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Abstract— Sorting of heterogeneous units is a self-organized
behavior which is seen in many biological systems. One of
the best examples of such systems is a system of biological
cells of heterogeneous types that has the ability to self-organize
into specific formations, form different types of organs and,
ultimately, develop into a living organism. Earlier research
in this area has indicated that such self-sorting behaviors
in biological cells and tissues are made possible because of
difference in the adhesivity between different types of cells
or tissues. Inspired by this differential adhesivity model, this
paper presents a decentralized approach based on differential
artificial potential to achieve the self sorting behavior in a
swarm of heterogeneous robotic agents. The method is based
on the proposition that agents of different types experience
different magnitude of potential while they are interacting
with agents of different types. An analysis of the system
with the proposed approach in Lyapunov sense is carried
out for stability. Extensive simulation studies and numerical
analysis suggest that the proposed method would always lead
a population of heterogeneous agents closer to the sorted or
segregated configuration.

I. INTRODUCTION

Formation control of multiple autonomous vehicles has

received attention of several researchers working in the area

of mobile robotics because of its potential applications in

a number of fields including cooperated search and rescue

operation, surveillance, reconnaissance, and boundary pro-

tection. Advancement in communication and sensing tech-

nologies, and in computing resources have made it possible

to coordinate the movement of several autonomous vehicles

working cooperatively to achieve certain mission. One of the

very first applications of formation control of multiple agents

was behavioral simulation of flocks of birds, herd of animals

and schools of fish for computer graphics by Reynolds [17].

He stated three simple behaviors that lead to flocking in birds

and fish: collision avoidance, velocity matching, and flock

centering (in decreasing order of precedence). The biggest

merit of Reynolds’ approach was that these behaviors were

based on observations of local environment and interactions

on a local scale that could be fully implemented in individual

agents. These local interactions among agents resulted in

global flocking, schooling, and herding behaviors which were

totally scalable.
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Drawing inspiration from Reynolds’ approach, many re-

searchers have focused on designing decentralized con-

troller for achieving flocking behavior. The examples in-

clude behavior-based methods [2], leader-follower technique

[5], [6], method based on formation constraint and virtual

leaders/beacons [7], Lyapunov function based methods [13],

[14], [15], [16]. The concept of artificial potential has been

used in robotics by many researchers. For example, artificial

potential has been used for path planning [24], manipulator

control [23], robot navigation [12], and obstacle avoidance

[11], and multi-robot formation control [13], [15].

Obtaining a desired shape and pattern of the formation

can be critical for a mission relying on coordinated action

by multiple mobile agents. For example, if a large number

of robots need to be deployed to perform complicated tasks

such as surveillance of large area, perimeter protection of

vital installation, or surrounding site of a chemical or haz-

ardous waste spill, the robots must be able to autonomously

organize themselves in certain formation, pattern, or shape.

In many situations, it may not be possible to integrate all the

capabilities, sensing or actuation, required for different kinds

of tasks in an individual robot. Accordingly, the robots may

have heterogeneous abilities for sensing and actuation that

will enable them to perform specific tasks. Heterogeneous

robots must be able to self-organize themselves in a mission

specific manner to carry out tasks assigned to them. The

main contribution of this paper is synthesis and analysis of

a controller that allows the robots to segregate or sort so

that they form separate groups comprising of homogeneous

robots.

II. SEGREGATION AND SORTING BEHAVIORS IN

BIOLOGY

Sorting is a phenomenon which is seen in several biolog-

ical systems. Examples include brood sorting by ants [4],

segregation in amphibian larvae based on kinship [10], and

aggregation /segregation behaviors in cockroaches [1] based

on odors of strains. Sorting of cells based on their types and

functionalities is one of the best examples of sorting in bio-

logical systems. Cell sorting is one of the basic phenomenon

which leads to formation of patterns and organs in living

organisms. Study of formation of patterns in living organisms

is called morphogenesis. The mechanisms by which these

patterns form can provide valuable insights for distributed

problem solving strategies. Most of the strategies or models

in literature that can explain formation of patterns rely on dif-

ferential attraction/inhibition. For example, Swindale’s model

[20] accounts for formation of ocular dominance stripes in

visual cortex based on local activation and lateral inhibition
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(LALI) mechanism [8] for like type of synapses, and local

inhibation and lateral activation (LILA) [3], [20], the reverse,

for the unlike type of synapses. Reaction-diffusion [22] is a

model to mathematically represent the transport phenomenon

in biological and natural systems. This model tries to explain

the interaction of particles with the environment and their

motion in space. In early 1990s, Graner and Glazier [9]

proposed a lattice based modified version of large-Q Potts

model with differential adhesivity to explain and simulate

the sorting of a mixture of two types of biological cells. In

fact, it has been long known [19] that it is the difference

in intercellular adhesivity that leads to sorting in cells.

The final state of cell configuration is achieved when the

overall surface energy is globally minimized. Based on this

principle, Steinberg [19] postulated that cells are sorted i.e.,

two types of cellular units A and B are segregated when:

WAB <
(WAA + WBB)

2
(1)

where WAA and WBB represent the work of cohesion

between particles or cells of same types (i.e., between types

A & A, and B & B respectively), and WAB represents the

work of adhesion between cells of types A and B. The

method for self-sorting in artificial mobile agents presented

in this paper is motivated by this differential adhesivity

phenomenon observed in biological systems that leads to

sorting.

III. PROBLEM FORMULATION

The group of mobile agents consists of N fully actuated

agents, each of whose dynamics is given by the double

integrator:

q̇i = pi

ṗi = ui(t) i = 1, 2, . . . , N (2)

where qi and pi are m-dimensional position and velocity

vectors respectively of agent i. The group of mobile agents,

considered in this paper, consists of two different types of

agents: type A and type B. The number of agents of type A

is NA and that of type B is NB such that N = NA + NB .

The objective of this paper is to synthesize a controller that

can asymptotically flock and separate the robots of type A

and type B into two different groups (referred to as sorting

or segregation). Agents are said to flock (asymptotically)

when all agents achieve the same velocity vector, distances

between the agents are stabilized, and no collisions occur.

Let us try to precisely define the term Segregation. A group

of agents of types A and B are said to be segregated if there

exists a hyperplane that separates the two different types of

agents. Alternatively:

∃e : 〈(qj − qi), e〉 ≥ 0 ∀i ∈ A & j ∈ B (3)

where 〈a,b〉 means inner product between vectors a and

b. This implies that every agent of type A is on one side

of the hyperplane, and that of type B is on the other side

of the hyperplane. For the sake of simplicity, we relax

this definition and alternatively define Segregation to be a

configuration of agents where the average distance between

the agents of like types (type A or type B) is less than the

average distance of agents between the unlike types (between

agents of type A and type B). Alternatively,

rAA
avg < rAB

avg, rBB
avg < rAB

avg (4)

where rXY
avg is the average distance between agents of types

X and Y .

IV. CONTROL LAW FORMULATION

This section presents the control law which causes a

population of heterogeneous agents to asymptotically flock

as well as segregate. For a system of N mobile agents with

NA agents of type A and NB agents of type B, following

feedback control law is considered:

ui = −
∑

j∈Ni

∇qi
Vij(‖qj − qi‖) − a

∑

j∈Ni

(pi − pj) (5)

where ui is the control input to the agent i, Ni is the set

of agents in the neighborhood of agent i, Vij(‖qj − qi‖) is

the artificial potential of interaction between agents i and

j, ‖qj − qi‖ is the norm of vector (qj − qi) representing

the euclidean distance between agent i and j, and ∇qi

is the gradient with respect to coordinates of agent i i.e.,

qi. First term in equation (5) represents the gradient of

potential function, and the second term represents damping

and causes the agents to match their velocities with each

other. The artificial potential is a non-negative function of

relative distances between a pair of neighbors given by

Vij(qi, qj) : R2m → R≥0. Artificial potential function,

Vij due to interaction between two agents i and j can be

expressed [13] as:

Vij =







a
(

ln(qij) + d0

qij

)

if 0 ≤ qij ≤ d1

a
(

ln(d1) + d0

d1

)

if qij > d1

(6)

where, a is a scalar control gain, and qij = ‖qj −qi‖. The

parameters d0 and d1 respectively represent the inter-agent

distance below which (i.e. when qij < d0) the interaction

force is repulsive (negative) and above which (i.e. when

qij > d1) the interaction force is zero. Figure 1 shows the

potential function plotted against the inter-agent distance.

As indicated in the figure, the potential becomes minimum

when the inter-agent distance is d0. The interaction between

agents happen with the help of sensing or communication

devices. The parameter d1, then, can be regarded as the

sensing or communication range. Without loss of generality,

in this paper the parameter d1 is considered infinity so that

each agent can interact with the rest of the agents. Results

presented in this paper remain unaffected for finite d1 if

connectedness of the underlying graph of the system is

assumed. Equation (6), under such a condition, can be simply

written as:

Vij = a

(

ln(qij) +
d0

qij

)

(7)

The basis for controller synthesis in this paper is the

parameter d0. Since there are two types of mobile agents
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Fig. 1. Interaction Potential versus Inter-Agent Distance

involved in the system, there are three different kinds of

artificial potentials involved: a) Potentials arising due to

interaction between types A and A, b) Potentials arising

due to interaction between types B and B, and c) Potentials

arising due to interaction between types A and B. In this

paper, potentials arising due to interaction between the same

types are considered to be same, i.e., V AA
ij = V BB

ij . The

term V AA
ij is given by:

V AA
ij = a

(

ln(qij) +
dAA
0

qij

)

(8)

and the term V AB
ij is given by:

V AB
ij = a

(

ln(qij) +
dAB
0

qij

)

(9)

The control law for segregation can be achieved when:

dAA
0 = dBB

0 < dAB
0 (10)

Figure 2 shows the plot of force of interaction due to sim-

ilar types and due to dissimilar types of robots versus inter-

agent distance when the condition for segregation controller

(10) is met. In this case, it can be seen that the interaction

force between agents of same types is greater than that of

force between agents of different types at any given distance.

Hence, this method of segregation, based on differential

potential, is analogous to Steinberg’s [19] explanation of cell

sorting based on differential adhesiveness (see Equation (1)).

V. CONTROLLER ANALYSIS

In this section, we carry out an analysis of convergence

and stability properties of the system of multiple agents

obeying dynamics given by Equation (2) under control law

given by Equation (5). In order to carry out stability analysis

of the collective motion of agents, the following positive

definite function can be chosen as the Lyapunov function:

φ(q,p) = V (q) +
1

2
pT p (11)

where q ∈ RmN is stacked position vector of all agents,

p ∈ RmN is stacked velocity vector of all agents, and
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V (q) : RmN → R≥0 is the total potential energy of the

system.The total potential of the system consists of three

parts: 1) Potential due to interaction of agents of type A, 2)

Potential due interactions amongst agents of types A and B,

and 3) Potential due to interaction of agents of type B. This

can be written as:

V (q) = VAA(q) + VBB(q) + VAB(q)

=
1

2

∑

i∈A

∑

j∈A,j 6=i

Vij(‖qj − qi‖) +
∑

i∈A

∑

j∈B

Vij(‖qj − qi‖)

+
1

2

∑

i∈B

∑

j∈B,j 6=i

Vij(‖qj − qi‖) (12)

The collective dynamics of the system can be given by:

q̇ = p (13)

ṗ = −∇V (q) − L̂(q)p (14)

where L̂(q) ∈ RmN×mN is m-dimensional graph Laplacian

(see reference [15]). Among other important properties of

graph Laplacian matrix L̂(q), it is a positive semi-definite

matrix.

Lemma 5.1: Consider a system of N mobile agents. Each

of the agents follows dynamics given by Equation (2), and

with feedback control law given by Equation (5). For any

initial condition belonging to the level set of φ(q,p) given

by ΩC = {(q,p) : φ(q,p) ≤ C)} with C > 0, and when the

underlying graph of the system is connected and cohesive,

then the system asymptotically converges to an invariant set

ΩI ⊂ ΩC such that the points in ΩI have a velocity that is

bounded and velocity of all agents match.

Differentiating φ(q,p) with respect to time and using

Equation (14) one gets:

φ̇(q,p) = pT∇V (q) + pT ṗ

= pT∇V (q) + pT (−∇V (q) − L̂(q)p)

= −pT L̂(q)p ≤ 0 (15)

since L̂(q) is a positive semi-definite matrix. From

Lasalle’s Invariance Principle, all solutions of the system

starting in ΩC will converge to the largest invariant set
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ΩI =
{

(q,p) ∈ ΩC : φ̇(q,p) = 0)
}

, and this happens when

the velocity of all agents match. For a detailed proof of this

lemma, please see references [13], [15]. Also, equilibrium

condition is achieved when ṗ = 0. Since there are no

external forces acting on the agents, the velocities of all

agents become zero (the center of mass of the system does

not move), i.e. p = 0. Hence, equilibrium is achieved when

the total potential of the system is at extremum. This leads

to the following proposition.

Proposition 5.2: When control actions lead to the global

minimization of potential, then the system is segregated if

the condition for segregation controller (10) is applied.

Since each term of V (q) is a non-negative term, the

global minimum is reached when each individual term of

the expression (12) is minimum (assuming each term is

independent of the other). This happens when:

rij = ‖qi − qj‖ = dAA
0 ∀i ∈ A, j ∈ A

rij = ‖qi − qj‖ = dBB
0 ∀i ∈ B, j ∈ B

rij = ‖qi − qj‖ = dAB
0 ∀i ∈ A, j ∈ B (16)

Hence if condition (10) for controller is applied, we will

have the segregation given by condition (4).

However, the system of agents with a global minimum

configuration where all individual potentials are minimum

is not achievable. Problems if this nature, referred to as

graph embeddings [18], have been extensively studied in

topological graph theory. More likely, the system will reach

a local minimum condition which is given by:

∇V (q) = 0 (17)

The partial derivative given by equation (17) for an agent

i ∈ A is given by the equation:

∇qi
V (q) =

∑

j∈A,j 6=i

a

[

1

‖qi − qj‖
−

dAA
0

‖qi − qj‖2

]

(qj − qi)

‖qi − qj‖

+
∑

j∈B

a

[

1

‖qi − qj‖
−

dAB
0

‖qi − qj‖2

]

(qj − qi)

‖qi − qj‖
= 0 (18)

Equation (18) is also a force balance equation for an agent

i ∈ A and can be re-written as:
∑

j∈A,j 6=i

FAA
ij (qj − qi) +

∑

j∈B

FAB
ij (qj − qi) = 0 (19)

where

FAA
ij =

[

1

‖qi − qj‖2
−

dAA
0

‖qi − qj‖3

]

(20)

FAB
ij =

[

1

‖qi − qj‖2
−

dAB
0

‖qi − qj‖3

]

If we sum up equation (19) for all i ∈ A, and noting that

FAA
ij = FAA

ji , then we will obtain the following equation:

∑

i∈A

∑

j∈B

FAB
ij (qj − qi) = 0 (21)

Equation (21) leads to the following proposition:

Proposition 5.3: If we consider one dimensional case, i.e.,

q, p ∈ R, then the system of heterogeneous swarming agents

following dynamics (2) and control law (5) flock together

such that the average distance between the agents of different

types is greater than or equal to the parameter dAB
0 , i.e.,

rAB
avg ≥ dAB

0 .

This proposition can be proved using equation (21) in the

following manner. Let us write:

fAB
ij = FAB

ij (qj − qi) (22)

Let us assume that out of nAnB possible terms of fAB
ij ,

m are the terms for which qij = rij ≥ dAB
0 and n (m+n =

nAnB) are the terms for which qij = rij < dAB
0 . Hence,

equation (21) can be written as:

m
∑

k=1

fAB
k +

n
∑

k=1

fAB
k = 0 (23)

Let us assume that dAB
0 + xc is the mean distance for

the terms for which rij ≥ dAB
0 , and dAB

0 − xc′ is the mean

distance for the terms for which rij < dAB
0 . Hence, equation

(23) can be written as:

m
(

fk|dAB
0

+xc

)

+ n
(

fk|dAB
0

−xc′

)

= 0 (24)

Subsituting from equations (20) and (22):

m

(dAB
0 + xc)2

xc −
n

(dAB
0 − xc′)2

xc′ = 0 (25)

and since (dAB
0 +xc) ≥ (dAB

0 −xc′), we have from equation

(25):

mxc ≥ nxc′ (26)

The average distance between agents of type A and type

B is given by:

rAB
avg =

1

m + n

[

m(dAB
0 + xc) + n(dAB

0 − xc′)
]

= dAB
0 +

1

m + n
(mxc − nxc′) ≥ dAB

0 (27)

dAB
0 is a design parameter that can be chosen to be

arbitrarily large value, and since rAB
avg is always greater than

dAB
0 , rAB

avg can be made arbitrarily high.

Let us now examine the two-dimensional case when q, p ∈
R2. Since FAB

ij is a scalar quantity, in two dimensional case,

equation (21) can be equivalently written into the following

two scalar equations:

∑

i∈A

∑

j∈B

FAB
ij xij = 0 (28)

∑

i∈A

∑

j∈B

FAB
ij yij = 0 (29)

where xij = (xj − xi) and yij = (yj − yi), xi and yi are

coordinates along X and Y axis for agent i. Hence qij =
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√

(x2
ij + y2

ij). Let us write equations (28) and (29) as the

following:

∑

k:Fk≥0

Fkxk +
∑

k:Fk<0

Fkxk = 0 (30)

∑

k:Fk≥0

Fkyk +
∑

k:Fk<0

Fkyk = 0 (31)

If we assume:

∑

k:Fk≥0

Fkxk = c1 (32)

then
∑

k:Fk<0

Fkxk = −c1 (33)

and similarly,

∑

k:Fk≥0

Fkyk = c2 (34)

∑

k:Fk<0

Fkyk = −c2 (35)

Then from Cauchy-Schwarz inequality relation, equations

(32) - (35), and noting that qk =
√

x2
k + y2

k):

‖F‖Fk≥0‖Q
1‖ ≥

√

c2
1 + c2

2 = c (36)

‖F‖Fk<0‖Q
2‖ ≥

√

c2
1 + c2

2 = c (37)

where F = {F1, F2...}, Q = {q1, q2...}, and c ≥ 0.

Again from Cauchy-Shwarz inequality relations and equa-

tions (36) and (37), it is evident that:

0 ≤
∑

Fk≥0

Fkqk ≤ c (38)

−c ≤
∑

Fk<0

Fkqk ≤ 0 (39)

From inequalities (38) and (39), we can write:

−c ≤
∑

Fk≥0

Fkqk +
∑

Fk<0

Fkqk ≤ c (40)

Using similar analysis used to prove Lemma (5.3), we can

show that:

mxc − nxc′ ≥ −c (41)

where m is the number of terms for which fk ≥ 0, and n

is the number of terms for which fk < 0. This leads to the

following:

rAB
avg ≥ dAB

0 −
c

m + n
(42)

The value c in the above inequality is bounded because

the quantities c1 and c2 in equations (32) and (34) are

bounded. Since c is bounded, we can always choose dAB
0

to be arbitrarily large making rAB
avg to be arbitrarily large.

VI. SIMULATION RESULTS AND DISCUSSIONS

Extensive simulations were carried out to verify the re-

sults obtained in the previous sections. In the simulations,

following parameters were assumed :

dAA
0 = dBB

0 = 3, and dAB
0 = 6

Figure 3 shows the configuration of a population of 20

agents (10 each of type A and B) in a 2D space at different

times during the simulation. The agents started off at a

random configuration, and control law given by equation 5

based on differential potential was applied to the agents. The

final configuration at time T=750 sec shows that the agents

of types A and B form two separate groups.
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Fig. 3. Configurations of Agents at Times T=0 (top left), T=250 sec (top
right), T=500 (bottom left), and T=750 sec (bottom right)

Figure (4) shows the plot of average distances between

agents of types A and A (rAA
avg), B and B (rBB

avg ), and A

and B (rAB
avg) versus time for the above simulation. At the

final configuration, the average distances rAA
avg , rBB

avg , and rAB
avg

were found out to be 3.21, 3.22, and 6.97 respectively, which

clearly shows that the population was segregated based on

the condition given by (4).
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The results given above were for just one simulation
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run. In order to verify that the method presented in this

paper leads to segregation in general in a population of

heterogeneous agents, an extensive simulation study was

carried out in which more than 100 runs were performed.

Figure 5 shows the average distance between agents at

steady-state. In each of the simulation runs, the population

of agents consisting of types A and B was initialized in a

random configuration obtained via uniform distribution of

agents in 2D space, and number of agents of type A and B

were each chosen randomly between values 5 and 15. Each

of the runs was carried out for 500 seconds of simulation

time. The average distances between agents shown in the

figure are calculated at the steady (final) state. It can be

easily seen that the average distance between agents of type

A (rAA
avg) and average distance agents of type B (rBB

avg ) is

less than the average distance between agents of type A and

B (rAB
avg) for each of the simulation runs. Also, it is evident

from the figure that rAB
avg is always greater than the parameter

dAB
0 supporting our result from proposition 5.3. Moreover,

in each of the simulation runs, the agents were completely

segregated and satisfied the separating hyperplane condition

of segregation given by equation (3).
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The method presented in this paper is equally applicable

to more than two types of agents and in higher dimensional

space.

VII. CONCLUSIONS

The paper presents a decentralized method to achieve self

organized bahavior of sorting or segregation in a population

of heterogeneous agents. The method is based on the concept

of differential artificial potential. The paper presents the

stability analysis of a population of agents in Lyapunov

framework, and lays down an analytical foundation for

synthesis of controllers for self-sorting in artificial potential

function framework. Specifically, condition for the synthe-

sis of controllers for sorting is analyzed in one and two

dimensional space. Extensive simulation studies verify the

results obtained in this paper, and shows the effectiveness of

the proposed method in achieving the sorting behavior in a

swarm of heterogeneous agents.
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