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Abstract— Consider two identical discrete-time, finite-
dimensional, linear and time-invariant systems denoted as
leader and follower. The leader system is driven by a determin-
istic control input and by a zero-mean white Gaussian process
noise. In this paper, we address the problem of designing a
networked control scheme for the follower system that guaran-
tees that the state of the follower system tracks the state of the
leader system optimally, according to a mean squared cost. We
adopt a networked control scheme featuring two erasure links
and three design blocks: a controller acting on the follower
system and two encoders, one at the output of each system. The
controller has remote access to noisy measurements of the state
of both systems, via two erasure links that are used to connect
each encoder to the controller. We consider erasure links whose
erasure events occur according to a Bernoulli process. If an
erasure occurs then no information is transmitted, otherwise
a finite vector of real numbers is conveyed through the link.
The purpose of the encoders is to process noisy measurements
of the output of each system prior to transmission over the
corresponding erasure link. While the encoder of the follower
system has access to current measurements, the encoder of the
leader system has access to measurements that are advanced in
time by a finite time interval (also denoted as preview). This
paper describes a methodology for the design of controller
and encoders that are jointly optimal, with respect to optimal
tracking of the leader system by the follower system. We
also obtain explicit necessary and sufficient conditions for the
existence of a scheme that guarantees that the tracking error
has finite second moment.

I. INTRODUCTION

Networked control systems have emerged as an important
research area in recent years, see, e.g., [1], [21]. The
estimation and control performance in such systems is
severely affected by the properties of the communication
channels. Many different models of channels have become
popular, depending on the particular effect considered most
important. Thus, digital noiseless channels have been stud-
ied to account for finite number of bits being transmitted,
erasure links have been popular to model stochastic data
loss, channels that introduce delay have been analyzed to
study the effect of retransmission and routing delays, and
so on.

In this work, we are specifically interested in the problem
of estimation and control across communication links that
exhibit data loss. Preliminary work in this area has largely
concentrated on the case when only one sensor is present.
A good overview of work dealing with the effect of the
erasure links on estimation and control, as well as designing
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a compensator at the observer end to estimate the data when
links drop packets, has been provided in [21], [8], [22],
[10]. This paper takes a more general view by allowing
the sensors to encode or pre-process information prior to
transmission and by utilizing the fact that a typical network
/ communication data packet allows transmission of extra
data apart from that required inside a traditional control
loop. As has been shown in [9], [8], [10], this approach
can yield significant improvements in terms of stability and
performance. Moreover, for a given performance level, it
can also lead to a reduced amount of communication.

In this paper, we extend the principle to the preview
control case. We adopt a framework comprising two identi-
cal linear and time-invariant systems, denoted as the leader
and the follower. We aim to design a control scheme for
steering the follower so that its state tracks the state of
the leader system optimally, according to a mean-squared
cost. In this paper, we consider control schemes comprising
one controller, for driving the follower system, and two
encoders, one at the output of each system. The encoders
are connected to the controller via erasure links that suffer
stochastic information-loss events in a Bernouli fashion.
Time advanced measurements, or preview measurements, of
the state of the leader system are available at the respective
encoder.

Our paradigm is closely related to preview control, which
is an important problem with a rich history. A classical
approach in (deterministic) servomechanism design is the
internal model principle [6] that ensures asymptotic tracking
of periodic reference signals. In the late eighties, techniques
based on operator theory were used to derive control laws
for linear and time-invariant systems that guarantee optimal
reference tracking, under the assumption of finite horizon
and infinite horizon preview [20], [11]. The papers [4], [5],
[27], [24], [23] are also relevant contributions. More re-
cently, for deterministic systems, more general performance
metrics, such as H2 and H∞, were considered [3], [13],
[14], [17], [25], [26]. The design of controllers that achieve
optimal reference tracking, as measured by the H∞ metrics,
has also been addressed in the presence of sampling effects
[18], for linear and time-invariant plants. We would also
like to mention the important works of [15], [16], [19].
All of these results, in one way or another, conclude that
reference preview can lead to a substantial increase in the
tracking performance. However, the case featuring preview
information for stochastic systems across communication
links remains an open problem. This problem cannot be
viewed as a simple extension of the traditional preview
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Fig. 1. Basic framework for leader-follower tracking control with preview,
in the presence of erasure links.

control problem, just as the control of an LTI plant across
communication links is not a simple extension of traditional
LQR design problem. In this paper, we fill this gap.

The paper is organized as follows. We begin in the next
section by describing the problem set-up and our notation.
In Section III, we present a re-parameterization that allows
us to map our paradigm into the problem of controlling
a process using multiple sensors across erasure links. In
Section IV, we take advantage of the mapping to use
existing machinery and tools to design the optimal control
input. The mapping is not perfect, and in particular, the
system does not retain controllability assumptions. How-
ever, in Section V, we give explicit necessary and sufficient
conditions for the existence of a controller and encoders
that stabilize the tracking error, in a mean squared sense.

II. FRAMEWORK DESCRIPTION AND PROBLEM
FORMULATION

Consider the set-up of Fig 1, and the following associ-
ated assumptions. The follower system is described by the
following discrete-time state-space representation:

x1(k + 1) = Fx1(k) + Gu1(k) + w1(k), k ≥ 0 (1)
y1(k) = Hx1(k) + v1(k),

where the state x1(k) takes values in Rn and the control
input u1(k) takes values in Rp. The process noice w1(k) is
assumed to be white, Gaussian, zero mean with covariance
Σw1 > 0. The initial state x1(0) is a zero mean Gaussian
random variable with covariance matrix Σ01. The state is
observed by a sensor that generates the measurements y1(k)
taking values in Rq . The measurement noise v1(k) is also
assumed to be white, Gaussian, zero mean with covariance
Σv1 > 0. The pair (F,H) is assumed to be observable
and the pair (F,G) is assumed to be controllable. We also
assume that the matrices G and H are full rank.

The leader system is given by the following state-space
representation:

x2(k + 1) = Fx2(k) + Gu2(k) + w2(k), k ≥ 0 (2)
y2(k) = Hx2(k) + v2(k),

where the state x1(k) once again takes values in Rn,
while u2(k) is a deterministic (known a-priori) control input
taking values in Rp and w2(k) is the reference process
noise assumed to be white, Gaussian, zero mean with
covariance Σw2 > 0. The initial state x2(0) is a zero mean
Gaussian random variable with covariance matrix Σ02. The
direct feedthrough noise v2(k) is also assumed to be white,
Gaussian, zero mean with covariance Σv2 > 0.

We assume that all the sources of randomness
{w1(l)}∞l=0, {w2(l)}∞l=0, {v1(l)}∞l=0, {v2(l)}∞l=0, x1(0)
and x2(0) are mutually independent.

The output of the follower system y1(k) and the output
of the leader system, advanced by m time steps (m ≥ 0),
y2(k + m) are made available to encoders E1 and E2,
respectively. At every time step k, encoder E1 calculates
and transmits the vector s1(k), according to the following
functional structure:

s1(k) = E1 (k,y1(0), . . . ,y1(k)) k ≥ 0, (3)

where s1(k) takes values in Rj1 and j1 is a given positive
integer. Similarly, the encoder E2 calculates and transmits
the vector s2(k) taking values in Rj2 , for some positive
integer j2, according to the following functional structure:

s2(k) = E2 (k,y2(0), . . . ,y2(k + m)) k ≥ 0. (4)

In the sequel, we will also refer to the encoder maps as
encoding algorithms or information processing algorithms.

A. Description of the information structure

The encoders are connected to the controller via links
featuring erasure events that are governed by Bernouli
processes {r1(k)}∞k=0 and {r2(k)}∞k=0, taking values in the
set {T , ∅} and characterized by a probability mass function
of the type:

pi,j
def
= Pr (r(k) = (i, j)) , (i, j) ∈ {T , ∅}2

where r(k)
def
= (r1(k), r2(k)). More specifically, let us

denote erasure link 1 as being the one across which the
encoder E1 transmits the vector s1(k) and erasure link 2
as being the one across which the encoder E2 transmits
the vector s2(k). Let us also denote the outputs of the
links by z1(k) and z2(k), respectively. Then the relationship
between the input of the each erasure link and its output is
specified by

zi(k) =

{
∅ if ri(k) = ∅
si(k) if ri(k) = T , i ∈ {1, 2}

where we adopt the symbol ∅ to represent erasure, i.e., it
indicates that no information is received at the output of the
link. Note that, in general, we do not assume that the erasure
events in the links are uncorrelated. However, we presup-
pose that {r(l)}∞l=0 is independent of all the other sources
of randomness, namely {w1(l),w2(l),v1(l),v2(l)}∞l=0 and
(x1(0),x2(0)). If the information about the erasure events
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till time k− 1 is available to the encoder at time k, we say
that the link has acknowledgements; otherwise, it does not.

The controller has access to the outputs of links 1 and
2. In particular, we consider that the controller, denoted by
K, is of the following form:

u1(k) = K(k, z1(0), z2(0), . . . , z1(k− 1), z2(k− 1)). (5)

It may be noted that the the system parameters, such as the
matrices F , G and H among others, as well as of the leader
control input sequence {u2(k)}∞k=0 are assumed known a-
priori.

B. Problem statement

Given the erasure link statistics, specified by the prob-
ability mass function pi,j , the description of the follower
and leader systems, given by (1) and (2), respectively, we
want to jointly design the controller and the encoders that
minimize the following cost function:

JT = E
[ T∑

k=0

(
(x1(k)− x2(k))T Q(x1(k)− x2(k))

+ (u1(k)− u2(k))T R(u1(k)− u2(k))
)

+(x1(T +1)−x2(T +1))T Q(x1(T +1)−x2(T +1))
]
,

(6)

where R is a symmetric positive definite matrix and Q is a
symmetric positive semi-definite matrix for which the pair
(A,Q1/2) is detectable.

We also wish to investigate conditions for the existence
of a controller K, and encoders E1 and E2 such that the
infinite horizon cost is bounded in the following sense:

J∞ = lim
T→∞

1
T

JT < c,

for some positive real constant c. The expectation in the
above cost function is taken with respect to all the indepen-
dent sources of randomness defined so far.

III. MULTI-SENSOR RE-PARAMETERIZATION

In this section, we re-parameterize our problem so as to
establish a comparison and make use of the existing results
in [10]. We start by giving the following augmented state
space representation whose state will include both x1(k)
and x2(k):

x(k + 1) = Ax(k) + B1u1(k)
+B2u2(k + m− 1) + w(k) (7)

g1(k)
def
= y1(k) = C1x(k) + d1(k) (8)

g2(k)
def
= y2(k + m) = C2x(k) + d2(k) (9)

where g1(k) and g2(k) represent the new output, while
x(k), w(k) and di(k) are defined below and they denote

the new state, process noise and measurement noises, re-
spectively.

x(k)
def
=




x1(k)
x2(k + m)

x2(k + m− 1)
...

x2(k)




(10)

w(k) =




w1(k)
w2(k + m− 1)

0
...
0




d1(k) = v1(k)
d2(k) = v2(k + m)

The following are the state-space matrices that corre-
spond to the re-parameterization (7):

A =
[

F 0
0 A2,2

]
(11)

A2,2 =




F 0 0 · · · 0
I 0 0 · · · 0
0 I 0 · · · 0
...

. . .
...

0 · · · 0 I 0




(12)

B1 =
[

GT 0 0 · · · 0
]T

(13)

B2 =
[

0 GT 0 · · · 0
]T

(14)
C1 =

[
H 0 0 · · · 0

]
(15)

C2 =
[

0 H 0 · · · 0
]

(16)

The cost function (6) can be recast in terms of x(k) as

JT = E
[ T∑

k=0

(
x(k)T Qsx(k) + f(Σv1, Σv2)

+ (u1(k)− u2(k))T R(u1(k)− u2(k))
)

+ x(T + 1)T Qsx(T + 1)
]
, (17)

where

Qs =




Q 0 · · · 0 −Q
0 0 · · · 0 0
...

... · · · ... 0
−Q 0 · · · 0 Q


 ,

and f(Σv1,Σv2) is a term depending only on constant
matrices, such as Σv1 and Σv2, but not on problem variables
x(k) or u1(k). It is clear by simple inspection that if, at
time k, the encoder Ei has access to measurements gi(j)
from time 0 to time k, then the description in (7) is exactly
the description provided in Section II.

Minimization of the cost function (17) for the system (10)
is similar to the problem of LQG control of a process being
observed by two sensors that transmit over two erasure
links, as solved in [10]. However, there are three main
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differences between the problem definitions given here and
in [10]:

1) A pre-defined (known) input term u2(k) is present in
the evolution of the system as defined in (7).

2) A pre-defined (known) term u2(k) is present in the
cost function (17).

3) The system (10) is not controllable from u1(k), which
is the only control input that can be designed.

While the first two differences alter the form of the optimal
control input, the third difference means that the stabiliza-
tion of the tracking error needs to be examined closely, even
in the absence of any erasure links.

IV. OPTIMAL CONTROL INPUT

We begin by presenting a separation principle for our
problem. To state the principle, we need to introduce some
terminology. Similar to [10], at any time k, define the time-
stamp corresponding to sensor i as the latest time at which
transmission was possible through link i:

ti(k) = max{j ∈ {0, 1, 2, . . .} | j ≤ k, ri(j) = T }.
Further, define the maximal information set Imax

i (k) for
each sensor as

Imax
1 (k) = {y1(0),y1(1), · · · ,y1(t1(k)),

r1(0), r1(1), · · · , r1(k)}
Imax

2 (k) = {y2(0),y2(1), · · · ,y2(t2(k) + m),
r2(0), r2(1), · · · , r2(k)}.

The maximal information set includes the largest set of
measurements from sensor i that the controller can possibly
have access to at time k. For any encoding algorithm A
followed by the sensors, we define the information set
corresponding to sensor i at time k as

IAi (k) = {si(0), si(ti(1)), si(ti(2)), . . . , si(ti(k))},
where si(k) is the output of the sensor i at time k, when
the algorithm A is followed at sensor i. From the definition
of the time stamp ti(k) it follows that IAi (k) comprises
the time-samples of si(k) which can be recovered at the
controller via the output of the erasure link from sensor
i. For any encoding strategy followed by the sensors, the
inclusion IAi (k) ⊆ Imax

i (k) holds, where IAi (k) and Imax
i (k)

are the smallest sigma algebras (filtrations) generated by
IAi (k) and Imax

i (k), respectively. Further, for any two
encoding algorithms A1 and A2, if IA1

i (k) ⊆ IA2
i (k) holds

at every time step, then the inequality J?,A2
K ≤ J?,A1

K is true,
where Imax

i (k) is as defined above and J?,Ai

K is the optimal
value of the cost function JK realized when the encoding
algorithm Ai is used along with a controller that optimally
utilizes the information available to it. Now consider an
algorithm Ā under which, at every time step k the encoder
for sensor i transmits the set

Si(k) = {zi(0), zi(1), · · · , zi(k), ri(0), ri(1), · · · , ri(k)}.

At any time step k, the decoder (and the controller) would
thus have access to the maximal information sets Imax

1 (k)
and Imax

2 (k). This implies that for any other encoding
algorithm A, the inequality J?,Ā

K ≤ J?,A
K holds.

We state the following separation principle when algo-
rithm Ā is used. (Note: For any stochastic process h(k) and
random variable e, denote by ĥ (k|e) the minimum mean
squared error (mmse) estimate of h(k) given e.)

Proposition 4.1 (Separation Principle): Consider the
problem set-up for the system (7) as defined in section III.
Suppose that each encoder transmits all the current and
past measurements it has access to at every time step, so
that the controller has access to the maximal information
sets Imax

1 (k) and Imax
2 (k) at every time step k. Then,

for an optimizing choice of the control, the control and
estimation costs decouple. Specifically, the optimal control
input at time k is calculated to be

u1(k) = û1,LQ

(
k|Imax

1 (k), Imax
2 (k), {u1(t)}k−1

t=0

)

where u1,LQ(k) is the optimal LQ control law and
û1,LQ

(
k|Imax

1 (k), Imax
2 (k), {u1(t)}k−1

t=0

)
denotes its min-

imum mean squared error estimate given the information
sets Imax

1 (k) and Imax
2 (k), and the previous control inputs

u1(0), · · · , u1(k − 1).
Proof: The proof is along the lines of the standard

separation principle (see [10, Proposition IV.1]; see also [12,
Chapter 9]) and is omitted for space constraints.
The LQ optimal control input refers to the following prob-
lem. Consider the system

x(k + 1) = Ax(k) + B1u1(k) + B2u2(k + m− 1),

where, at time k, the controller has access to {x(l)}k
l=0.

The control input u1(k) has to be designed to minimize
the cost function

J̄T =
T∑

k=0

(
x(k)T Qsx(k)

+ (u1(k)− u2(k))T R(u1(k)− u2(k))
)

+ x(T + 1)T Qsx(T + 1), (18)

with the tracking error being stable if J̄∞ = limT→∞ J̄T

is bounded.
Due to the presence of the additional variable u2(.) in

the system evolution equation and the cost function, the LQ
optimal control input becomes affine (rather than linear) in
the state value. We have the following result.

Proposition 4.2 (Optimal Control Input): Consider the
problem formulation for system (7) as stated in Section III,
except that the controller has access to the state value x(k)
while calculating the control input at any time step k. Then
the optimal LQ control input at time step k is given by

u1(k) = −S−1(k)
(
BT

1 P (k + 1)Ax(k) + Ru2(k)

−BT
1 Λk+1 −BT

1 P (k + 1)B2u2(k + m− 1)
)
, (19)
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where

S(k) = BT
1 P (k + 1)B1 + R

P (k) = Qs + AT P (k + 1)A
−AT P (k + 1)B1S

−1(k)BT
1 P (k + 1)A

Λ(k) = AT P (k + 1)B2u2(k + m− 1) + AT
(
Λ(k + 1)

−P (k + 1)B1S
−1(k)

(
Ru2(k) + BT

1 Λ(k + 1)

+BT
1 P (k + 1)B2u2(k + m− 1)

))
,

with P (T + 1) = Qs and Λ(T + 1) = 0.
Proof: Proof follows by standard dynamic program-

ming arguments and is omitted for space constraints. The
difference from the standard LQ control derivation is the
presence of a constant term in the system evolution equation
and the cost function. Including an affine term in the cost
function compensates for those terms.

From the form of the optimal LQ control and the sep-
aration principle, it is apparent that the encoders need to
calculate the minimum mean squared error estimate of x(k)
based on the maximal information sets and the previous
control inputs available to the controller. For the two sensor
case, this problem has been solved in [10]. Specifically,
optimal yet recursive designs for the encoders are presented
for the case when acknowledgements are available. When
acknowledgements are not available, or are subject to
erasures themselves, the optimal designs, in general, are
unknown. However, sub-optimal designs that are stabilizing
under the same conditions are identified. Owing to space
constraints, we do not present the algorithms here. An
important feature of the algorithms is that the encoders do
not need access to the previous control inputs.

V. STABILITY CONDITIONS

Because of the separation principle, the estimation and
control costs decouple. Hence, to analyze stability of the
tracking error, we have to obtain conditions that determine
when the estimation error covariance and the average LQR
cost for the system diverge, as the horizon is increased. This
analysis is given in the following Proposition:

Proposition 5.1 (Stability Conditions): Consider the
problem set-up for the system (7), as defined in section III.
Assume that the statistics of the erasure links are specified
by a given probability mass function Pr(r(k) = (i, j)),
with (i, j) ∈ {T , ∅}2 that is independent of the time
index k. Further, assume that control input is calculated
by the controller using the LQ optimal control law and
the estimate of the state using encoder design and the
estimator presented in [10]. Finally, assume that the matrix
pair (F,G) is controllable. Then, the cost J̄∞ is bounded
if the following inequalities hold:

%(F )2Pr(r2(k) = ∅) < 1 (20)
%(A2,2)2Pr(r1(k) = ∅) < 1

where F is the dynamic matrix of the systems (1) and (2),
while A2,2 is defined in (12). Moreover, if at least one of the

inequalities does not hold, then there does not exist causal
encoders and a controller that will result in a bounded cost
J̄∞.

Proof: Due to the separation principle, we need to
prove the following two statements:

1) Stability of Estimation Error: We need to ensure that
there exists a causal observer at the controller, as
well as encoders E1 and E2 that lead to a stable state
estimation error at the controller(in the mean squared
sense) if and only if the inequalities (20) hold. This
statement follows directly from Theorem III.3 in [10]
on using the re-parameterization of Section III.

2) Stability of the LQR Solution: We need to ensure that
the cost J̄∞ is bounded if the LQR optimal control in-
put is used at every time step (i.e., when the controller
has access to the state xk at every time step). Since
the matrix pair (A,B1) is not controllable, this is not
obvious. From Proposition 4.2, we need to study the
convergence of terms P (0) and Λ(0) as the horizon
increases. However, using the optimality result, we
have an easier way to ensure a bounded J̄∞ when
the LQR optimal control law is used. We only need
to ensure that there exists a control input that achieves
bounded infinite horizon cost. Since the cost for the
LQR optimal control input is upper bounded by this
cost, we will have proved the desired result. Consider
the input

u1(k) = u2(k) + K1(x1(k)− x2(k)),

where K1 is selected such that the matrix F +GK1 is
stable. Note that such a matrix K1 always exists under
the assumption of controllability of the pair (F,G).
With this control law, the following evolution for the
difference x1(k)− x2(k) occurs:

x1(k+1)−x2(k+1) = (F +GK1)(x1(k)−x2(k)).

Since the matrix F + GK1 is stable, the cost

J̄∞ = lim
T→∞

T∑

k=0

(
(x1(k)−x2(k))T Q(x1(k)−x2(k))

+ (u1(k)− u2(k))T R(u1(k)− u2(k))
)
,

is bounded. Thus the cost for the LQR optimal control
law is bounded as well.

The above two results, together with the separation prin-
ciple, show that under the assumption of controllability of
the pair (F, G) and the satisfaction of the inequalities (21),
the system is stable with the optimal design identified in
the previous section.
The above result does not rely on the presence of acknowl-
edgements at the encoders. In our problem, %(A2,2) can be
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explicitly calculated as follows:

%(A2,2) = %







F 0 · · · 0
I 0 · · · 0

0
. . . 0

...
... 0 I 0







= %(F )

Consequently, the necessary and sufficient conditions for the
existence of a scheme, for which J̄∞ is bounded, reduce to:

%(F )2Pr(ri(k) = ∅) < 1, i ∈ {1, 2} (21)

Note, in particular, that the condition (21) is independent of
the amount of preview m that is available about the output
of the leader system. Our results can be easily extended
to more complicated models of erasure, such as Markovian
models.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we looked at the problem of optimally
controlling a system (follower) so that its state tracks the
state of another plant (leader) that is driven by exogenous
inputs. The optimal control scheme must be implemented
via erasure links that are used to convey state measurements
to the controller. This is a three-block design problem in
which a controller acting on the follower system and two
encoders, associated with the leader and follower systems,
must be designed. Using a re-parameterization, we were
able to develop a method for optimally designing all the
components, according to a mean-squared cost. We also
provide explicit necessary and sufficient conditions for the
existence of a solution leading to bounded infinite horizon
cost.

The paper can be extended in many directions. We have
not been able to obtain a clear characterization of the per-
formance improvement as the preview length is increased.
Similarly, the case of tracking when the reference signal is
a given sequence of random variables remains open.
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