , α(k) ∈ ΛN (11)

i.e. that P(α(k)) is affine in the parameters, the following

finite dimensional sufficient condition can be obtained.

Theorem 2: If there exist symmetric matrices Pi ∈ IRn×n,

i = 1, . . . ,N such that the following LMIs hold

Φiℓ =

[

Pi A′
i

(

(1−b)Pi +bPℓ

)

⋆ (1−b)Pi +bPℓ

]

> 0,

i = 1, . . . ,N, ℓ = 1, . . . ,N (12)

Φi jℓ =

[

Pi +Pj (1−b)
(

A′
iPj +A′

jPi

)

+b
(

A′
i +A′

j

)

Pℓ

⋆ (1−b)Pi +(1−b)Pj +2bPℓ

]

> 0,

i = 1, . . . ,N, ℓ = 1, . . . ,N, j = i+1, . . . ,N −1 (13)

then system (1) is robustly stable.

Proof: First note that if P(α(k)) is given by (11), then

P(α(k +1)) can be written as

P(α(k +1)) = α1(k +1)P1 + · · ·+αN(k +1)PN

= (α1(k)+∆α1(k))P1 + · · ·+(αN(k)+∆αN(k))PN

=
N

∑
i=1

αiPi +
N

∑
ℓ=1

∆αℓPℓ

=
N

∑
i=1

αiPi +
N

∑
ℓ=1

b
(

βℓ −αℓ

)

Pℓ

=
N

∑
i=1

αi(1−b)Pi +
N

∑
ℓ=1

bβℓPℓ

where the two last equations were obtained using the model

for ∆α in Section II-A. In this case, Φ given in (10) can be

written as

Φ =
N

∑
ℓ=1

N

∑
i=1

α2
i βℓΦiℓ +

N

∑
ℓ=1

N

∑
i=1

N−1

∑
j=i+1

αiα jβℓΦi jℓ.

The feasibility of LMIs (12–13) guarantees that Φ is positive

definite, and, from Lemma 1, system (1) is robustly stable.

Theorem 2 provides sufficient conditions in terms of

LMIs to assess the robust stability of system (1) whose

conservativeness is analyzed in the sequel for different values

of b.

Remark 1: If b = 0, the conditions of Theorem 2 retrieve

the LMIs from [8, Theorem 3] for g = 1 (degree of the ho-

mogeneous polynomial Lyapunov matrix) and d = 0 (number

of Pólya’s relaxations). In this case, there are two sources of

conservativeness: i) a polynomial Lyapunov matrix of higher

degree on α may be necessary to assess stability (see also

[23] for homogeneous polynomial solutions to parameter-

dependent LMIs with parameters in the simplex); ii) Pólya’s

relaxations may be necessary also [24, 25];

Remark 2: The case b = 1 (the parameters can vary arbi-

trarily inside the polytope) reveals some interesting points.

In fact, condition (12) simplifies to

[

Pi A′
iPℓ

⋆ Pℓ

]

> 0, (14)

Multiplying (14) by αiαℓ and summing up for i = 1, . . . ,N,

ℓ = 1, . . . ,N one has

[

P(α) A(α)′P(β )
⋆ P(β )

]

> 0, (15)

with P(α) given by (11) and β (k) = α(k+1). In other words,

the conditions of Theorem 2 reduce to the necessary and

sufficient conditions for the existence of an affine parameter-

dependent Lyapunov function that guarantees robust stability

for arbitrary time-varying parameters as given in [16]. Note

that conditions (13) are, in this case, positive linear combi-

nations of conditions (12), being always feasible whenever

(12) hold.

The parameter-dependent inequality (15) allows to con-

clude about an interesting point concerning the use of

more complex (higher degrees) homogeneous polynomial

Lyapunov matrices, as it has been done in the case of time-

invariant parameters (b = 0) [8, 23]. Due to the product

A(α)′P(β ) in the parameter-dependent LMI (15), if one

tries to use homogeneous polynomial Lyapunov matrices of

higher degrees and to impose that all the matrix coefficients

must be positive definite, the resulting constraints will also

contain the LMIs in (14). In this case, if a feasible solution to

the constraints (14) does not exist, i.e. there does not exist an

affine Lyapunov matrix assuring robust stability, then there

is no higher degree homogeneous polynomial Lyapunov

matrix assuring robust stability. To obtain better estimates of

robust stability in the case b = 1, more sophisticated analysis

methods should be used, as the path-dependent Lyapunov

matrices proposed in [18].

Finally, in the case 0 < b < 1, the use of homogeneous

polynomial Lyapunov matrix of higher degrees can effec-

tively improve the robust analysis results when compared to

the existing methods, as it will be illustrated later.
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IV. CONTROL DESIGN

A. Robust State Feedback

Consider the discrete-time linear system

x(k +1) = A(α(k))x(k)+B(α(k))u(k) (16)

where u(k)∈ IRm is the control input. As in the analysis case,

α(k) is supposed to be uncertain and ∆αi(k) satisfy (3). The

system matrices are given in the form

(

A(α(k)),B(α(k))
)

=
N

∑
i=1

αi(k)(Ai,Bi), α(k) ∈ ΛN .

Suppose that x(k) is available in real time for feedback by

means of the state feedback control law

u(k) = Kx(k), K ∈ IRm×n

The aim is to find a robust state feedback gain K such that

the closed-loop system

x(k +1) = Acl(α(k))x(k), Acl(α(k)) = A(α(k))+B(α(k))K

is robustly stable for all α(k) ∈ ΛN and ∆α(k) ∈ Γbα .

Next theorem presents a sufficient condition for the exis-

tence of such robust control gain using the slack variables

approach [16, 26, 27] and the Lyapunov matrix given in (11).

Theorem 3: If there exist symmetric matrices Pi ∈ IRn×n,

i = 1, . . . ,N, matrices G ∈ IRn×n and Z ∈ IRm×n such that the

following LMIs hold
[

Pi AiG+BiZ

⋆ G+G′−
(

(1−b)Pi +bPj

)

]

> 0,

i = 1, . . . ,N, j = 1, . . . ,N (17)

then the state feedback gain K = ZG−1 assures that the

closed-loop system (16) is robustly stable.

Proof: Multiply (17) by αiβ j and sum for i = 1, . . . ,N
and j = 1, . . . ,N to obtain
[

P(α) A(α)G+B(α)Z
⋆ G+G′−P(β )

]

=

[

P(α) Acl(α)G
⋆ G+G′−P(β )

]

> 0.

and by [I −Acl(α)] on the left and by its transpose on the

right, yielding

P(α)−Acl(α)P(β )Acl(α)′ > 0

which, by Schur complement, implies
[

P(α) Acl(α)P(β )
⋆ P(β )

]

> 0.

The robust stability is guaranteed by the negativity of the

discrete-time Lyapunov difference along the trajectories of

the transposed system x(k +1) = Acl(α)′x(k).
The main source of conservativeness relying upon the

conditions of Theorem 3 is the use of a constant slack

variable G. As observed in [28], even within the range 0 ≤
b < 1, a Lyapunov matrix with a more complex polynomial

dependence could not improve the results. For b = 1, the

resulting conditions are similar to the ones presented in

[27]. For b = 0, the conditions of Theorem 3 reduce to

the same conditions given in [26, Theorem 3]. The main

contribution of Theorem 3 is the ability of computing robust

state feedback gains when 0 < b < 1.

B. Gain-Scheduled State Feedback

Finally, the case of state feedback stabilization by means

of gain-scheduled controllers is investigated.

Suppose now that α(k) and x(k) are available in real time

for feedback by means of the state feedback control law

u(k) = K(α(k))x(k), K(α(k)) ∈ IRm×n for all k ≥ 0.

The aim is to find a gain-scheduled state feedback gain

K(α(k)) such that the closed-loop system

x(k +1) = Acl(α(k))x(k),

Acl(α(k)) = A(α(k))+B(α(k))K(α(k))

is robustly stable for all α(k) ∈ ΛN and ∆α(k) ∈ Γbα .

Theorem 4: If there exist symmetric matrices Pi ∈ IRn×n,

matrices Gi ∈ IRn×n and Zi ∈ IRm×n, i = 1, . . . ,N such that

the following LMIs hold

Ξiℓ ,

[(

(1−b)Pi +bPℓ

)

AiGi +BiZi

⋆ Gi +G′
i −Pi

]

> 0,

i = 1, . . . ,N, ℓ = 1, . . . ,N (18)

Ξi jℓ ,

[ (

(1−b)(Pi +Pj)+2bPℓ

)

⋆

AiG j +A jGi +BiZ j +B jZi

Gi +G′
i +G j +G′

j −Pi −Pj

]

> 0,

i = 1, . . . ,N, ℓ = 1, . . . ,N, j = i+1, . . . ,N −1 (19)

then the parameter-dependent state feedback gain K(α) =
Z(α)G(α)−1 with

Z(α) =
N

∑
i=1

αiZi, G(α) =
N

∑
i=1

αiGi, (20)

i.e. K(α) is rational in the parameters, assures that the

closed-loop system (16) is robustly stable.

Proof: Multiply (18) by α2
i βℓ and sum for i = 1, . . . ,N

and ℓ = 1, . . . ,N. Multiply (19) by αiα jβℓ and sum for i =
1, . . . ,N, ℓ = 1, . . . ,N and j = i+1, . . . ,N −1. Summing the

results yields

Ξ =
N

∑
ℓ=1

N

∑
i=1

α2
i βℓΞiℓ +

N

∑
ℓ=1

N

∑
i=1

N−1

∑
j=i+1

αiα jβℓΞi jℓ

with Ξ, from the definitions (11) and (20), given by

Ξ =

[

P(β ) A(α)G(α)+B(α)Z(α)
⋆ G(α)+G(α)′−P(α)

]

=

[

P(β ) Acl(α)G(α)
⋆ G(α)+G(α)′−P(α)

]

. (21)

Feasibility of (18–19) guarantees that Ξ(α) is positive defi-

nite. Now multiply (21) by [I −Acl(α)] on the left and by

its transpose on the right to obtain

P(β )−Acl(α)P(α)Acl(α)′ > 0 ⇔

[

P(β ) Acl(α)P(α)
⋆ P(α)

]

> 0.

(22)
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Now apply the following congruence transformation
[

0 P(α)−1

P(β )−1 0

][

P(β ) Acl(α)P(α)
⋆ P(α)

][

0 P(β )−1

P(α)−1 0

]

> 0

to obtain
[

P(α)−1 Acl(α)′P(β )−1

⋆ P(β )−1

]

> 0.

In this case, the Lyapunov function v(x,α) = x′P(α)−1x with

P(α)−1 being a rational polynomial matrix on the parameters

guarantees the robust stability of the closed-loop system.

The conditions of Theorem 4 present a similar scenario to

the case of robust analysis conditions in terms of conserva-

tiveness for the range 0 ≤ b < 1. Homogeneous polynomial

Lyapunov matrices of higher degrees and Pólya’s relaxations

could further improve the results.

C. Different parameter bounds and perspectives

As a final remark, note that the approach proposed in this

paper could also be used when the bounds on the parameter

variations are considered different, i.e.

−biαi ≤ ∆αi ≤ bi(1−αi), i = 1, . . . ,N.

What happens in this situation is that the columns of matrix

Γbiα would not present a systematic and simple law of

formation as in (8). In fact, for a fixed N, the number of

columns in matrix Γbiα can vary according to the values of bi.

In this case, the resulting robust stability analysis and control

design conditions would require more complex algorithms

to construct the LMIs systematically. Such procedures com-

bined with the used of homogeneous polynomial Lyapunov

matrices of arbitrary degree are currently under investigation

by the authors.

V. NUMERICAL EXPERIMENTS

The numerical complexity associated to an optimization

problem based on LMIs can be estimated from the number

V of scalar variables and the number L of LMI rows. Con-

cerning the LMI conditions proposed in Theorems 2 (T2),

3 (T3) and 4 (T4) these numbers are: VT 2 = Nn(n + 1)/2,

LT 2 = nN2(N + 1), VT 3 = VT 2+ n(n + m), LT 3 = 2nN2, VT 4

= VT 2+Nn(n + m), LT 4 = LT 3. In the worst case situation,

the number V grows quadratically with n and the number L

grows cubically with N for the proposed methods.

All the experiments have been performed in a Pentium IV

2.6 GHz, 512 MB RAM, using SeDuMi [29] and YALMIP

[30] within the Matlab environment.

Example 1 (Stability Analysis): The time-varying discrete-

time system

x(k +1) =

[

0.9979 0.008p(k)−0.01

0.01 1

]

x(k), |p(k)| ≤ 0.3,

borrowed from [21, Example 1], is analyzed by computing

the maximum variation rate ρ of p(k), such that robust sta-

bility is guaranteed for any |∆p(k)| ≤ ρ . In order to evaluate

the precision and efficiency of the proposed approach, the

conditions of Theorem 2 are compared with the robust stabil-

ity conditions presented in [21, Theorem 1]. The maximum

values of ρ obtained as well as the associated numerical

complexity, given in terms of V , L and the computational

times (in seconds), are shown in Table I.

TABLE I

MAXIMUM VALUES OF ρ AND NUMERICAL COMPLEXITY (V SCALAR

VARIABLES; L LMI ROWS) OBTAINED IN THE ROBUST STABILITY

ANALYSIS PROBLEM GIVEN IN EXAMPLE 1 USING THE CONDITIONS OF

THEOREM 2 AND THE METHOD FROM [21, THEOREM 1].

Method ρmax V L Time (s)

[21, Theorem 1] 0.0222 84 384 0.33
Theorem 2 0.0299 6 24 0.07

As it can be seen, the conditions of Theorem 2 are more

efficient and less conservative than the ones presented in [21,

Theorem 1], which demanded a bigger computational effort

due to the division of the parameter domain into subintervals

with size at most equal to ρ (in this case, 28 subintervals

were needed). Note that the number of decision variables

demanded by [21, Theorem 1] depends on the number of

subintervals. The approach proposed here uses a different

strategy, i.e. to assess the robust stability by approximating

the solution of a parameter-dependent LMI by a homoge-

neous polynomial solution. In this case, a homogeneous

polynomial of degree one (i.e. affine in the parameters) has

been used. Higher degree polynomial solutions could further

improve the results.

Example 2 (Control Design): Consider the system (16) for

n = 3 and N = 2 with the following matrices

[

A1 A2

]

= γ





1 0 −2 0 0 −1

2 −1 1 1 −1 0

−1 1 0 0 −2 −1



 , B1 = B2 =





1

0

0



 .

The aim is to determine the maximum value of γ such that the

system is stabilized by a robust state feedback gain. For b =
1, i.e. the parameter α varies arbitrarily inside the polytope,

both the conditions of Theorem 3 and the conditions from

[27, Theorem 1] provide robust gains for γ ≤ 0.5940. For

γ > 0.5940, the conditions from [27, Theorem 1] can no

longer provide a feasible solution. On the other hand, the

conditions from Theorem 3 can still provide robust gains

for time-varying parameters with bounded rate of variation.

Figure 2 shows the maximum variation rates bmax for γ ∈
[0.58 0.72] such that robust gains can be synthesized by the

conditions of Theorem 3.

For illustration purposes, the resulting robust gain for γ =
0.64 and b = bmax = 0.496 is given by

K =
[

0.6408 −0.8600 1.0948
]

Example 3: Finally, consider system (16) for n = 2 and N =
3 with matrices B1 = B2 = B3 =

[

1 0
]′

and

[

A1 A2 A3

]

=

[

0.5 0.7 1.0 0.7 −0.1 1.1
−1.6 −0.1 −0.6 −1.2 −1.0 0.9

]

.

The aim now is to synthesize gain-scheduled state feed-

back stabilizing controllers. For b = 1, the conditions from
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Fig. 2. Maximum parameter variation rate bmax such that the system given
in Example 2 is stabilized by robust state feedback gain synthesized through
the conditions of Theorem 3.

[16, Theorem 4] and the conditions of Theorem 4 cannot

provide gain-scheduled stabilizing controllers. Note that the

conditions from [16, Theorem 4] can only be applied when

the input matrices are not affected by the time-varying

parameters, which is the case in this example. On the other

hand, Theorem 4 does not suffer from this limitation.

In this example, if limited rates of parameter variation

are considered, the conditions of Theorem 4 can provide

stabilizing gain-scheduled controllers for b ≤ 0.846.

VI. CONCLUSION

The robust stability analysis and state feedback control

design for time-varying discrete-time polytopic systems with

bounded rates of parameter variation were investigated in this

paper. LMI conditions for robust stability analysis, robust and

gain-scheduled state feedback control have been proposed for

this class of systems, yielding less conservative results than

other available techniques, as illustrated by examples.
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