
  

  
Abstract—The relay feedback test is modified the way, so 

that the ultimate frequency in the test coincides with the phase 
cross-over frequency in the open-loop system having a PID 
controller. This allows for formulation simple non-parametric 
tuning rules for PID controllers that provide desired gain 
margins exactly. Tuning rules for a PI controller and 
simulation examples are provided. 

I. INTRODUCTION 
ESPITE the success of some types of advanced process 
control, the PID control still remains the main type of 

control used in the process industries. PID controllers are 
usually implemented as stand-alone controllers or 
configurable software modules within the distributed control 
systems (DCS). The DCS software is constantly evolving 
providing a number of new features, among which the 
controller autotuning functionality is one of most useful. It is 
found in the latest releases of such popular DCS as 
Honeywell Experion PKS® and Emerson DeltaV®. The 
practice of the use of of autotuning algorithms shows that 
many of them do not provide a satisfactory performance if 
the process is subject to noise, variable external disturbance 
or nonlinear. On the other hand the simplest algorithms such 
as Ziegler-Nichols’s closed-loop tuning method [1] and 
Astrom-Hagglund’s relay feedback test (RFT) [2] provide a 
satisfactory performance in those conditions despite the 
inherent relatively low accuracy of those methods. 
Apparently, the use of an underlying model of the process in 
a parametric method (not fully matching the actual process 
dynamics) that usually has three or higher number of 
parameters may result in the significant deterioration of the 
identification-tuning accuracy if the test conditions are 
affected by noise, disturbances or nonlinearities. Only the 
most basic characteristics of the system, such as the ultimate 
gain and ultimate frequency [1], remain nearly unchanged in 
those conditions. However, the use of only ultimate gain and 
frequency cannot ensure sufficient accuracy of tuning. 
Therefore, a trade-off between the accuracy and reliability of 
tuning (which also translates into accuracy) is apparent. The 
cause of the relatively low accuracy of [1], [2] and other 
non-parametric methods is well known. This is the use of 
only two measurements of the test over the process, which 
would be equivalent to the use of a parametric method with 
a model having only two parameters, which is insufficient 
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for obtaining an acceptable precision [3]. 
There is one more factor that also contributes to the issue 

of precision. This is a popular statement that says that the 
most important test point in the closed-loop test is the one in 
which the phase characteristic of the process is –180○ 
(frequency ωπ). However, this approach does not account for 
the change of frequency ωπ due to the controller 
introduction, which is the factor that contributes to the 
precision deterioration (it is analyzed below). 

The paper is organized as follows. At first the problem of 
selection of the test point on the frequency response of the 
process is analyzed. After that a modified RFT that provides 
generation of the oscillations at a given point of the phase 
response of the process is proposed. Finally, the tuning rules 
that provide a higher precision of non-parametric tuning 
than the rules of [1] and [2] are derived, and the 
performance of the test and tuning is analyzed. 

II. EFFECT OF CONTROLLER INTRODUCTION ON STABILITY IN 
ORIGINAL PROCESS AND ITS APPROXIMATION 

It has been a popular notion that the most important point 
on the frequency response of the system is the point where 
the phase characteristic of the process is equal to –180○ 
(frequency ωπ). We shall also refer to this point as the phase 
cross-over frequency, as the phase characteristic of the plant 
(or plant and controller) crosses the line –180○. However, 
this point remains the most important one only in the system 
with the proportional controller. This circumstance is often 
neglected, and this rule is applied to all types of PID control. 
Let us consider the following motivating example and 
analyze how the introduction of the controller may affect the 
results of identification and tuning. 

Example 1. Let us assume that the process is given by the 
following transfer function (which was used in a number of 
works as a test process): 
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Find the first order plus dead time (FOPDT) 
approximating model )(ˆ sWp  to the process (1) based on 
matching the values of the transfer functions at frequency 
ωπ: 
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where Kp is the process static gain, Tp is the time constant, 
and τ is the dead time. Let us note that both (1) and (2) 
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produce the same ultimate gain and ultimate frequency in 
the Ziegler-Nichols closed-loop test [1] or the same values 
of the amplitude and the ultimate frequency in the RFT [2]. 
(Note: strictly speaking, the values of the ultimate frequency 
in tests [1] and [2] are slightly different, as the frequency of 
the oscillations generated in the RFT does not exactly 
correspond to the phase characteristic of the process –180○; 
this fact follows from the relay systems theory [4], [5]). 
Obviously, this problem has infinite number of solutions, as 
there are three unknown parameters of (2) and only two 
measurements obtained from the test. Assume that the value 
of the process static gain is known: Kp=1, and determine Tp 
and τ. Those parameters can be found from equation 

)()(ˆ
ππ ωω jWjW pp = , 

where ωπ is the phase cross-over frequency for both transfer 
functions. Therefore, πωπ −=)(arg jWp . The value of ωπ is 

0.283, which gives )0,498.0()( jjW p −=πω , and the 

FOPDT approximation is, therefore (found via solution of 
the set of two algebraic equations): 
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The Nyquist plots of the process (1) and its approximation 
(3) are depicted in Fig. 1. The point of intersection of the 
two plots (denoted as Ω0) is also the point of intersection 
with the real axis. Also πω=Ω0  for both process dynamics 

(1) and (3), and therefore )()(ˆ
00 Ω=Ω jWjW pp . If the 

designed controller is of proportional type then the gain 
margins for processes (1) and (3) are the same. However, if 
the controller is of PI type then the stability margins for (1) 
and (2) are different. Let us illustrate that. Design the PI 
controller given by the following transfer function: 
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using the Ziegler-Nichols tuning rules [1]. This results in the 
following transfer function of the controller: 

 
Fig. 1. Nyquist plots for process (1) and FOPDT approximation (3) 

 

 
Fig. 2. Nyquist plots for open-loop system with PI controller and process 
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The Nyquist plots of the open-loop systems containing the 
process (1) or its approximation (3) and the controller (5) are 
depicted in Fig. 2. It follows from the frequency-domain 
theory of linear systems and the used tuning rules that the 
mapping of point Ω0 in Fig. 1 into point Ω0 in Fig. 2 is done 
via clockwise rotation of vector )( 0ΩjW p

r
 by the angle 

( ) o25.11)28.0(1arctan =⋅= πψ  and multiplication of its 
length by such value, so that its length becomes equal to 
0.408. However, for the open-loop system containing the PI 
controller, the points of intersection of the Nyquist plots of 
the system and of the real axis are different for the system 
with process (1) and with process approximation (3). They 
are shown as points Ω1 and Ω2 in Fig. 2. The mapping of 
those points to the Nyquist plots of the process and its 
approximation is shown in Fig. 1. Therefore, the stability 
margins of the systems containing a PI controller is not the 
same any more. It is revealed as different points of 
intersection of the plots and of the real axis in Fig. 2. In fact 
the position of vector )()()( 000 ΩΩ=Ω jWjWjW pcol

rrr
 is 

fixed, but this vector does not reflect on the stability of the 
system. As one can see in Fig. 2, the gain margin of the 
system containing the FOPDT approximation of the process 
is higher than the one of the system with the original 
process. 

The considered example illustrates a fundamental 
problem of all methods of identification-tuning based on the 
measurements of process response in the critical point (Ω0). 
This problem is the shift of the critical point due to the 
introduction of the controller. The question that follows 
from the above analysis is whether the test point can be 
selected in a different way, so that the introduction of the 
controller would be accounted for in the test itself. And if 
this is possible then what kind of test it should be to ensure 
the measurements in the desired test point. 

Address the first question now. Assume that we can 
design a certain test, so that we can assign the test point at 
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the desired phase lag of the process ϕ=Ω )(arg 0jW p , 

where ϕ is a given quantity, and measure )( 0ΩjW p  in this 

point. Consider the following example. 
Example 2. Let the plant be the same as in Example 1. 

Assume that the introduction of the controller will be 
equivalent to the mapping similar to the mapping described 
above – the vector of the frequency response of the open-
loop system in the point 0Ω  will be a result of clockwise 

rotation of the vector )( 0ΩjWp
r

 by a known angle and 

multiplication by a certain known factor: 
)()()( 000 ΩΩ=Ω jWjWjW pcol

rrr
. Also assume that the 

controller will be the same as in Example 1 (for illustrative 
purpose - because the tuning rules are not formulated yet). 
Therefore, let us find the values of Tp and τ for the transfer 
function (2) (we still assume Kp=1) that ensure that the 
equality )()(ˆ

00 Ω=Ω jWjW pp  holds, where 
ooo 75.16825.11180)(arg 0 −=+−=ΩjWp  (the angle is 

selected considering the subsequent clockwise rotation by 
11.25○). Therefore, 263.00 =Ω , and 

)103.0,532.0()( 0 jjW p −−=Ω . The corresponding FOPDT 

approximation of the process is 
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One can notice that both the time constant and the dead 
time in (6) are smaller than in (3). Application of controller 
(5) shifts the point 0Ω  of intersection of )( 0ΩjWp  and 

)(ˆ
0ΩjW p  to the real axis. This point remains the point of 

intersection of the two Nyquist plots. Therefore, the gain 
margin of both systems: with the original process and with 
the approximated process are the same. Consider now the 
problem of the design of the test that can provide matching 
the points of the actual and approximating processes in the 
point corresponding to a specified phase lag. 

III. MODIFIED RFT 
Consider the following discontinuous control: 
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where max1 βσ=Δ , min2 βσ−=Δ , maxσ  and minσ are last 
“singular” points of the error signal (Fig. 3) corresponding 
to last maximum and minimum values of )(tσ  after crossing 
the zero level, β is a positive constant. The algorithm (7) is 
similar to the so-called “generalized sub-optimal” algorithm 
used for generating a second-order sliding mode in systems 
of relative degree two [7], [8]. The difference is that the 
generalized sub-optimal algorithm involves an advance 
switching of the relay but the proposed algorithm involves a 
lagged switching of the relay. 

 
Fig. 3. Relay feedback test 

 
Fig. 4. Finding periodic solution 

Let the reference signal r(t) be zero in Fig. 3. Let us show 
that in the steady mode, the motions in the system Fig. 3, 
where the control is given by (7) are periodic. Apply the 
describing function (DF) method [9] to the analysis of 
motions in Fig. 3. Assume that the steady mode periodic, 
and prove that this is a valid assumption by finding 
parameters of this periodic motion. If the motions in the 
system are periodic then maxσ  and minσ  represent the 
amplitude of the oscillations: minmax σσ −==a , and the 
equivalent hysteresis value of the relay is 

minmax21 βσβσ −==Δ=Δ=Δ . The DF of the hysteretic 
relay is given as follows 

2
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However, system Fig.3 with control (7) is not a 
conventional relay system. This system has the hysteresis 
value that is unknown a-priori and depends on the 
amplitude value: aβ=Δ . Therefore, (8) can be rewritten as 
follows: 
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The RFT will generate oscillations in the system under 
control (7). We shall further refer to that test as to “modified 
relay feedback test”. Parameters of those oscillations can be 
found from the harmonic balance equation: 

)(
1)(

0
0 aN

jW p −=Ω , (10) 

where a0 is the amplitude of the periodic motions, and the 
negative reciprocal of the DF is given as follows: 
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Finding a periodic solution in system Fig.3 with control 
(7) has a simple graphic interpretation (Fig. 4) as finding the 
point of intersection of the Nyquist plot of the process and 
of the negative reciprocal of the DF, which is a straight line 
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that begins in the origin and makes a counterclockwise angle 
βψ arcsin=  with the negative part of the real axis. 

In the problem of analysis, frequency Ω0 and amplitude a0 
are unknown variables and are found from the complex 
equation (10). In the problems of identification and tuning, 
Ω0 and a0 are measured from the modified RFT, and on the 
basis of the measurements obtained either parameters of the 
underlying model are calculated (for parametric tuning) or 
tuning parameters are calculated immediately from Ω0 and 
a0 (for non-parametric tuning). 

Reviewing again Example 2, we can note that if, for 
example, Ziegler-Nichols tuning rules are meant to be 
applied, and the subsequent transformation via introduction 
of the PI controller involving clockwise rotation by angle 

o25.11
28.0

1arctan =
⋅

=
π

ψ  is going to be applied, then 

parameter β of the controller for the modified RFT should 
be 195.025.11sin == oβ . The modified RFT also allows 
for the exact design of the gain margin (assuming the DF 
method provides exact model). Since the amplitude of the 
oscillations a0 is measured from the test, the process gain at 
frequency Ω0 can be obtained as follows: 

h
ajWp 4

)( 0
π

=Ω , (12) 

which after introduction of the controller will become the 
process gain at the critical frequency. Therefore, if the 
tuning rules are given in the format: 

0
21
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where c1 and c2 are parameters that define the tuning rule, 
then the frequency response of the controller at Ω0 becomes 
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and for obtaining the gain margin γ  (γ >1) parameter c1 
should be selected as 
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In the considered example, if we keep parameter c2 the 
same as [1]: c2=0.8, then to obtain, for example, gain margin 
γ=2 tuning parameter c1 for the modified RFT should be 
selected c1=0.49. Any process regardless of the actual 
dynamics will have gain margin γ=2 (6dB) exactly (within 
the framework of the filtering hypothesis of the DF method). 
Therefore, the modified RFT can ensure the stability of the 
closed-loop system with a controller, and also provide the 
desired gain margin. 

IV. PRECISE TREATMENT OF MODIFIED RFT 
The DF model provides a simple but approximate model 

of the periodic motions. A more accurate model would still 
be desirable. Yet, the relay system Fig. 3 is not a 
conventional relay system, as the value of the hysteresis is 

unknown. Therefore, methods [4], [5] and others cannot be 
directly applied to that system. To provide an exact 
treatment of the periodic problem in system Fig. 3 with 
controller (7), introduce the following function: 
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where ay is the amplitude of the oscillation of y(t) of the 
process output when a periodic square-pulse control of 
frequency ω and amplitude h is applied to the process, 
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⎜
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ω
π ,y  is the value of the process output at the time 

instant corresponding to the relay switch from –h to h (π/ω 
is half the period in the periodic motion, and t=0 is the time 
of the relay switch from h to –h). 
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The sign “-” is applied in (16) if the maximum of y(t) 

occurs within the time interval ⎥⎦
⎤

⎜
⎝
⎛∈

ω
π;0t , and the sign “+“ 
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π 2;t . ( )ω,ty  can be computed by means of its 

Fourier series as follows: 
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where )(arg)( ωωϕ jW p= , )()( ωω jWL p=  are the phase 

and magnitude of )( ωjW p  at frequency ω.. 

The frequency-dependent variable )(ωya  can be 

computed via (17) and (18), and ( )ωωπ ,/y  can be 
evaluated via the Tsypkin locus [4] or the LPRS [5]. This 
formula can also be obtained immediately from formula (18) 
if time in (18) is set to ωπ /=t : 
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Fig. 5. Finding exact periodic solution 

The use of function )(ωΦ  for finding the parameters of 
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the periodic motions is not different than the use of the 
frequency response )( ωjW p . It is plotted in the complex 

plane, the straight line that begins in the origin and makes a 
counterclockwise angle βψ arcsin=  with the negative part 
of the real axis is drawn, and the point of intersection of the 
two plots is found (Fig. 5), which provides the exact 
periodic solution. The frequency of the oscillations 0Ω  is 
determined by the frequency point of )(ωΦ  in the point of 
intersection: 

βπ arcsin)( 0 +−=ΩΦ , (20) 

and the amplitude is computed as )( 00 ΩΦ=a . 
With respect to the identification and tuning problems, the 

use of the exact model of the oscillations under the modified 
RFT can be advantageous in the parametric identification. 

V. RULES FOR NON-PARAMETRIC TUNING 
It seams that the most appealing application of the 

presented test is a non-parametric tuning. However, given a 
large variety of possible process dynamics, it is difficult to 
formulate certain universal rules for tuning. In practice of 
process control, tuning rules that provide a less aggressive 
response than the one provided by IAE, ITAE criteria or 
Ziegler-Nichols formulas (and others) are widely used. This 
approach is motivated by the consideration of safety, which 
chosen versus to high performance. This trend is reflected in 
the review of the modern PID control given in [10].  

Let us consider the PI controller only, and only the rules 
given in the format of the proportional dependence of the 
controller gain on the ultimate gain and of the integral time 
constant on the period of the oscillations in the modified 
RFT – as given by formula (13). Considering the fact that 
the frequency-domain characteristics of all loops tuned via 
the modified RFT are going to be very consistent (the gain 
margin is the same), let us analyze the time-domain 
characteristics of the loops with different process dynamics 
and generate the tuning rules that provide the best or at least 
good consistency of the time-domain characteristics. 

Let us use the FOPDT model as the implied process 
dynamics for the purpose of optimal selection of the 
coefficients c1 and c2. It serves a different purpose than an 
underlying process model in the parametric tuning. This 
model provides a combination of minimum-phase and non-
minimum-phase dynamics, which is typical of real 
processes. Analysis of the time-domain performance of 
FOPDT processes with different ratios between the dead 
time and the time constant (subject to the same value of the 
gain margins) would allow us to find the optimal tuning 
rules. Within the time domain, it would be difficult to 
compare such characteristics as settling time or other 
measures of speed of response – due to the difference in 
time constants of different processes. Therefore, let us use 
overshoot in the step response as a relatively “universal” 
characteristic. Let us find the overshoot values of the step 

responses of a series of FOPDT dynamics with dead time to 
time constant ratio ranging ]5.1;3.0[/ =pTτ , subject to 

equal gain margins in those loops, by varying gain margin 
and parameter c2 values. The noted dependence is presented 
in Fig. 6, where gain margin ]4;2[∈γ  and parameter 

]3.3;3.0[2 ∈c . 

 
Fig. 6. Difference between maximum and minimum overshoot [%] for 
modified RFT 

 
Fig. 7. Difference between maximum and minimum overshoot [%] for 
conventional RFT 

One can see that at lower values of parameter c2 the 
difference between the maximum and minimum overshoots 
can be high, which does not allow using too low values. On 
the other hand, higher values of parameter c2 result in the 
decrease of the integral action of the controller, which may 
not be acceptable. With respect to the dependence on the 
gain margin, higher values of the gain margin lead to a 
smaller overshoot, and to a higher consistency of the step 
response for various pT/τ  ratios. 

A similar plot for the case of the conventional RFT is 
presented in Fig. 7 for comparison. In that case the gain 
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margins are not equalized by respective selection of 
parameter β, and the difference between the maximum and 
the minimum overshoots is about three times of the former 
(note the scale difference along the vertical axis). Therefore, 
the modified RFT has an equalizing effect for the time-
domain characteristics too. 

Analysis of the data presented in Fig. 6 shows that for 
satisfactory consistency of the step response (difference 
between maximum and minimum overshoots is lower than 
10%) the gain margin and the value of c2 should not be 
smaller than certain values. In particular, for γ=2 c2≥1.1; 
γ=2.5 c2≥0.7; γ=3 c2≥0.6; γ=3.5 c2≥0.5, and γ=4 c2≥0.5. 
Therefore, the recommended settings for non-aggressive 
tuning with expected overshoot 0-3.3% might be γ=3 c2=0.7, 
which results in the following tuning rules: 

0

27.0,433.0
Ω

==
π

π cc T
a
hK , (21) 

As follows from formula (14) the PI controller would 
introduce the lag at the frequency 0Ω  equal to 
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Fig. 8. Step response of the processes of Example 3. 

VI. EXAMPLES 
Example 3. Consider the process transfer function that 

was used in Example 1. Apply the modified RFT with 
parameter 222.0=β  and tuning rules (21), which 

correspond to γ=3, and 
a
hKc π

449.0=  and the same rule for 

Tc, which corresponds to γ=2, to this process. The step 
responses of the tuned loops to the set point change (denoted 
as “s.p.”) and to the disturbance application (denoted as 
“disturbance”) are presented in Fig. 8. The graphs presented 
demonstrate a satisfactory loop performance in a 
conservative approach (γ=3) and in a more aggressive loop 

tuning (γ=2). The performance of the loops is in agreement 
with the design criteria selected: the desired gain margin. A 
higher gain margin ensures a smoother but slower response. 
The choice of the approach is motivated by the 
considerations of the particular application, whether this 
being a servo (tracking) or a regulatory control, possibility 
of process dynamics change, convenience of operation, etc. 

VII. CONCLUSION 
A modified RFT and a method of non-parametric tuning 

of a PI controller based on this test are presented in the 
paper. The modified RFT can easily be implemented via 
including some simple logic in the conventional relay test. It 
is proved that the proposed method provides the desired 
value of the gain margin exactly (subject to the assumptions 
of the DF method). An exact model of the modified RFT 
that may be useful for the parametric tuning is developed 
too. It is shown that the proposed approach ensures an 
equalizing effect with respect to overshoot in step respinse 
of a variety of possible process dynamics – due to the same 
gain margin. Examples that demonstrate the proposed 
method and illustrate the conclusions are provided. Despite 
the consideration of only PI controller, the proposed method 
can easily be extended to the case of the PID control. The 
proposed method was also implemented in a Honeywell 
DCS TPS®, tested on a number of process control loops at 
an oil plant, and demonstrated performance matching the 
above analysis. 
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