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Abstract—A method is presented to attach reference frames
to piecewise planar objects in view a single camera. This method
uses Euclidean homography relationships and a single known
geometric length on a single object. By attaching reference
frames to objects in the scene, the method is useful in position-
based visual servo control, where it allows control of pose
with respect to an object. The method is distinguished from
methods that require a detailed model of the object/scene to give
camera pose relative to an object, and it is distinguished from
methods that can only give current camera pose with respect to
a pose where a reference image was taken. Simulations of the
method for camera-in-hand and camera-to-hand visual servo
control tasks are presented. Experiments are presented where
the reconstruction method is used to estimate the pose of a
vehicle. These experiments represent the initial steps in a vision-
based vehicle following controller.

I. INTRODUCTION
Position-based visual servo (PBVS) control methods [1]–

[4] use three dimensional scene information that is recon-
structed from image information. That is, the camera acts
as a “Cartesian sensor”, where pose estimation algorithms
use camera data to generate an error signal in Cartesian
space. This error signal is then used in a feedback control
law. Reconstruction methods vary in terms of computational
complexity, accuracy, and the amount of information re-
quired. Methods exist to determine the camera’s pose (i.e.
the camera’s position and orientation) with respect to an
object [5], [6]; however, these methods require accurate
geometric knowledge of the object, i.e. knowledge of the
relative coordinates of all 3D points, lines, etc. used in the
algorithm. These methods might be called “hard PBVS”
methods.
An accurate model is not available for unknown scenes and

may be hard to obtain, even for a known object. Alternately,
given two images it is possible to use the Essential Matrix
or Homography matrix [7], [8] to determine the rotation and
translation between the associated camera poses. Essential or
Homography Matrices have been used in numerous control
designs [9]–[11]. Typically, these methods could only move
to a goal pose where an image had been captured, and
are often referred to as teach by showing methods. Since
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Image-Based Visual Servoing (IBVS) [2], [12] methods are
typically teach by showing, these PBVS methods have some
commonality with IBVS and could be called “soft PBVS”
methods. The major drawback of these methods is that they
can only regulate the pose of the camera with respect to
a reference pose where some reference image was taken.
They are not suitable to regulate the pose of the camera
with respect to a viewed object or the pose of one viewed
object with respect to another.
This paper presents a new method to attach a reference

frame to a planar surface containing feature points. This
method uses the Euclidean Homography derived from two
images and requires knowledge of a single geometric length
between two visible points on the plane. Alternately, if a
length on the object is unknown, but the robot is well
calibrated (i.e. accurate measurements of the robot pose and
velocity are available), it is possible to attach the reference
frame using a known camera motion rather than a known
length.
The attached reference frame allows feedback control to

move the camera to an arbitrary position relative to the
object. This has numerous applications such as manipulation
and docking. Furthermore, without any further geometric
knowledge, it is possible to attach a reference frame to every
other static planar surface. There is no requirement that the
scene remain static after attaching the reference frames, so it
becomes possible to track or control moving objects after a
brief learning phase. The presented method has advantages
over both the “hard” and “soft” PBVS methods. Knowledge
of a single geometric length is much less restrictive than
the complete geometric knowledge of all lengths needed for
“hard” pose recovery methods such as [5], [6], and the ability
to achieve a pose with respect to an object rather than a
reference pose is more useful for some tasks than “soft”
methods.
Silveira, et al. [13] recently explored the ability to visual

servo a camera to an arbitrary pose. This method also
makes use of the Euclidean Homography and is capable
of positioning the camera outside its initial field of view.
However, there are major differences between the approach
in [13] and the approach presented in this paper. The method
by Silveira, et al. defines the arbitrary pose relative to a
reference pose where a reference image was taken. The
method presented here allows the camera to move to an
arbitrary pose relative to a visible object, rather than a
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reference pose. In order to achieve an arbitrary pose with
respect to an object, the method by Silveira, et al. requires
a priori knowledge of the relative transformation between
the reference pose and the object. Furthermore, the method
presented by Silveira, et al. decomposes the Homography
to recover rotation and translation information, while the
method presented in this paper uses the Homography matrix
only to retrieve the normal to the plane. The normal vector is
used in conjunction with a known geometric length to attach
a reference frame to the plane.
The method presented in the paper is similar in spirit to

[14], where an image-based method was presented to align a
camera perpendicular to a planar surface. Given a calibrated
robot, odometry information can generate an estimate of
object depth and achieve a desired pose with respect to the
object.
In addition, the method presented in this paper can provide

priori information required by some vision-based estimation
algorithms. For instance, [15] presents a homography-based
velocity estimator, which requires knowledge of a geometric
length and knowledge of the pose of the object in the initial
image frame. Using the reconstruction method we introduce
here, all the necessary information is recovered from just the
single geometric length. A variation of this method is used in
[16] to estimate the position of feature points if they become
occluded or temporarily left the field of view.
The paper is organized as follows. Section II, presents

background information introduces notation. The reconstruc-
tion method for the baseline case of a single set of coplanar
feature points is presented in Section III. Section IV extends
the developed method to the case of piecewise planar objects
or piecewise planar scenes. Experimental and simulated re-
sults are presented in Section V. Finally, Section VI provides
a discussion of several applications and extensions of this
technique that we are actively pursuing.

II. BACKGROUND

Consider a camera with reference frame F∗c . The camera
views a collection of k ≥ 4 feature points lying in a plane
πs in front of the camera. These points have in the ordinates
m̄, m̄∗j ∈ R3 in the camera reference frame given as

m̄∗j = [x
∗
j , y
∗
j , z
∗
j ]
T , ∀j ∈ {1 . . . k}.

An image of the points is captured, resulting in a projection
to a set of points in the image plane πi. These image points
are given by the normalized coordinates m∗j ∈ R3 given as

m∗j = [
x∗j
z∗j

,
y∗j
z∗j

, 1]T , ∀j ∈ {1 . . . k}.

The plane πs has normal vector −n∗ ∈ R3 in F∗c , while
πi has a normal coincident with the −z-axis of F∗c . The
constant, scalar distance

s̄1 = km̄∗1 − m̄∗2k (1)

is assumed to be known. These coordinate frame relation-
ships are illustrated in Fig. 1.

By moving the camera (similarly, moving πs) by a transla-
tion x(t) ∈ R3 and rotation R(t) ∈ SO(3), the camera will
obtain a new pose Fc(t). The points have Euclidean and
normalized coordinates m̄j(t), mj(t) ∈ R3 in Fc(t) given
by

m̄j(t) = [xj(t), yj(t), zj(t)]
T , ∀j ∈ {1 . . . k}

mj(t) = [
xj(t)

zj(t)
,
yj(t)

zj(t)
, 1]T , ∀j ∈ {1 . . . k}.

A homography exists that maps m∗j to mj(t). This homog-
raphy can be defined as H(t) ∈ R3×3 such that

mj =
z∗j
zj
Hm∗j (2)

mj = α
³
R+

x

d∗
n∗T

´
m∗j , (3)

where αj =
z∗j
zj
is a scalar depth ratio. The matrix H(t)

is decomposed to recover R(t), x(t)
d∗ , n

∗ and αj , ∀j ∈ {1
. . . k} [7], [17]. Note that translation is only recovered up to
a scaled factor xd(t) = x(t)

d∗ , and the depth d∗ is generally
unknown.
Using standard projective geometry, the Euclidean coor-

dinate m̄j(t) is expressed in image-space pixel coordinates
as pj(t) = [uj(t), vj(t), 1]T . The relationship between pj(t)
and mj(t) is given by

pj = Amj , (4)

where A ∈ R3×3 is a constant, invertible, upper-triangular
camera calibration matrix [8]. Using (4), the Euclidean
relationship in (3) is expressed as

pj = αjAHA−1p∗j
= αjGp

∗
j . (5)

Given knowledge of A and k ≥ 4, it is possible to solve a
set linear equations for G(t) and recover H(t), R(t), x(t)

d∗ ,
n∗ and αj(t).

III. GEOMETRIC RECONSTRUCTION OF COPLANAR
FEATURE POINTS

A. Attaching a Reference Frame to a Planar Object

The Euclidean homography algorithm is sufficient to es-
timate the rotation and scaled translation of the camera or
object with respect to some reference pose. However, it is not
sufficient to solve for the pose of the camera with respect to a
viewed object or the pose of one viewed object with respect
to another. The following development provides a method
where the Euclidian homography algorithm is used along
with some additional information to attach a reference frame
Fs to a planar object, with rotation and translation given with
respect to the camera frame Fc. That is, the development in
this section is used to determine the rotation and translation
between Fs and Fc.
Consider a camera viewing a planar object with four or

more distinguishable feature points, and denote the feature
point plane as πs. If the camera and/or object move over
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Fig. 1. Elements of the reconstruction method

time, a set of linear equations can be solved for the Homog-
raphy matrix H(t) as in (2). The matrix H(t) is decomposed
into R(t),x(t)d∗ , and n

∗ as in (2), where the reference frame
F∗c can be taken as Fc(t0), i.e., the initial frame. The normal
vector of the planar object in the current frame Fc is given
as

n(t) = R(t)n∗.

The goal is to attach a reference frame Fs(t) to the planar
object. Without loss of generality, the origin of Fs(t) is
assigned to the point m̄1. The orthonormal vectors ix, iy,
iz ∈ R3 that define Fs(t) form a rotation matrix R(t) in Fc
as

R =
£
ix iy iz

¤
. (6)

The columns of R(t) in (6) are defined as

iz = −n (7)

ix =
m̄2 − m̄1

s̄1
(8)

iy = −n× m̄2 − m̄1

s̄1
, (9)

where the constant distance between the two feature points
s̄1 = km̄1 − m̄2k is assumed to be known. If m̄1(t) and
m̄2(t) were known, then ix and iy can be determined
from (8) and (9) since s̄1 is assumed to be known. To
solve for m̄1(t) and m̄2(t), a new plane π0s is defined
with normal −n(t) (so π0s is parallel to πs) and con-
taining the normalized image point m1(t). A line l is
defined from the origin of Fc through m2(t) and m̄2(t).
The plane π0s intersects l at a point m0

2. The unknown
distance between m1(t) and m0

2(t) is s1, as illustrated in
Fig. 1.
The primitives l and π0s are defined by the sets of points

q ∈ R3 that satisfy the implicit functions

l = {q | q − um2 = 0,∀u ∈ R} (10)
π0s = {q | n · (q −m1) = 0, q, n,m1 ∈ R3}. (11)

The intersection of π0s and l occurs when

u =
n ·m1

n ·m2
. (12)

The expressions in (10) and (12) are combined to solve for
the point q = m0

2 as

m0
2 =

n ·m1

n ·m2
m2.

The solution for m0
2(t) is used to solve for s1 as

s1 = km0
2 −m1k (13)

and the properties of similar triangles is used to calculate the
following:

s1
s̄1
=
km1k
km̄1k

=

°°°m0

2

°°°
km̄2k

. (14)

Since s1, s̄1, km1(t)k, and
°°°m0

2(t)
°°° are now known or

measurable, (14) is used to solve for km̄1(t)k and km̄2(t)k,
which is used to recover m̄1(t) and m̄2(t) as

m̄1 =
km̄1k
km1k

m1, m̄2 =
km̄2k
km2k

m2.

Solutions for ix, iy, and R(t) can now be determined
from (8), (9), and (6), respectively. Since Fs(t) is attached
to m̄1(t), the translation is simply given by x(t) = m̄1(t).
Furthermore, since m̄1(t) is determined, it is now possible
to solve for the distance d(t) as

d = n · m̄1. (15)

If the constant length s̄ is not known, but d(t) is known
or estimated using known camera motions, then the fact
that d(t) = zj(t)n

T (t)mj(t) can be used to solve for the
Euclidean coordinates of m̄j(t) as

m̄j =
dmj

n ·mj
, ∀j ∈ {1 . . . N}. (16)

Solving for the Euclidean coordinates of two points m̄1(t)
and m̄2(t) allows s̄1 to be estimated, which can be used to
solve for the frame Fs(t).
With d determined, and mj , ∀j ∈ {1 . . . k} measurable,

the 3D coordinates in Fc(t) of all points m̄j = [xj ,yj ,zj ]T ,
∀j ∈ {1 . . . k} is determined as

m̄j = zjmj =
d

n ·mj
m̄j , (17)

where

d = n · m̄j = n ·mjzj (18)

zj =
d

n ·mj
. (19)

B. Visual Servoing to an Arbitrary Pose
A simple visual servo controller that utilizes the above

method is now presented. The control objective is to move
the camera to a goal pose by generating a continuous camera
velocity v(t) ∈ R6. The strength of our method is that the
camera is accurately regulated to a pose defined with respect
to a planar object, i.e. teach by showing is not required. Other
PBVS methods that use the Homography matrix (e.g. [9],
[18]) are restricted to positioning the camera with respect
to the camera poses F∗c or Fc. Using the method presented
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here, there is no need for an a priori goal image or reference
image. Other pose reconstruction methods to derive pose
with respect to an object may require detailed structural
information (e.g. [5], [6]).
Let Rd and xd denote the desired, constant rotation and

translation of the camera with respect to the static plane
frame Fs, such that the image points on the plane are visible
to the camera at the desired pose. The camera is at a pose F∗c
that is currently unknown with respect to Fs. By performing
a small translation, the camera moves to a pose Fc(t1) and
the Homography H(t1) is computed and decomposed to
R(t1), x(t1)d∗ and n∗.
With n(t) = R(t)n∗ known, the pose of Fs can be

determined with respect to the current camera frame Fc(t).
The rotation and translation between Fc(t) and Fs are
denoted as Rc(t) and xc(t) respectively. A constant, desired
pose with respect to Fs is denoted as Fd. The rotation error
Re(t) ∈ SO(3) and translation error xe(t) ∈ R6 between
Fd and Fc(t) is given by

Re = RdR
T
c (20)

xe = −RdR
T
c xc + xd. (21)

The rotation error matrix Re(t) is locally mapped to

Re(t)→ u(t)θ(t) ∈ R3,
where θ(t) ∈ R is the rotation angle about the axis u(t) ∈
R3. The pose error vector is then defined as

e = [xTe , uθ
T ]T ∈ R6. (22)

The camera velocity is given by

ξ = [vT , ωT ]T ∈ R6, (23)

where v(t) ∈ R3 is the linear velocity and ω(t) ∈ R3 is
angular velocity. The time derivative of (22) is given as a
function of camera velocity by

·
e = Lξ, (24)

where L(t) ∈ R6×6 is a Jacobian-like matrix that maps
camera velocity to pose error the derivative given as

L =

∙
Rvc 03×3
03×3 RvcLω

¸
. (25)

In (25), Rvc(t) ∈ SO(3) is the rotation matrix from the
frame in which ξ(t) is measured to Fc(t). Rvc(t) is identity if
the camera frame and input velocity frame are the same. The
Jacobian like matrix Lω(t) ∈ R3×3 maps angular velocity to
d
dt (uϕ). As shown in [9], Lω(t) is given by

Lω = I − ϕ

2
u× +

Ã
1− sinc (ϕ)

sinc2
¡
ϕ
2

¢!u2×,

where I is the 3×3 identity matrix, u×(t) ∈ R3 is the skew
symmetric matrix form of the vector u(t), sinc(ϕ) =

sin(ϕ)

ϕ
,

and sinc(0) = 1.
Based on (22) and (24), the linear and angular velocity

input
ξ = −λL−1e (26)

Fig. 2. Example of Multiple Planar Surfaces

can then be defined, where λ is a scalar gain. Combining
(24) and (26) gives the closed-loop error derivative

·
e = −λe. (27)

The closed-loop system in (26) can be shown to asymptoti-
cally stabilize the error to zero, thereby bringing the camera
to the goal pose. A simulation this controller is presented in
Section V-A.

IV. GEOMETRIC RECONSTRUCTION OF PIECEWISE
PLANAR OBJECTS AND SCENES

A. Reconstructing the Geometry of Multiple Planes with
Respect to the Camera

The previous development is now extended to the case of
multiple planar patches and piecewise planar objects, given
knowledge of only a single geometric length on a single
static object in the scene. Consider a large sample of points
P visible to the camera. These points are grouped into g sets
of coplanar points Ph ⊂ P , ∀h ∈ {1 . . . g}, where all points
in Ph lie in a plane πh. The sets Ph may overlap, i.e., a
point may be in more than one set.
Segmenting a set of points into coplanar sets is not a

trivial task. The sets can be distinguished through human
interaction, scene knowledge (e.g., multiple light objects on
a dark background) or various automated methods [19], [20].
This example assumes that each set Ph is well conditioned
in the sense that it contains no more than three collinear
points, as illustrated in Fig. 2.
In the following development, the camera is assumed to

undergo a rotation R(t) and translation x(t) from a reference
frame F∗c to a frame Fc(t). The points in each set Ph have
coordinates

m̄∗hj = [x∗hj , y
∗
hj , z

∗
hj ]

T ,

∀j ∈ {1 . . . Nh}, ∀h ∈ {1 . . . g}
m̄hj(t) = [xhj , yhj , zhj ]

T ,

∀j ∈ {1 . . . Nh}, ∀h ∈ {1 . . . g}
in the frames F∗c and Fc(t), respectively. These points
project to image points with normalized coordinates m∗hj
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and mhj(t), as described in Section II. Each set of points in
the images are related by a homography Hh(t) defined by

mhj =
z∗hj
zhj

Hh m∗hj (28)

mhj =
z∗hj
zhj

µ
R(t) +

x(t)

d∗h
n∗Th

¶
m∗hj . (29)

Note that R(t) and x(t) are the same for all point sets Ph,
since all coordinate changes are due to the motion of the
single camera. However, each plane πh is different; therefore,
each set of points will have different d∗h, n∗h and Hh(t).

From m∗hj and mhj , it is possible to recover Hh(t),
n∗h, R(t), and xh(t) =

x(t)
d∗h

for all h ∈ {1 . . . g}. The
subsequent development is based on the assumption that a
single geometric length between two points in a single set is
known. Without loss of generality, this length is assumed to
be known in set P1. Given this geometric length, a reference
frame Fs1 is attached to plane π1 and the development in
Section III is used to solve for Rc1(t), xc1(t), d1(t), d∗1 and
all m̄1j , ∀j ∈ {1 . . . N1}. The translation x(t) can then be
recovered from d∗1 as

x(t) = d∗1x1(t).

Given x(t), each d∗h, ∀h ∈ {2 . . .m} is recovered from the
scaled translations xh(t) as

d∗h =
xThx

kxhk
.

Once each d∗h has been determined, all m̄∗hj , ∀j ∈ {1
. . .Nh}, ∀h ∈ {2 . . .m} can be recovered as in (16). From
knowledge of m̄∗hj , a constant length s̄h between two feature
points can be estimated for each plane, and the frames Fsh
can be attached to the plane πh. Thus, (6)-(9) can be used to
solve for Rch and xch, ∀h ∈ {2 . . .m}. Given the rotation
and translation from each plane πh to the reference camera
frame Fc, the rotation and translation between each planar
patch can be recovered.
For a stationary camera viewing multiple moving planar

objects, the analysis cannot be performed because there is not
a common R(t) or x(t). If a geometric length is known on
each object, then the analysis in Section III can be performed
for each moving plane.

B. Visual Servoing a Piecewise Planar Object to an Arbi-
trary Pose with Respect to an Unknown Object

A simple visual servo controller that utilizes the devel-
opment for multiple planar objects is now presented. The
task is to move a piecewise planar object in the view of a
camera to a goal pose with respect to a second, stationary
planar object. If a single known length is available on the
object, then by temporarily keeping that object static, that
length can be used to calculate geometric knowledge of all
planar objects in the scene. Once geometric knowledge of
the scene is available, there is no need for the controlled
object to remain static, and a positioning control task can be
performed.

Assume a camera is at pose F∗c and views a scene con-
sisting of two planar objects π1 and π2, where π1 can accept
velocity inputs and π2 is static. Assume further that the
camera is capable of at least some small autonomous motion.
After moving to an arbitrary pose Fc(t1), the homographies
H1(t) and H2(t) are determined. With n1(t) = R1(t)n

∗
1 and

n2(t) = R1(t)n
∗
2 known, the pose of both planar objects are

solved with respect to the camera frame Fc(t). The rotation
and translation from Fs1 to Fc(t), is denoted Rc1(t) and
xc1(t), respectively. Likewise, the rotation and translation
from Fs2 to Fc(t), are given by Rc2(t) and xc2(t). For
simplicity, assume that the camera does not move again after
the reference frames have been assigned to the planes.
Define a constant, desired rotation and translation Rd and

xd with respect to Fs2. The rotation Re(t) and translation
xe(t) from the desired pose to the current camera pose Fc(t)
is given by

Re = (Rc2Rd)
TRT

c1 (30)
xe = −Rd(−RT

c1R
T
c2xc2 + xc1) + xd. (31)

The rotation matrix Re(t) is locally mapped to Re(t) →
ue(t)θe(t) ∈ R3, where θe ∈ R is the angle of rotation about
the axis ue ∈ R3. The pose error vector is then given by

e(t) = [xe(t), ue(t)θe(t)] ∈ R6. (32)

Similar to the discussion in Section V-A, a velocity vector
for Fs1 that will asymptotically stabilize the error in (32) is
given by

ξ = −λL−1e, (33)

where L(t) is a matrix that maps the velocity of Fs1 to the
derivative of the pose error and λ is positive scalar gain.
Simulations of such a controller are given in Section V-B.

V. EXPERIMENTAL RESULTS
A. Simulation of Eye In Hand Visual Servoing to an Arbi-
trary Pose
The control task described in Section III-B is simulated

for a set of four coplanar points. The points are configured
in a square, but only the distance between two points is
assumed to be known. There is perfect camera calibration,
and quantization noise is added by rounding the image
feature coordinates to the nearest integer. The desired
camera pose is [xTd , uTd θd] = [0, 0,−1.2, 0, 0, π]T with
respect to a frame Fs attached to one of the feature
points. The initial pose error is [xTe (0), uTe (0)θe(0)] =
[0.6721, 0.7489, 0.3471, 0.4092, −0.5855, −0.1970],
and the developed method estimates the ini-
tial pose error to be [xTe (0), u

T
e (0)θe(0)] =

[0.77610, 0.7378, 0.3173, 0.4086, −0.5846, −0.1967].
Visual servoing is performed to regulate the pose error. The
pose error over time is given in Fig. 4. The trajectory of the
feature points in the image is given in Fig. 3.

B. Simulation of Vehicle Regulation with Respect to an
Unknown Object
A simulation of the task given in Section IV-B is presented

in this section. The objective is to move a controllable planar
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Fig. 3. Feature point trajectories
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Fig. 4. Pose error over time

object to a pose [xTd , uTd θd] = [0, 0, .5, 0, 0,
π
2 ] with respect

to a static planar object. Both planar objects are rectangular,
but only a single known length on the controllable object is
given. The initial and final poses, along with the choices of
m̄11, m̄12,m̄21 and m̄22 were chosen such that this task is
similar to positioning a known vehicle in front of a previously
unknown building. The path of the planar object as seen by
the camera is shown in Fig. 5. The pose error of Fs1 with
respect to Fd is shown in Fig. 6.
C. Experiments of Pose Estimation of a Single Object
In conjunction with the Center for Intelligent Machines

and Robotics at the University of Florida, we are in the initial
stages of implementing the method presented in the paper in
a vehicle following (i.e., platooning) applications. A leader
vehicle is fixed with a known target, and a follower vehicle
carries an on-board camera. By tracking the target points on
the leader vehicle, the pose estimation method presented in
this paper and the vision-based velocity estimation method
presented in [15] are used to estimate relative pose and
velocity of the leader vehicle with respect to follower vehicle.
The follower vehicle uses a predefined optimization function
to trace its path in the environment. The relative pose
estimation allows the follower to maintain a fixed distance
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Fig. 6. Pose error over time for controlled patch

between the leader and follower vehicle. The throttle and
brakes can be controlled with a PD controller, using a relative
pose and velocity estimation data, to avoid collision with
leader vehicle or losing track of leader vehicle in the field.
Early experiments demonstrate the effectiveness of the vision
based estimation in this scheme. Field tests of the complete
platooning system will be conducted in the coming weeks.
An experiment using a moving vehicle in Fig. 7 is

performed to demonstrate the pose estimation method as
used in the platooning application. Four bright LED arrays
were fixed to the back of a truck to facilitate simple image
segmentation, where the centroid of each detected array pro-
vides four feature points used to construct the Homography
matrix. Each of the four centroids is indicated in Fig. 7
by a cross and a number. The truck was equipped with a
differential GPS unit to provide a reference to compare the
pose estimation. The road was marked at approximately 20
feet (6.1 m) intervals and the car was driven forward and
stopped approximately every 20 feet.
The results of the experiment are seen in Fig. 8. The

expected periodically increasing step function along the
camera frame z direction (i.e., the optical axis) is evident.
Furthermore, the change in pose estimate agrees closely to
the GPS Northing measurement. There is also a small peri-
odic step increase estimated in the camera x direction. The
estimate degrades as the distance to the vehicle increases.
This is primarily due to sensor noise. As the car moves
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Fig. 7. A processed video frame from the pose estimation experiment.
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farther from the camera, the perceived lights become dimmer
and it is harder to extract the centroids. This increases the
effects of pixilation (i.e., quantization noise).
There are currently several avenues of development on the

vision system. The first is the introduction of brighter LED
arrays, which will mitigate the problem of feature noise at
large distances. New set of LED’s are visible at a distance
up to 100 meters. Additional LED targets will be affixed
to the sides of the lead vehicle to maintain target tracking
during turns or aggressive maneuvers. The next experiment
will involve 5 targets at the back, and 4 each on left and right
sides of the leader vehicle. Five targets on the back plane
will be used to distinguish back plane from side planes in
an image. Efforts are being made to replace artificial targets
with natural features like sharp corners.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, a method for geometric reconstruction is
presented that uses a Euclidean homography between two
images of coplanar points and a single known geometric
length. This method is designed for use in PBVS, and offers
the ability to control the pose of the camera or a body with
respect to a planar object in the scene. This distinguishes our
method from other PBVS methods that use the homography
but are use teach by showing techniques that are only able
to position the camera or object with respect to the pose in a
goal image. The presented method is also distinguished from
pose estimation methods that require a detailed CAD model
to solve for the camera’s pose with respect to an object, since
only a single known length is necessary.

The method developed in this paper is also suitable for nu-
merous vision-based estimation methods. Since the relative
locations of all planar surfaces and their respective feature
points is known through this method, it remains possible to
estimate the location of features if they leave the image or
are occluded. We explore this application with regards to a
rotating polyhedron in [16]. This method has been verified in
simulations of visual servoing tasks and experimental pose
estimation of moving ground vehicle. Future work will focus
on using the method for more complicated control tasks,
including closed loop control of aerial and ground vehicles.
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