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Abstract—An asymptotic tracking controller is designed in
this paper, which combines Model Reference Adaptive Control
(MRAC) and Dynamic Inversion (DI) methodologies in con-
juction with the robust integral of the signum of the error
(RISE) technique for output tracking of an aircraft system in
the presence of parametric uncertainty and unknown, nonlinear
disturbances, which are not linearly parameterizable (non-
LP). The control design is complicated by the fact that the
control input is multiplied by an uncertain, non-square matrix.
Partial knowledge of the aircraft model along with constant
feedforward estimates of the unknown plant parameters are
exploited in order to reduce the required control effort. This
result shows for the first time how asymptotic tracking control
can be achieved for a nonlinear system in the presence of a
non-square input matrix containing parametric uncertainty and
nonlinear, non-LP disturbances. Asymptotic output tracking
is proven via Lyapunov stability analysis, and high-fidelity
simulation results are provided to verify the efficacy of the
proposed controller.

I. INTRODUCTION1

Feedback linearization is a general control method where

the nonlinear dynamics of a system are canceled by state

feedback yielding a residual linear system. Dynamic inver-

sion is a similar concept as feedback linearization that is

commonly used within the aerospace community to replace

linear aircraft dynamics with a reference model [1]–[9]. For

example, a general dynamic inversion approach is presented

in [4] for a reference tracking problem for a minimum-

phase and left-invertible linear system. A dynamic inversion

controller is designed for a nonminimum-phase hypersonic

aircraft system in [2], which utilizes an additional controller

to stabilize the zero dynamics. A finite-time stabilization

design is proposed in [3], which utilizes dynamic inversion

given a full rank input matrix. Typically, dynamic inversion

methods (e.g., [1], [2]) assume the corresponding plant

models are exactly known. However, parametric uncertainty,

additive disturbances, and unmodeled plant dynamics are

always present in practical systems.

Motivated by the desire to improve the robustness to

uncertainty over traditional methods, adaptive dynamic in-

version (ADI) was developed as a method to compensate for

1This research is supported in part by the NSF CAREER AWARD
0547448, NSF SGER 0738091, AFOSR contract numbers F49620-03-1-
0381 and F49620-03-1-0170, AFRL contract number FA4819-05-D-0011,
Department of Energy URPR program grant number DE-FG04-86NE37967,
and by research grant No. US-3715-05 from BARD, the United States -
Israel Binational Agricultural Research and Development Fund.

parametric uncertainty (cf. [4], [6], [7], [9]). Typically, ADI

methods exploit model reference adaptive control (MRAC)

techniques where the desired input-output behavior of the

closed-loop system is given via the corresponding dynamics

of a reference model [5], [7], [10]. Therefore, the basic task

is to design a controller which will ensure the minimal error

between the reference model and the plant outputs despite

uncertainties in the plant parameters and working conditions.

Several efforts (e.g., [8], [9], [11]–[14]) have been developed

for the more general problem where the uncertain parameters

or the inversion mismatch terms do not satisfy the linear-

in-the-parameters assumption (i.e., non-LP). One method to

compensate for non-LP uncertainty is to exploit a neural

network as an on-line function approximation method as

in [11]–[13]; however, all of these results yield uniformly

ultimately bounded stability due to the inherent function

reconstruction error.

In contrast to neural network-based methods to compen-

sate for the non-LP uncertainty, a robust control approach

was recently developed in [15] (coined RISE control in

[16]) to yield an asymptotic stability result. The RISE-based

control structure has been used for a variety of fully actuated

systems in [15]–[18]. The contribution in this result is the use

of the RISE control structure to achieve asymptotic output

tracking control of a model reference system, where the

plant dynamics contain a bounded additive disturbance (e.g.,

potential disturbances include: gravity, inertial coupling, non-

linear gust modeling, etc.). This result represents the first

ever application of the RISE method where the controller

is multiplied by a non-square matrix containing parametric

uncertainty. To achieve the result, the typical RISE control

structure and closed-loop error system development are mod-

ified by adding a robust control term, which is designed

to compensate for the uncertainty in the input matrix. The

result is proven via Lyapunov-based stability analysis and

demonstrated through numerical simulation.

II. AIRCRAFT MODEL AND PROPERTIES

The aircraft system under consideration in this paper can

be modeled via the following state space representation [2],

[6]:
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{̇ = D{+Ex+ i ({> w) (1)

| = F{> (2)

where D 5 Rq×q denotes the state matrix, E 5 Rq×p for

p ? q represents the input matrix, F 5 Rp×q is the known
output matrix, x 5 R

p is a vector of control inputs, and

i ({> w) 5 Rq represents an unknown, nonlinear disturbance.
Assumption 1: The D and E matrices given in (1) contain

parametric uncertainty.

Assumption 2: The nonlinear disturbance i ({> w) and its
first two time derivatives are assumed to exist and be bounded

by a known constant.

A. Osprey Aircraft Model

In this section, we describe how a specific aircraft can be

related to (1). The Osprey fixed wing aerial vehicle (see Fig.

1) is a commercially available, low-cost experimental flight

test bed for investigating novel control approaches. Based

Fig. 1. The Osprey aircraft testbed.

on the standard assumption that the longitudinal and lateral

modes of the aircraft are decoupled, the state space model

for the Osprey aircraft testbed can be represented using (1)

and (2), where the state matrix D 5 R8×8 and input matrix
E 5 R8×4 are given as

D =

�
Dorq 04×4
04×4 Dodw

¸
E =

�
Eorq 04×2
04×2 Eodw

¸
> (3)

and the output matrix F 5 R4×8 is designed as

F =

�
Forq 02×4
02×4 Fodw

¸
> (4)

where Dorq> Dodw 5 R
4×4, Eorq> Eodw 5 R

4×2, and

Forq> Fodw 5 R2×4 denote the state matrices, input matrices,
and output matrices, respectively, for the longitudinal and

lateral subsystems, and the notation 0l×m denotes an l × m
matrix of zeros. The state vector {(w) 5 R8 is given as

{ =
£
{Worq {Wodw

¤W
> (5)

where {orq (w) > {odw (w) 5 R
4 denote the longitudinal and

lateral state vectors defined as

{orq ,
£
Y � t �

¤W
{odw ,

£
� s u !

¤W
>
(6)

where the state variables are defined as

Y = yhorflw| � = dqjoh ri dwwdfn
t = slwfk udwh � = slwfk dqjoh
� = vlghvols dqjoh s = uroo udwh
u = |dz udwh ! = edqn dqjoh

and the control input vector is defined as

x ,
£
xWorq xWodw

¤W
=
£
�hohy �wkuxvw �dlo �uxg

¤W
=
(7)

In (7), �hohy (w) 5 R denotes the elevator deflection angle,
�wkuxvw (w) 5 R is the control thrust, �dlo (w) 5 R is the

aileron deflection angle, and �uxg (w) 5 R is the rudder

deflection angle.

The disturbance i ({> w) introduced in (1) can represent
several bounded nonlinearities. The more promising example

of disturbances that can be represented by i ({> w) is the
nonlinear form of a selectively extracted portion of the state

space matrix Dorq 5 R4×4 that would normally be linearized.
This nonlinearity would then be added to the new state space

plant by superposition, resulting in the following quasi-linear

plant model:

{̇orq = D
0

orq{orq +Eorqxorq + i ({orq> w) > (8)

where D
0

orq 5 R4×4 is the state space matrix Dorq with the
linearized portion removed, and i ({orq> w) 5 R4 denotes the
nonlinear disturbances present in the longitudinal dynamics.

Some physical examples of i ({orq> w) would be the selective
nonlinearities that cannot be ignored, such as when dealing

with supermaneuvering vehicles, where post-stall angles of

attack and inertia coupling, for example, are encountered.

Given that the Osprey is a very benign maneuvering vehicle,

i({> w) in this paper will represent less rigorous nonlinearities
for illustrative purposes. A similar technique can be followed

with the lateral direction state space representation, where the

nonlinear component of Dodw is extracted, and a new quasi-
linear model for the lateral dynamics is developed as

{̇odw = D
0

odw{odw +Eodwxodw + i ({odw> w) > (9)

where D
0

odw 5 R4×4 is the new lateral state matrix with the
linearized components removed, and i ({odw> w) 5 R4 denotes
the nonlinear disturbances present in the lateral dynamics.

Another example of bounded nonlinear disturbances, which

can be represented by i ({> w) in (1), is a discrete vertical
gust. The formula given in [19], for example, defines such a

bounded nonlinearity in the longitudinal axis as

i ({orq> w) =

5

99
7

�11=1
7=2
37=4
0

6

::
8
1

Y0

½
Xgv
2

h
1� cos

³�v
K

´i¾
>

(10)

where K denotes the distance (between 35 feet and 350 feet)

along the airplane’s flight path for the gust to reach its peak

velocity, Y0 is the forward velocity of the aircraft when it
enters the gust, v 5 [0> 2K] represents the distance penetrated
into the gust (e.g., v =

R w2
w1
Y (w) gw), and Xgv is the design

gust velocity as specified in [19]. This regulation is intended
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to be used to evaluate both vertical and lateral gust loads,

so a similar representation can be developed for the lateral

dynamics. Another source of bounded nonlinear disturbances

that could be represented by i ({> w) is network delay from
communication with a ground station.

III. CONTROL DEVELOPMENT

To facilitate the subsequent control design, a reference

model can be developed as:

{̇p = Dp{p +Ep� (11)

|p = F{p> (12)

with Dp 5 Rq×q and Ep 5 Rq×p designed as

Dp =

�
Dorqp 04×4
04×4 Dodwp

¸
Ep =

�
Eorqp 04×2
04×2 Eodwp

¸
>

(13)

where Dp is Hurwitz, � (w) 5 R
p is the reference input,

{p ,
£
{Worqp {Wodwp

¤W 5 R
q represents the reference

states, |p 5 R
p are the reference outputs, and F was

defined in (2). The lateral and longitudinal reference models

were chosen with the specific purpose of decoupling the lon-

gitudinal mode velocity and pitch rate as well as decoupling

the lateral mode roll rate and yaw rate. In addition to this

criterion, the design is intended to exhibit favorable transient

response characteristics and to achieve zero steady-state

error. Simultaneous and uncorrelated commands are input

into each of the longitudinal and lateral model simulations to

illustrate that each model indeed behaves as two completely

decoupled second order systems.

The contribution in this control design is a robust tech-

nique to yield asymptotic tracking for an aircraft in the

presence of parametric uncertainty in a non-square input

authority matrix and an unknown nonlinear disturbance. To

this end, the control law is developed based on the output

dynamics, which enables us to transform the uncertain input

matrix into a square matrix. By utilizing a feedforward (best

guess) estimate of the input uncertainty in the control law

in conjunction with a robust control term, we are able to

compensate for the input uncertainty. Specifically, based on

the assumption that an estimate of the uncertain input matrix

can be selected such that a diagonal dominance property is

satisfied in the closed-loop error system, asymptotic tracking

is proven.2

A. Error System

The control objective is to ensure that the system out-

puts track desired time-varying reference outputs despite

unknown, nonlinear, non-LP disturbances in the dynamic

model. To quantify this objective, a tracking error, denoted

by h (w) 5 Rp, is defined as

h = | � |p = F ({� {p) = (14)

2Preliminary simulation results show that this assumption is mild in the
sense that a wide range of estimates satisfy this requirement.

To facilitate the subsequent analysis, a filtered tracking error

[20], denoted by u (w) 5 Rp> is defined as:

u , ḣ+ �h> (15)

where � 5 R
p×p denotes a matrix of positive, constant

control gains.

Remark 1: It can be shown that the system in (1) and

(2) is bounded input bounded output (BIBO) stable in the

sense that the unmeasurable states {x 5 R
q�p and the

corresponding time derivatives are bounded as

k{xk � f1 k}k+ �{x k{̇xk � f2 k}k+ � {̇x> (16)

where } 5 R2p is defined as

} ,
£
hW uW

¤W
> (17)

and f1> f2> �{x> � {̇x 5 R are known positive bounding

constants, provided the control input x (w) remains bounded
during close-loop operation.

The open-loop tracking error dynamics can be developed

by taking the time derivative of (15) and utilizing the

expressions in (1), (2), (11), and (12) to obtain the following

expression:

u̇ = Q̃ +Qg + (ẋ+ �x)� h> (18)

where the auxiliary function Q̃ ({> {̇> h> ḣ) 5 Rp is defined

as

Q̃ , FD ({̇� {̇p) + �FD ({� {p) (19)

+FD ({̇�x + �{�x) + h>

the auxiliary function Qg

³
{p> {̇p> �> �̇

´
is defined as

Qg = FD ({̇p + �{p) + F
³
i̇ ({> w) + �i ({> w)

´
(20)

�FDp ({̇p + �{p)� FEp
³
�̇ + ��

´

+FD ({̇�x + �{�x) >

and the constant, unknown matrix  5 Rp×p is defined as

 , FE= (21)

In (19) and (20), {�x (w) > {̇�x (w) 5 R
q contain the por-

tions of {x (w) and {̇x (w), respectively, that can be upper
bounded by functions of the states, {�x (w) > {̇�x (w) 5 R

q

contain the portions of {x (w) and {̇x (w) that can be upper
bounded by known constants (i.e., see (16)), { (w) 5 R

q

contains the measurable states (i.e., { (w) = { (w)+{�x (w)+
{�x (w)), and {p (w) 5 R

q contains the reference states

corresponding to the measurable states { (w). The quanti-

ties Q̃ ({> {̇> h> ḣ) and Qg

³
{p> {̇p> �> �̇

´
and the derivative

Q̇g

³
{p> {̇p> {̈p> �> �̇> �̈

´
can be upper bounded as follows:

°°°Q̃
°°° � � (k}k) k}k kQgk � �Qg

°°°Q̇g
°°° � �Q̇g

>

(22)

where �Qg
> �Q̇g

5 R are known positive bounding constants,
and the function � (k}k) is a positive, globally invertible,
nondecreasing function. Based on the expression in (18) and
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the subsequent stability analysis, the control input is designed

as

x = ��
Z w

0

x (�) g� � (nv + 1) ̂�1h (w) (23)

+(nv + 1) ̂
�1h (0)�

Z w

0

n�̂
�1vjq (u (�)) g�

�̂�1
Z w

0

[(nv + 1)�h (�) + �vjq (h (�))] g�>

where �> nv> n� 5 Rp×p are diagonal matrices of positive,

constant control gains, � was defined in (15), and the

constant feedforward estimate ̂ 5 Rp×p is defined as

̂ , FÊ= (24)

To simplify the notation in the subsequent stability analysis,

the constant auxiliary matrix ̃ 5 Rp×p is defined as

̃ , ̂�1> (25)

where ̃ can be separated into diagonal and off-diagonal

components as

̃ = �+�> (26)

where � 5 Rp×p contains only the diagonal elements of

̃, and � 5 Rp×p contains the off-diagonal elements.

After substituting the time derivative of (23) into (18), the

following closed-loop error system is obtained:

u̇ = Q̃ +Qg � (nv + 1) ̃u � n�̃vjq (u)
�̃�vjq (h (w))� h= (27)

Assumption 3: The constant estimate ̂ given in (24) is

selected such that the following condition is satisfied:

�min (�)� k�k A %> (28)

where % 5 R is a known positive constant, and �min (·) de-
notes the minimum eignenvalue of the argument. Preliminary

testing results show this assumption is mild in the sense that

(28) is satisfied for a wide range of ̂ 6= .
Remark 2: A possible deficit of this control design is that

the acceleration-dependent term u (w) appears in the control
input given in (23). This is undesirable from a controls

standpoint; however, many aircraft controllers are designed

based on the assumption that acceleration measurements

are available [21]–[25]. Further, from (23), the sign of the

acceleration is all that is required for measurement in this

control design.

IV. STABILITY ANALYSIS

Theorem 1: The controller given in (23) ensures that the

output tracking error is regulated in the sense that

kh(w)k$ 0 as w$4> (29)

provided the control gain nv introduced in (23) is selected
sufficiently large (see the subsequent stability proof), and

� and n� are selected according to the following sufficient
conditions:

� A

¡
�Qg

+ 1

�
�Q̇g

¢

�min (�)
n� A

s
p� k�k

%
> (30)

where �Qg
and �Q̇g

were introduced in (22), % was defined
in (28), and � and � were introduced in (26).

The following lemma is utilized in the proof of Theorem

1.

Lemma 1: Let D � R
2p+1 be a domain containing

z(w) = 0> where z(w) 5 R2p+1 is defined as

z(w) ,
£
}W

p
S (w)

¤W
> (31)

and the auxiliary function S (w) 5 R is defined as

S (w) , � kh (0)k k�k� h (0)W Qg (0) (32)

+
s
p

Z w

0

� k�k ku (�)k g� �
Z w

0

O (�) g�=

The auxiliary function O (w) 5 R in (32) is defined as

O (w) , uW
³
Qg (w)� �̃vjq (h)

´
= (33)

Provided the sufficient conditions in (30) is satisfied, the

following inequality can be obtained:

Z w

0

O (�) g� � � kh (0)k k�k� h (0)W Qg (0) (34)

+
s
p

Z w

0

� k�k ku (�)k g�=

Hence, (34) can be used to conclude that S (w) � 0.
Proof: (See Theorem 1) Let Y (z> w) : D× [0>4)$ R

be a continuously differentiable, positive definite function

defined as

Y ,
1

2
hW h+

1

2
uW u + S> (35)

where h (w) and u (w) are defined in (14) and (15), respec-
tively, and the positive definite function S (w) is defined
in (32). The positive definite function Y (z> w) satisfies the
inequality

X1 (z) � Y (z> w) � X2 (z) > (36)

provided the sufficient condition introduced in (30) is sat-

isfied. In (36), the continuous, positive definite functions

X1 (z) > X2 (z) 5 R are defined as

X1 ,
1

2
kzk

2
X2 , kzk

2
= (37)

After taking the derivative of (35) and utilizing (15), (26),

(27), (32), and (33), Ẏ (z> w) can be expressed as

Ẏ (z> w) = ��hW h+ uW Q̃ � (nv + 1) uW�u (38)

� (nv + 1) uW�u +
s
p� kuk k�k

�n�uW�vjq (u)� n�uW�vjq (u) =

By utilizing (22), Ẏ (z> w) can be upper bounded as

Ẏ (z> w) � ��hW h� % kuk2 � nv% kuk2 (39)

+� (k}k) kuk k}k+
£
�n�%+

s
p� k�k

¤
kuk =

Clearly, if the second of equations (30) is satisfied, the

bracketed term in (39) is negative, and Ẏ (z> w) can be upper
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bounded using the squares of the components of } (w) as
follows:

Ẏ (z> w) � �� khk2 � % kuk2

+
h
� (k}k) kuk k}k� nv% kuk2

i
= (40)

Completing the squares for the bracketed terms in (40) yields

Ẏ (z> w) � ��3 k}k
2 +

�2 (k}k) k}k
2

4nv%
> (41)

where �3 , min {�> %}, and � (k}k) is introduced in (22).
The following expression can be obtained from (41):

Ẏ (z> w) � �X (z) > (42)

where X (z) = f k}k2, for some positive constant f 5 R, is
a continuous, positive semi-definite function that is defined

on the following domain:

D ,
n
z 5 R2p+1 | kzk ? ��1

³
2
p
�3nv%

´o
= (43)

The inequalities in (36) and (42) can be used to show that

Y (w) 5 L4 in D; hence h (w) > u (w) 5 L4 in D. Given that
h (w) > u (w) 5 L4 in D, standard linear analysis methods can
be used to prove that ḣ (w) 5 L4 in D from (15). Since

h (w) > ḣ (w) 5 L4 in D, the assumption that |p> |̇p 5 L4 in

D can be used along with (14) to prove that |> |̇ 5 L4 in D.
Given that u (w) 5 L4 in D, the assumption that ̂�1 5 L4
in D can be used along with the time derivative of (23)

to show that ẋ (w) 5 L4 in D. Further, Equation 2.78 of
[26] can be used to show that ẋ (w) can be upper bounded
as ẋ (w) � ��x (�) + P , ;w � 0, where P 5 R

+ is a

bounding constant. Theorem 1.1 of [27] can then be utilized

to show that x (w) 5 L4 in D. Hence, (27) can be used to
show that u̇ (w) 5 L4 in D. Since ḣ (w) > u̇ (w) 5 L4 in D,
the definitions for X (z) and } (w) can be used to prove that
X (z) is uniformly continuous in D.
Let V � D denote a set defined as follows:

V ,

½
z (w) � D | X2 (z (w)) ?

1

2

³
��1

³
2
p
%�3nv

´´2¾
=

(44)

Theorem 8.4 of [28] can now be invoked to state that

f k}k2 $ 0 dv w$4 ;z (0) 5 V= (45)

Based on the definition of }, (45) can be used to show that

kh (w)k$ 0 dv w$4 ;z (0) 5 V= (46)

V. SIMULATION RESULTS

A numerical simulation was created to test the efficacy

of the proposed controller. The simulation is based on the

aircraft state space system given in (1) and (2), where the

numerical values for the state matrix D and input authority
matrix E (e.g., see (3)-(7)) are based on the linearized

model for the Osprey aircraft.3 The reference model for the

3The numerical values for the Osprey aircraft are only used in the
simulation to generate the uncertain plant model for the aircraft, the values
are not used in the control design.

simulation is represented by the state space system given in

(11)-(13), where Dorqp and Dodwp are Hurwitz.4

The nonlinear disturbance terms i ({orq> w) and i ({odw> w)
introduced in (8) and (9), respectively, are defined as

i ({orq> w) =
£
�9=81 sin � + j ({) 0 0 0

¤W
(47)

i ({odw> w) =
£
0=39 sin! 0 0 0

¤W
> (48)

where j ({) represents a disturbance due to a discrete vertical
wind gust as defined in (10), where Xgv = 10=12 p@v,
K = 15=24 p, and Y0 = 25 p@v (cruise velocity). The
remainder of the additive disturbances in (47) and (48)

represent nonlinearities not captured in the linearized state

space model (e.g., due to small angle assumptions). All states

and control inputs were initialized to zero for the simulation.

Remark 3: For the estimate Êorq used in the simulation,
the inequality in (28) is satisfied. Specifically, the choice for

Êorq yields

�min (�) = 0=6450 A 0=0046 = k�k = (49)

In order to develop a realistic stepping stone to an actual

experimental demonstration of the proposed aircraft con-

troller, the simulation parameters were selected based on

detailed data analyses and specifications. The sensor noise

values are based upon Cloud Cap Technology’s Piccolo

Autopilot and analysis of data logged during straight and

level flight. The thrust limit and estimated rate limit was

measured via a static test using a fish scale. The control

surface rate and position limits were determined via the

geometry of the control surface linkages in conjunction with

the detailed specifications sheet given with the Futaba S3010

standard ball bearing servo.

The objectives for the longitudinal controller simulation

are to track pitch rate and forward velocity commands.

Figs. 2-3 show the simulation results of the closed-loop

longitudinal system with control gains selected as follows

(e.g., see (21) and (23))5:

� = gldj
©
0=1 130

ª
nv = gldj

©
0=2 160

ª

� = gldj
©
0=7 0=1

ª
n� = 0=1L2×2>

where the notation Lm×m denotes the m×m identity matrix. Fig.
2 shows the reference and actual pitch rates during closed-

loop operation, and Fig. 3 shows the reference and actual

forward velocity responses.

VI. CONCLUSION

An aircraft controller is presented, which achieves asymp-

totic tracking control of a model reference system where

the plant dynamics contain input uncertainty and a bounded

non-LP disturbance. The developed controller exhibits the

desirable characteristic of tracking the specified decoupled

reference model. To achieve the result, a novel robust control

4Although both the longitudinal and lateral subsystems were simulated,
only the longitudinal simulation results are presented in this section for the
sake of brevity.
5The n� used in the longitudinal controller simulation does not satisfy the

sufficient condition given in (30); however, this condition is not necessary
for stability, it is sufficient for the Lyapunov stability proof.

3486



0 1 2 3 4 5 6 7 8
−5

0

5

10

15

20

25

Time [s]

P
it
c
h

 R
a

te
 [

d
e

g
]

 

 

Model Reference

Actual Response

Fig. 2. Pitch rate response during closed-loop longitudinal controller
operation.
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Fig. 3. Forward velocity response during closed-loop longitudinal controller
operation.

technique is combined with a RISE control structure. A

Lyapunov-based stability analysis is provided to verify the

theoretical result, and simulation results demonstrate the

robustness of the controller to sensor noise, exogenous per-

turbations, parametric uncertainty, and plant nonlinearities,

while simultaneously exhibiting the capability to emulate a

reference model designed offline.
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