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Abstract— The optimal control of a distributed parameter
system with reaction, diffusion, and convection is investigated.
The problem is motivated by tissue engineering where the
control of the uptake of growth factors (signaling molecules) is
required to spatially and temporally regulate cellular processes
for the growth or regeneration of a tissue. Four approaches
for solving the optimal control problem are compared: (i) basis
function expansion, (ii) method of moments, (iii) internal model
control, and (iv) model predictive control. This comparison
suggests that these approaches should be combined to solve the
optimal control problem for multiple spatial dimensions.

I. INTRODUCTION

The primary goal of tissue engineering is the production of

biological tissues for clinical use. One of the main manufac-

turing strategies utilizes the attachment or encapsulation of

cells within a tissue matrix that is typically made of collagen

or synthetic polymers [12]. Beyond receiving nutrients and

releasing waste products, the development of a healthy func-

tioning tissue requires that the cells uptake hormones, drugs,

or signaling molecules in a controlled way [11]. For example,

in the development of tissues from stem cells, the stem cells

must uptake growth factors which are proteins to regulate

cellular processes such as stimulating cellular proliferation

and cell differentiation. The spatial and temporal control of

the cellular uptake can be achieved through localized release

(e.g., [20]).

Many materials and devices have been created for re-

leasing molecules in a controlled way [19]. Biodegradable

polymeric nano- or microparticles have been developed that

can be placed within a tissue matrix to provide localized

timed release [10]. These particles include spheres, core-

shell particles, and capsules that encapsulate small molecules,

protein, or DNA including growth factors or other signalling

molecules or, in the case of microcapsules, can contain cells

that excrete hormones or other macromolecules [12]. Tech-

niques have been established to make particles with highly

uniform physical properties, that produce a wide variety of

highly reproducible release profiles by manipulating physical

dimensions or by combining different types of particles [22].

These particles can be accurately positioned and attached to

a tissue matrix using such technologies as solid free-form

fabrication [3] and layer-by-layer stereolithography [15], so

as not to move until the particles have released their payloads

to the cells.
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The tissue engineering application motivates the formu-

lation of an optimal control problem for the release of

molecules from biodegradable polymeric nano- or micropar-

ticles to achieve a desired temporal and spatial uptake rate

for cells within a tissue matrix. A potential application is to

control the development of a tissue from stem cells within a

matrix, so that the timed release of different growth factors

in various locations form the multiple types of cells needed

for the functioning components of a tissue. The shape and

dimensions of these components would be a function of both

the spatial and temporal release of growth factors (e.g., [20]).

The mathematical formulation as a distributed parameter

optimal control problem is followed by a comparison of four

methods for solving the problem. The results suggest how to

best solve higher dimensional problems by a combination of

methods.

II. PROBLEM SETUP

To keep the nomenclature consistent, the term “growth

factor” will be used to refer to the molecule being released,

although the theory and algorithms also directly apply to other

molecules. Spatial and temporal control of the cellular uptake

rate in a biological tissue under the influence of diffusion

and convection can be formulated as a distributed parameter

optimal control problem:

min
ui∈Ui

∑

i

∫ tf

0

∫

V

(Jdes,i(x, y, z, t) − Ri(x, y, z, t))
2
dV dt,

(1)

where Jdes,i is the desired cellular uptake rate for species

i, Ri is its cellular uptake rate, and its concentration Ci

is the solution to the reaction-diffusion-convection equation

(RDCE) [21]

∂Ci

∂t
+ v · ∇Ci = ∇ · (Di∇Ci) − Ri, (2)

(x, y, z) are the spatial coordinates defined over domain V ,

tf is the final time of interest, v is a known velocity field as a

function of the spatial coordinates, and Di is the diffusion

coefficient for species i. Depending on the specific tissue

engineering application, the optimal control variables ui can

be either distributed throughout the spatial domain such as in

the case that controlled release particles are intermingled with

the biological tissue, or can be a subset Ui of the boundary

conditions on the surface of the domain V . This model

(2) considers applications in which the minimum physical

dimensions in the domain V are larger than the maximum

dimensions of the molecules, cells, and polymer particles that
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release growth factors. The cellular uptake kinetics and the

Jdes,i are determined in small-scale biological experiments

so as to produce a desired response, such as differentiation

to form a desired type of cell [2], [12], [21]. The model

(2) is appropriate in the early stages of tissue development,

before substantial cell migration and proliferation occurs.

The situation in which signaling molecules are produced

by cells which are then taken up by other cells (cell-cell

communication) requires only minor modification of (2).

The standard approach to solving the above optimal control

problem is control vector parameterization [17], where the

control variable ui(x, y, z, t) is discretized with respect to the

spatial and time variables, inserted into (1)-(2), and solved nu-

merically as an algebraic optimization problem. The difficulty

in applying this approach using the standard discretization of

the control input (i.e., u(0), u(∆t), u(2∆t), . . . ) is the large

number of degrees of freedom. For example, in the case where

a single control variable is spatially distributed throughout the

domain, 100 discretization points in each spatial dimension

and in time results in 1004 = 108 degrees of freedom in the

algebraic optimization. This large dimensionality problem is

well recognized in the optimal control literature (e.g., [9],

[18]). While many approaches have been proposed, no single

algorithm dominates either the literature or applications and

it is generally accepted that the best approach depends on the

details on the optimal control problem being solved.

To gain insight into how to best solve the three-dimensional

(3D) optimal control problem (1)-(2), this manuscript solves

the 1-dimensional (1D) version of the optimal control problem

for a single species with manipulatable boundary condition

and linear cellular uptake kinetics:

min
u(t)≥0

∫ tf

0

(Jdes(t) − kC(1, t))
2
dt (3)

subject to the partial differential equation (PDE)

∂C

∂t
+ v

∂C

∂x
= D

∂2C

∂x2
− kC, ∀x ∈ (0, 1), ∀t > 0, (4)

with

C(x, 0) = 0, (5)

C(0, t) = u(t), (6)

D
∂C

∂x

∣

∣

∣

x=1
= 0. (7)

The reference trajectory Jdes(t) ≥ 0,∀t > 0 is a desired

cellular uptake rate at one boundary (at x = 1) and the control

trajectory is the concentration u(t) at the other boundary (x =
0) (see Fig. 1). This problem arises when the objective is to

ensure that a desired time-varying uptake of a growth factor

occurs at a specified distance (of 1 dimensionless unit) from

a position where the growth factor is released through micro-

or nanoparticles or is carried with fluid entering the tissue at

x = 0 (this fluid brings nutrients such as glucose to the cells).

The cells within the domain would uptake at least as much
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Fig. 1. Boundary control at x = 0 with a Neumann boundary condition at
x = 1.

growth factor as cells at x = 1, ensuring that all of the cells

within the domain respond to the growth factor.

The optimal control problem (3)-(7) was solved by four

different methods: (i) basis function expansion, (ii) method

of moments, (iii) internal model control, and (iv) model

predictive control.

III. BASIS FUNCTION EXPANSION

This method generalizes an approach studied in the mid-

1980s to solve optimal control problems for systems described

by ordinary differential equations [18] to partial differential

equations, in a similar manner as has been done for sheet and

film processes (e.g., see [6], and citations therein) as well as

nonlinear PDEs such as Burgers equation [9]. To apply this

method, start with the analytical solution to the PDE (4)-(7)

C(1, t) =

e
v

2D D
∞
∑

n=1

Bnµn sin
√

µn

∫ t

0

u(τ)e−( v2

4D
+k+µnD)(t−τ)dτ

(8)

where

Bn = 4

v
v+2D

(

sin(
√

µn)√
µn

− cos(
√

µn)
)

+ cos(
√

µn) − 1

sin(2
√

µn) − 2
√

µn

(9)

and µn is the nth root of tan(
√

µn) = −2
√

µnD/v. Param-

eterize u(t) by a basis function expansion:

u(t) =
n

∑

i=1

aiφi(t) = aTφ(t), (10)

where {φi(t)} is any set of basis functions, and

a =











a1

a2

...

an











, φ(t) =











φ1(t)
φ2(t)

...

φn(t)











. (11)
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Let fi(t) be the solution to the PDE (4)-(7) for input φi(t):
fi(t) =

e
v

2D D
∞
∑

n=1

Bnµn sin
√

µn

∫ t

0

φi(τ)e−( v2

4D
+k+µnD)(t−τ)dτ

(12)

and

f(t) =











f1(t)
f2(t)

...

fn(t)











, (13)

then the optimal control problem with u(t) given by (10) can

be written as

min
u(t)≥0

∫ tf

0

(Jdes(t) − kaTf(t))2dt (14)

since the function (8) is a linear operator on u(t). An approx-

imate analytical solution to the optimal control problem can

be obtained by dropping the non-negativity constraint:

d

da

∫ tf

0

(

J2
des(t) − 2kJdes(t)a

Tf(t) + (kaTf(t))2
)

dt

=

∫ tf

0

(

−2kJdes(t)f(t) + 2k2f(t)fT(t)a
)

dt = 0, (15)

a =
1

k

(
∫ tf

0

f(t)fT(t)dt

)−1∫ tf

0

Jdes(t)f(t)dt, (16)

u(t) = φT(t)a =
φT(t)

k

(
∫ tf

0

f(t)fT(t)dt

)−1∫ tf

0

Jdes(t)f(t)dt.

(17)

There are many choices of basis functions [5], [6] for which

the temporal accuracy to the solution of the unconstrained

optimal control problem is specified directly by the number

of basis functions, whereas the number of terms in the

summation in (12) specifies the spatial accuracy. Fig. 2a

shows excellent tracking performance of this approach for

a Gaussian reference trajectory, using 20 terms in a truncated

Fourier cosine series [7] as the basis functions φi(t) (see

Fig. 2a). Drawbacks of this method are that (i) it can result

in ringing at discontinuities along the time axis due to

the Gibbs phenomenon [8], [23], and (ii) it does not take

the non-negativity constraint on the control variable in (3)

into account, which can result in constraint violations. Fig.

2b shows both deficiencies occurring for a step reference

trajectory.

IV. METHOD OF MOMENTS

In the method of moments, analytical expressions are

derived for moments of output variables in a PDE in terms

of the moments of input variables [1]. More specifically, it

can be shown for a linear system that a compact control input

u(t) and the output variable y(t) are related by

µy = µg + µu, (18)
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Fig. 2. Outputs for the basis function expansion approach when the reference
trajectories are Gaussian [4] and step functions (for D = v = 1 and k = 7.6,
which are the parameters used for the entire paper). The number of basis
functions is n and the number of eigenfunctions for the spatial variable was
10. The negative uptake rate is the result of a negative control input, which
is not physically realizable.

σ2
y = σ2

g + σ2
u, (19)

where µ is the mean time (which is related to the first-order

moment), σ2 is the variance of the signal about its mean

time (which is related to the second-order moment), and the

subscripts y refers to output, u refers to input, and g refers

to the linear system relating u and y. Analytical expressions

for µg and σ2
g are derived by taking integrals of the PDE [1].

We apply this method to optimal control by decomposing

the reference trajectory into a linear combination of non-

negative basis functions, each of which is parameterized by

mean time and variance. The form of the basis function is

selected such that the shape of the optimal control trajectory

is known and parameterized by mean time and variance which

are computed from (18) and (19). The overall optimal control

trajectory is computed by summing the optimal control tra-

jectories corresponding to each of the basis functions. Fig.

3 shows nearly perfect tracking for a Gaussian reference

trajectory using Gaussian basis functions, for which the

optimal control trajectories are Gaussian-like functions. This

approach is very computationally efficient for computing a

non-negative optimal control trajectory, but does not directly

address state or other types of control constraints.
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Fig. 3. Uptake rate using the method of moments approach (the magnitude
of the control input was adjusted by dividing the reference input by the DC
gain of the plant; which gives the same total amount of the growth factor
uptake as desired).

V. INTERNAL MODEL CONTROL

Internal model control (IMC) is based on inverting a

transfer function model. The transfer function obtained by

taking the Laplace transform of (4)-(7) is irrational (see Table

I), as the model is described by a PDE (4). Since the IMC

design equations [16] only apply to finite-dimensional or

highly restrictive classes of infinite-dimensional models, the

spatial variable was discretized (Method of lines, MOL) to

obtain an approximate rational transfer function (see Table

I) by using the finite difference method, which is an accu-

rate representation of the exact transfer function over the

frequency range of the interest (see Bode plots in Fig. 4).

The rational transfer function was minimum phase, so the

resulting IMC control transfer function is the inverse of the

rational transfer function augmented by a filter designed to

make the overall system proper [16]. Applications of IMC

for Gaussian and step reference trajectories are shown in

Fig. 5, with λ tuned so that the control variable is non-

negative. While this approach can give insight into the form

of the optimal control trajectory, it is sub-optimal and does

not handle general control constraints, and extensions of IMC

to handle constraints [24] are not optimal with respect to the

optimization objective (3).

VI. MODEL PREDICTIVE CONTROL

Model predictive control (MPC) is a well-known method

for solving optimal control problems with constraints [13].

In contrast to the usual application of MPC to closed-loop

control problems, here MPC is used to solve an open-loop

optimal control problem. Most MPC formulations assume a

staircase control trajectory. To compute the smooth control

trajectory desired in this application, the process model was

augmented by an integrator and the actual control variable

was computed from the integral of the MPC control variable.

A. MPC Formulation and Results

Discretization of the PDE (3)-(7) results in a state-space

model

x(k + 1) = Ax(k) + Bu(k) (20)
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Fig. 4. Bode plots of various transfer functions: The first three transfer
functions are obtained by MOL, where ∆x is the grid size. The “Expansion”
transfer function was obtained from the first 51 terms of the eigenfunction
expansion and the exact transfer function is obtained by taking the Laplace
transform of the PDE. The “Expansion” transfer function is less accurate
than the finite discretization for the same number of terms due to a slow
convergence rate for the summation in (8). The transfer functions are listed
in Table I.
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Fig. 5. Outputs obtained using the IMC approach. The control trajectory
is calculated by using a transfer function with ∆x = 1/20 and augmenting
with a filter f = 1/(λs + 1)20, where the filter parameter is λ =
(the slowest plant pole)/1000α.

y(k) = Cx(k), (21)

where x is the state vector, u is the control variable, and y
is the model output. The state space equations of the system

augmented with an integrator are

xa(k + 1) = Aaxa(k) + Baua(k), (22)

y(k) = Caxa(k), (23)
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TABLE I

TRANSFER FUNCTIONS BETWEEN THE CONTROL VARIABLE AND THE UPTAKE RATE FOR THE (1) EIGENFUNCTION EXPANSION OF THE PDE, (2) FULL

PDE, AND (3) SPATIAL DISCRETIZATION OF THE PDE.

Method Transfer function

Eigenfunction expansion G(s) = ke
v

2D

∞
∑

n=1

µnD

s + v2

4D
+ k + µnD

Bn sin (
√

µn)

PDE G(s) = k
(ξ1−ξ2)eξ1+ξ2

ξ1eξ1−ξ2eξ2
, where ξ1 =

v+
√

v2+4(k+s)D

2D
, ξ2 =

v−
√

v2+4(k+s)D

2D

Method of lines G(s) = C(sI − A)−1B

where A =

















−
2D
∆x2 − k D

∆x2 −
v

2∆x
0 0 0

D
∆x2 + v

2∆x
−

2D
∆x2 − k D

∆x2 −
v

2∆x
0 0

0 D
∆x2 + v

2∆x
−

2D
∆x2 − k D

∆x2 −
v

2∆x
0

0
. . .

. . .
. . .

. . .

0 · · · · · ·
2D
∆x2 −

2D
∆x2 − k

















,

B =



















D
∆x2 + v

2∆x
0
.
.
.

.

.

.
0



















, C =
[

0 · · · · · · 0 k
]

where xa is the state vector with an integrator, ua is the

control variable to the augmented system (its derivative is u),

and y is the model output which is the same as previous y.

The state matrices Aa, Ba and Ca are obtained by discritizing

the transfer function of the integrator augmented system in

continuous model.

For the case in which there are no constraints on the control

variable, the control variable at time instant k is obtained by

solving the optimization:

min
∆ua(k|k)

...

∆ua(k + m − 1|k)

p
∑

i=1

|y(k + i|k) − r(k + i)|2 (24)

subject to

∆ua(k + i|k) = 0, i = m, . . . , p − 1, (25)

where p is the prediction horizon, m is the control horizon,

r(k) is the reference variable at time instant k, ∆ua(k) is the

control increment

∆ua(k) ≡ ua(k) − ua(k − 1), (26)

and “(k + i|k)” is the value predicted for time instant k + i
based on the information available at time instant k. At time

instant k, ua(k) = ua(k − 1) + ∆ua(k|k)∗ is implemented,

where ∆ua(k|k)∗ is the first element of the optimal sequence,

and the above optimization is calculated at the next time

instant based on the updated variables.

The constrained MPC problem solves (24) with the addi-

tional linear inequalities which constrain the control variable

u(k) to be non-negative:

∆t

















1 0 · · · · · · 0
2 1 0 · · · 0
...

. . .
. . .

. . .
...

p − 1
. . .

. . . 1 0
p · · · · · · 2 1























∆ua(k)
...

∆ua(k + p − 1)







≥ −

















1
1
...
...

1

















u(k) − ∆t

















1
2
...
...

p

















ua(k − 1), (27)

where ∆t is the sampling time.

MPC gave good reference tracking with short control and

prediction horizons as long as the sampling time was small

enough (see Fig. 6). Such short horizons have a much lower

computational cost than long horizons. The computational

cost of MPC is an important consideration when extending

this approach to a larger number of spatial dimensions (1)-(2).

B. Comparison with Control Vector Parameterization

MPC has much lower memory requirements and computa-

tional expense than the standard control vector parameteriza-

tion (CVP) approach [17] which is obtained by choosing m
and p to span the entire length of the reference trajectory

and dropping the use of the receding horizon. Although

MPC requires an optimization to be solved at each sampling

instance, the optimization only has m degrees of freedom and

a much smaller cost for the objective calculation (24) which
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Fig. 6. MPC Outputs for a control horizon of m = 2 and a sampling time
∆t = 0.1, transfer function with ∆x = 1/20.

scales linearly with p. The 1D optimal control problem is

simple enough that CVP could be implemented, in which

case a regularization term of

10−10
∑

k

|∆ua(k|1)|2 (28)

was added to the objective function (24) to remove numer-

ical ill-conditioning that arose due to the large number of

degrees of freedom. The time-domain plots were virtually

indistinguishable from those obtained from the best MPC

tuning (Fig. 6). Applying MPC to the optimal control problem

resulted in nearly globally optimal results, with many orders-

of-magnitude reduction in memory requirements and total

calculation time. This makes MPC more suitable than CVP

for the solution of the optimal control problem (1) with larger

number of spatial dimensions.

VII. A COMPOSITE APPROACH FOR THE 3D CASE

Recall that the 3D control problem (1)-(2) has too many

degrees of freedom to be solved directly, such as by CVP. The

results in Sections III-VI suggest that the 3D optimal control

problem can be solved by a combination of multiple design

methods. The near optimality of MPC observed in Section III

suggests that MPC is a much better approach than CVP for

solving the 3D control problem (1)-(2), due to the much fewer

degrees of freedom (dof). In addition, the near optimality of

the basis function expansion approach in Section III suggests

that parameterization of the control input in terms of basis

functions within such a 3D MPC algorithm would lead to

minimal loss in performance while further reducing the dof.

The near optimality of IMC and the method of moments

observed in Sections IV and V motivate the development

of 3D extensions to provide initial guesses for the 3D MPC

optimization, to greatly speed its convergence. The method of

moments would be generalized to utilize cross-moments (e.g.,

[14]). IMC would be best generalized so that it can be directly

applied to PDE models, to avoid the spatial discretization

used in Section V to be produce the nominal transfer function

model. Once a numerically efficient solution to the 3D linear

control problem is obtained, it can be bootstrapped to address

nonlinear uptake kinetics.
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