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Abstract— This paper examines the effect of a sinusoidal
dither in a relay feedback system. The use of dither in achieving
signal stabilization and quenching of limit cycles is well known
in nonlinear systems. The effect of dithering is a similar to
that of forced oscillations where the external signal causes
oscillations of the same frequency to occur in the system. This
paper shows that FO of higher frequencies will produce a
lower amplitude and achieve a reduction in the amplitude of
oscillations for dither periods below a certain value, T ∗

f . This
idea is used to design a sinusoidal dither signal which results
in reduced oscillation amplitudes. Analytical expressions for T ∗

f

are obtained for first and second order plants. For higher order
systems, the Tsypkin Loci is used to identify T ∗

f . Simulation
studies are presented to illustrate the results.
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I. INTRODUCTION

Switching is an important concept widely used to control

certain behaviours in a device. In power electronics, for

instance, switching is used effectively in the control of

converters. The problem with switching, however, is that

it causes great difficulties in the analysis of the behaviour

in the overall nonlinear system, especially for discontinuous

systems. For example, in the dithered RFS considered in

Luigi Iannelli et al. [1], [2], only an approximate analysis was

proposed despite having a very specific dither signal. Their

analysis resulted in a lower bound of the dither frequency

which guarantees the stability of the nonsmooth system. The

final bound was also shown to be conservative.

To the best of our knowledge, and as pointed out in

Pervozvanski and Canuda de Wit [3], a rigorous analysis for

dithered discontinuous system such as that of a dithered RFS

does not exists. The common approach is to approximate

the original discontinuous dithered system with a smooth

system. Stability can be proven for a sufficiently high dither

frequency by the use of the classical averaging theory,

formerly developed by Zames and Shneydor[4], [5], [6] for

continuous nonlinear systems. Other related works can be

found in Mossaheb[7], Luigi Iannelli et al.[8] and Lehman

and Bass[9]. Their results showed that a sufficiently high

frequency dither can reduce the limit cycles in the dithered

system to a negligible ripple but exact conditions on the

dither periods and amplitudes were not given.

In our previous work on forced oscillation in RFS [10],

[11], we have given very specific conditions for the design of

external sinusoidal dither signals that can induce oscillations

of the same frequency as this dither signal. The analysis

given was exact and does not rely on any approximation

theory. The results were also necessary and sufficient. In this

paper, we extend the results in [10], [11] to design sinusoidal

dither signals that will result in stable oscillations of lower

amplitudes than the un-dithered RFS. A bound on the dither

period, T ∗

f , is first determined based on the response of the

linear system. For any sinusoidal dither with period T < T ∗

f ,

the oscillation amplitudes in the RFS can be guaranteed to

decrease monotonically with decreasing Tf . The amplitude

of the dither signal can be designed based on the analysis in

[10], [11]. This result is much stronger than other previous

results because bounds obtained are tight and requires no

approximation. It exploits the specific structure of the relay

and the linear system, allowing exact responses to be written

and analyzed.

The paper is organized as follows. The problem formu-

lation is presented in Section II. Section III presents the

numerical approach to identify the bound on the dither

period. Complete solutions for first and second order plants

will be presented in Section IV. Applications are given in

Section V. Section VI presents the conclusions.

II. PROBLEM FORMULATION

Consider the RFS with a sinusoidal dither signal, f(t), as

shown in Fig. 1. The linear system, G(s), is assumed to have

a state space description and together with the relay element,

the closed loop system RFS is given by

ż(t) = Az(t) + Bu(t − L) (1)

c(t) = Cz(t)

y(t) = c(t) + f(t) = c(t) + R sin(ωf t)

u(t) =

{

h y(t) < 0
−h y(t) ≥ 0

(2)

where h > 0, u, c ∈ R are the input and output, respectively,

z ∈ Rm×1 is the state vector, L > 0 is the time delay

between u and c, A ∈ Rm×m is Hurwitz and assumed to be

non-singular, B ∈ Rm×1 and C ∈ R1×m. In the frequency

domain, G(s) = Y (s)/U(s) = e−sLC(sI − A)−1B and

lim
s→∞

G(s) = 0.

The problem we address is the design of f(t) to achieve

a reduction in the amplitude of oscillations in the RFS.

The approach is based on the concept of forced oscillations

(FO) [12]. Our analysis starts with the identification of the

bound, T ∗

f , below which the oscillation amplitude decreases

monotonically as Tf decreases. Due to space constraints, the
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minimum amplitude of the dither signal required to establish

FO will not be shown here. However, the reader is referred

to [11] for details on how to determine the minimum dither

amplitude.

III. IDENTIFICATION OF T ∗

f

When a RFS undergoes steady state oscillations of fre-

quency ω = 2π/Tf , the inputs to the linear element, G(s),
is a square wave with period, Tf . The response of G(s) is

also periodic with maximum amplitudes which are dependent

on the frequency of the input square wave. The relationship

between the maximum amplitudes and the frequency of the

input signal is nonlinear. It is conceivable that for G(s)
with multiple lightly damped modes, one can expect that the

function of maximum amplitudes with respect to frequency

will exhibit several resonance peaks as shown in Figure 2,

simulated for G(s) = 1000/(s5 + 6s4 + 58s3 + 211s2 +
629s + 471). In this example, T ∗

f = 1.04 is identified to be

the first peak in Figure 2 as for Tf < T ∗

f the amplitude of

the output of G(s) decreases steadily.

In this section, a simple approach will be proposed to find

T ∗

f . Consider the steady state plant output, c(t, Tf ) for an

input square wave with period Tf where

c(t, Tf ) = CeA(t)z(0) +

∫ t

0

eA(τ)u(t − L − τ)dτ (3)

z(0) = −(I + eA
Tf

2 )−1(2eA(
Tf

2
−(L−n

Tf

2
))

−eA(
Tf

2
) − I)(−1)nA−1Bh. (4)

Since this is a steady state analysis, time t = 0 corresponds

to the positive switching edge of the relay. Suppose the

maximum amplitude of c(t, Tf ) occurs at t = t0. Then t0 is

determined by the following optimization problem :

t0 = arg max
t∈R

c(t, Tf ). (5)

In state space representation, the derivative of c(t, Tf ) is

ċ(t, Tf ) = C(Az(t) + Bu(t − L)) (6)

and the peak amplitude occurring at t = t0 can be written

as :

c(t0, Tf ) = CeAt0z(0) + C(eAt0 − I)A−1Bh. (7)

To further determine the peak amplitude with respect to Tf ,
differentiate c(t0, Tf ) with respect to Tf as follows :

dc(t0, Tf )

dTf

= CeAt0Az(0)
dt0

dTf

+ CeAt0 dz(0)

dTf

+ CeAt0Bh
dt0

dTf

(8)

Equating (8) to zero, the turning points of c(t0, Tf ) with

respect to Tf can be obtained either analytically or numeri-

cally. By plotting c(t0, Tf ) against Tf , the set (0, T ∗

f ) where

the amplitude of oscillation decreases monotonically with Tf

can be identified. This is shown in Figure 3 for a plant with

transfer function G(s) = 1
s2+2s+20.0096 where T ∗

f = 0.7207.

Once T ∗

f has been identified, the remaining task is to

determine the minimum amplitude of the dither signal in

order for forced oscillations of the same frequency as the

dither signal to take place in the RFS. This can be done using

the results in [11]. Due to space constraints, this will not be

shown here. This approach guarantees that the oscillations in

the RFS can be reduced if the dither signal is appropriately

chosen.

In the next section, an analysis of first and second order

plants will be presented to characterize the nature of T ∗

f for

these classes of plants.

IV. SPECIAL CASES

A. First Order Systems with Delay

In first order systems with delay, at steady state, c(t, Tf )
should be written in two parts due to the discontinuity
resulting from the delay. With reference to (3), for 0 <
τ < L, u(t − L − τ) = −h while for L < τ <

Tf

2 ,
u(t − L − τ) = h. By normalizing L w.r.t Tf/2,

c1(t, Tf ) = CeAtz(0) + C(eAt
− I)A−1Bh(−1)n+1,

t ∈ [0, L − n
Tf

2
] (9)

c2(t, Tf ) = CeAtz(0) + C(2eA(t−L+n
Tf
2

)
− eAt

− I)

A−1Bh(−1)n, t ∈ [L − n
Tf

2
,
Tf

2
] (10)

where z(0) is given in (4) and n = floor( 2L
Tf

). It is assumed

that the initial condition z(0) corresponds to the positive
switching edge of the relay at steady state. It follows that

ċ1(t, Tf ) = CeAtAz(0) + CeAtBh(−1)n+1,

t ∈ (0, L − n
Tf

2
] (11)

ċ2(t, Tf ) = CeAtAz(0) + C(2eA(t−L+n
Tf
2

)
− eAt)

Bh(−1)n, t ∈ [L − n
Tf

2
,
Tf

2
] (12)

Note that z(0) is positive (negative) when n is odd (even) and
|CeAtAz(0)| < |CeAtBh|. Accordingly, ċ1(t, Tf ) is positive
(negative) when n is odd (even) while ċ2(t, Tf ) is negative
(positive) for the same n. This implies that c(t, Tf ) is either
increasing or decreasing monotonically in each time segment
and the maximum amplitude occurs at t = L−nTf/2. This
maximum is given by :

|Cz(L − n
Tf

2
, Tf )| = |C(

I − eA
Tf
2

I + eA
Tf
2

)A−1
Bh|. (13)

From (13), it can be seen that the amplitude |Cz(L −
n

Tf

2 ), Tf | decreases as
Tf

2 decreases for the stable first order

delayed plant where A < 0. This will be shown in the

following example.

Example 1: Consider G(s) = e−s

s+1 . The undithered and

dithered RFS of period Tf = 0.8 and 0.3 are plotted in

Figure 4. It can be seen that the amplitude of the dithered

system is smaller than that of the undithered case. The

minimum amplitude of the dither signal required to produce

the desired oscillations are R = 0.54, 0.38 for Tf/2 =
0.8, 0.3 respectively. Figure 5 plots the amplitude of the

oscillation against the period of oscillation for a range of

forcing periods. From the figure, it can be seen that the

smaller the period of the dither signal, the smaller is the

amplitude of oscillations in the RFS.
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Remark 1: It is not surprising that the amplitude of oscil-

lation increases with increasing period of the dither signal

because first order plants have monotonic responses. Its first

order derivative is also directly affected by the switch in the

relay. Thus for each half period of the square wave input

into the plant, its output increases if the half period is larger.

The relationship is also monotonic.

B. Second order plants with distinct real roots

For a second order plant with distinct real roots, its state

space representation in controllable canonical form is A =
[0 1; −λ1λ2 (λ1 + λ2)], B = [0 1]T and C = [c1 c2] where

λ1 < λ2 < 0 are the roots of the plant.
Following the steps in Section III, a closed form solution

for t0 is

t0 =
1

λ1 − λ2

Γ (14)

Γ = ln(
λ1λ2(c1 + c2λ2)z1(0) − (c1λ2 + c2λ2

2
)z2(0) − (c1 + c2λ2)

λ1λ2(c1 + c2λ1)z1(0) − (c1λ1 + c2λ2

1
)z2(0) − (c1 + c2λ2)

).

For plants with pole excess of two, c = [1 0] and t0 is

t0 =
1

λ1 − λ2
ln(

c1λ1λ2z1(0) − c1λ2z2(0) − c1

c1λ1λ2z1(0) − c1λ1z2(0) − c1
). (15)

Substituting (15) into (8),

dc(t0, Tf )

dTf

= e
λ1t0 (λ2

dz1(0)

dTf

) + e
λ2t0 (

dz2(0)

dTf

− λ1

dz1(0)

dTf

)(16)

where z1(0) =
−λ2 tanh(0.25λ1Tf )+λ1 tanh(0.25λ2Tf )

λ2

1
λ2−λ1λ2

2

and

z2(0) =
− tanh(0.25λ1Tf )+tanh(0.25λ2Tf )

λ1−λ2

are the states of z(0)

and t0 = 1
λ1−λ2

ln
(

tanh(0.25λ2Tf )−1
tanh(0.25λ1Tf )−1

)

.

In (16),

λ2
dz1(0)

dTf

= 0.5sech(0.25λ1Tf ) > 0

and

dz2(0)

dTf

− λ1
dz1(0)

dTf

= −0.5sech(0.25λ2Tf ) < 0.

As λ1 < λ2 < 0, t0 is positive and it is not difficult

to see that (16) is negative, which implies that the output

c(t0, Tf ) is monotonically decreasing wrt Tf . The amplitude

|c(t0, Tf )| increases with Tf . At large values of Tf , the

plant’s output signal, c(t, Tf ) saturates at a steady state value,

much like the first order case. Thus, Tf∗ = ∞.

Note that the Tsypkin Locus, which plots values of

c(t, Tf/2) vs ċ(t, Tf/2)/ωf for different frequencies at the

switching instants t = Tf/2, can also be used to identify T ∗

f .

Example 2 illustrates this.

Example 2: Consider G(s) = 1
s2+5s+6 , with poles at s =

−2 and s = −3. The Tsypkin Locus is shown in Figure 6(a).

The magnitude of c(Tf/2, Tf ) increases as Tf/2 increases

and saturates at c(Tf/2, Tf ) = −0.1667 when T ∗

f = ∞. The

amplitude of the oscillation is plotted against Tf/2 in Figure

6(b). From the figure, it can be seen that the larger the period

of oscillation, the larger the amplitude.

C. Second order plant with complex roots

For a second order plant with complex roots, denoted by

a ± ib, its state space representation can be written as A =
[0 1; −(a2 + b2) 2a], B = [0 1]T , C = [c1 c2]. For plants

with pole excess of two, c = [1 0] and the turning point t0
of the output is given by

t0 =
1

b
tan−1(

bz2(0)

(a2 + b2)z1(0) − az2(0) − 1
) (17)

For t = t0, the output amplitude for varying Tf is given

by (7). The bound T ∗

f where the amplitude of oscillation

c(t0, Tf ) decreases monotonically with Tf for the set (0, T ∗

f )

is determined by equating (8) to zero, which gives
Tf

2 = mπ
b

where m ∈ N+. Thus, for a second order system with

complex roots, the amplitude of the limit cycle decreases

monotonically with decreasing period for Tf ∈ (0, T ∗

f )

where T ∗

f = 2mπ
b

.

At
Tf

2 = mπ
b

, z2(0) = 8b(a2 + b2)ea
Tf

2 sin b
Tf

2 = 0 and

t0 = 0 or t0 = Tf/2 in (17). Hence, the value of T ∗

f can also

be identified from the Tsypkin Locus, which plots values of

c(t, Tf ) and ċ(t, Tf )/ωf at t = Tf/2 for varying Tf . This

is demonstrated in the following example.

Example 3: Consider a second order plant with transfer

function, G(s) = 1
s2+2s+20.0096 , with complex roots at

s = −1 ± 4.36i. The Tsypkin Locus in Figure 7(a) shows

that the outer spiral with c(Tf/2, Tf ) increases in magnitude

from zero to about 0.15 before spiralling in with lower mag-

nitudes. Hence the maximum Tf corresponding to maximum

magnitude can be determined by the point which crosses

the y-axis or the point corresponding to ċ(Tf/2, Tf ) = 0.

This gives T ∗

f /2 = 0.7207. The amplitude of the oscillation

is plotted against the period of oscillation in Figure 7(b)

which verifies the results obtained from the Tsypkin Locus.

From the figure, it can be seen that for T ∗

f /2 = 0.7207, the

maximum amplitude is about 0.15.

D. Second order plant with repeated roots

For a second order system with repeated roots at λ1, its

state space representation is A = [0 1; −λ2
1 2λ1], b = [0 1]T ,

c = [c1 c2] where λ1 < 0.

For plants with pole excess of 2, t0 is given by

t0 =
−z2(0)c1

z2(0)λ1c1 − λ2
1z1(0)c1 + c1

(18)

and the change in the output amplitude
dc(t0,Tf )

dTf
given by

CeAt0
dz(0)

dTf

= eλ1t0 (
dz1(0)

dTf

− λ1t0
dz1(0)

dTf

+ t0
dz2(0)

∂Tf

). (19)

The states of z(0) are given by z1(0) =
−0.5λ1Tf +sinh(λ1Tf )

λ2

1
(1+cosh(0.5λ1Tf ))

and z2(0) = −
0.5Tf

1+cosh(0.5λ1Tf ) .

From (18), t0 =
0.5Tf

− sinh(0.5λ1Tf )+1+cosh(0.5λ1Tf ) , which is

positive. The factor in (19),

dz1(0)

dTf

(1 − λ1t0) + t0
dz2(0)

dTf

(20)

=
0.5Tf sinh(0.5λ1Tf )

(1 + cosh(0.5λ1Tf ))2
− t0(

1

cosh(0.5λ1Tf )
)
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is negative, which implies that the output c(t0, Tf ) is mono-

tonically decreasing and the amplitude |c(t0, Tf )| increases

with Tf . Thus, T ∗

f = ∞. The value of T ∗

f /2 can also be

identified from the Tsypkin Locus. This result is the same

as that for two second order plants with real and distinct

roots.

E. Higher order non-delayed plants

As shown in the first and second order cases, the Tsypkin

Locus is a good way to determine T ∗

f if t0 is known.

For higher order systems, t0 may not coincide with 0 or

Tf/2, unlike the first and second order systems. The delayed

version of the Tsypkin Locus, which is the plot of c(t0, Tf )
against ċ(t0, Tf )/ωf can actually be used to determine t0 and

the set (0, T ∗

f ) where the amplitude decreases monotonously

with period. If we plot the delayed Tsypkn Locus for a

series of t0 and identify t0 where c(t0, Tf ) reaches its

maximum amplitude, T ∗

f will be the point corresponding to

ċ(t0, Tf ) = 0. An example is shown to illustrate this point.

Example 4: Consider a fourth order plant with transfer

function, G(s) = 1
s4+6s3+23s2+20s+26 , with complex roots at

s = −2.657±3.2928i and s = −0.343±1.1553i. A series of

the delayed Tsypkin Locus, c(t0, Tf ) against ċ(t0, Tf )/ωf is

plotted for t0 = 0.05, 0.1, 0.15, 0.2049, 0.25, 0.3, as shown

in Figure 8(a). An amplification of the plot in Figure 8(b)

shows that the maximum magnitude of c(t0, Tf ) is 0.0893
and it occurs at t0 = 0.2049. The ”boxed” frequency point

at which the Tsypkin Locus, c(0.2049, Tf ) vs ċ(0.2049, Tf )
crosses the imaginary axis or the point corresponding to

ċ(0.2049, Tf ) = 0 is Tf = 2.76. This gives T ∗

f = 2.76.

V. APPLICATIONS

In this section, the analysis of two motivating examples

will be presented and a comparison between the performance

of different dither shapes will be carried out.

Example 5: The following problem is posed by [13],

converted to SI units by [14] and adapted to illustrate our

problem. The block diagram is shown in Figure 9 where

F0 = 445N , R0 = 0.61m, J = 4.68N ·m/s2, h = 22.24N ,

Kp = 1868N/radian and Kv = 186.8N · /radian. The

self oscillation and dithered response are shown in Figure

10 where Tf/2 = 0.037 and amplitude of 0.55. It can

be verified that the oscillations are indeed reduced. Figure

11 plots c(t, Tf ) with sinusoidal dither and sawtooth dither

where Tf/2 = 0.037. It can be seen that the oscillation

amplitudes are the same in both cases.

Example 6: Consider the case of a DC motor whose

model is given in Figure 12 (adapted from [2]). The closed

loop transfer function is

ktkpotVaL

JLLas3 + (βL + R1J)Las2 + (βR1 + ktke)Las
.

The system exhibited self oscillation, FO and SO with the

following set of parameters. Va = 5V , R1 = 2.510Ω, La =
0.530mH , kt = ke = 5.700mV/rad · s−1, β = 0.411mN ·
cm/rad · s−1, J = 31.400g · cm2, kpot = 3/2πV/rad,

Tf/2 = 0.005 and amplitude 0.05. It is shown in Figure

13 that the amplitudes of the oscillations are indeed reduced

with a dither frequency higher than that of self oscillation.

Figure 14 plots the oscillation amplitudes for a sine dither

and a sawtooth dither where the dither amplitudes are 0.07
and frequencies at 100 Hz. It can be seen that the oscillation

amplitudes are the same in both cases.

VI. CONCLUSION

In this paper, the potential of using a sinusoidal dither

in reducing inherent system oscillations has been illustrated.

The bound on the dither period T ∗

f was determined both

numerically and analytically for the first and second order

plants. For the higher order systems, the Tsypkin Loci was

used to identify T ∗

f . Reduced oscillations of the desired

frequency were achieved with the corresponding dither am-

plitude required. The reduction in oscillation amplitude by

the sinusoidal dither is seen to be significant.
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Fig. 4. Self oscillation and FO of differing Tf /2 in example 1.
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Fig. 6. (a)Plot of the Tsypkin Locus in example 2. (b)Plot of the amplitude of oscillation against Tf /2 in example 2.
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Fig. 10. (a)Comparison of the oscillation amplitudes in example 5. (b)Comparison of the steady state oscillation amplitudes in example 5.
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Fig. 14. Comparison of the oscillation amplitudes between the sine and sawtooth dithers in example 6.
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