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Abstract— In this paper we develop a closed-loop discrete-
time interference cancelation algorithm. The novel features of
this algorithm are its ability to deal with multiple channels
being affected by interferences with different frequency spec-
trums. Also we provide a proof of Lyapunov stability of closed
loop system and asymptotically perfect interference cancelation
for a class of interference signals. Furthermore we introduce
a new approach for updating the estimator through the use
of staggered estimate. The goal of staggered estimation is to
minimize the total number of a estimates / calculations done
within a time period while ensuring that there is no estimator
aliasing. Finally the proposed algorithm is implemented on a
TMS320C6713 DSP Kit and experimental verification obtained.

I. INTRODUCTION

Traditionally notch filters have been used to eliminate
sinusoidal interferences in an information bearing signal. A
fixed notch filter can eliminate the noise when its distribution
is centered exactly at the frequency for which the filter
is designed [1]. If the frequency of interference signal is
unknown or if it drifts slowly then an adaptive notch filter is
required [2]. Adaptive notch filters can be implemented using
a feed forward or a feed back structure [3]. While the feed
forward structure alleviates stability concerns, it requires a
measurement of the interference or a signal correlated with
the interference [2, p.24]. In the feedback structure direct
measurement of the disturbance is not required but stability
is not guaranteed and needs to be demonstrated.

In this paper we consider the problem of simultaneous
multiple channel interference cancelation via a multi variable
feedback control law.The Lyapunov stability of the closed
loop system is demonstrated by using the Lyapunov function
candidate whose difference is shown to be non positive.
Asymptotically perfect interference cancelation for a class
of disturbances is demonstrated through the use of lemma
on maximally monotonically increasing subsequences.

From the algorithm implementation point of view com-
putation of the parameter estimate at each step entails the
use of a sophisticated and therefore expensive digital signal
processor . In order to make use of less capable and therefore
less expensive components for implementation, it is some
time desirable not to update the parameter estimates at each
time step but to allow a number of time step before an
update is made. This scheme can however lead to estimator
aliasing in which although the parameter error is growing
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periodically it is zero at the update instants. To circumvent
this problem we propose staggered estimator updating in this
paper.

The contents of the paper are as follows. In section II
we describe controller model. In section III we formulate
the closed-loop system. The adaptive algorithm, Lyapunov
stability of the closed-loop system and asymptotically perfect
disturbance rejection for bounded time invariant interference
is demonstrated in section IV. In section V we discuss
an algorithm with staggered estimator updating and also
present its stability analysis. In section VI, we use the
proposed algorithm to reject tonal and amplitude modulated
interferences in computer simulation. Finally, in section VII
we implement the proposed algorithm on a DSP kit and
obtain experimental verification of its workability.

II. ADAPTIVE CONTROLLER ARCHITECTURE

The structure of the proposed control scheme is depicted
in Figure 1, where w, u, z represent the interference , the

 

Fig. 1. Adaptive Controller Architecture

control and the performance respectively. Let the instanta-
neously linear controller Gc(k) be represented by the MIMO
ARMA model

u(k) = −
nc∑

j=1

Γ̂j(k)u(k − j) +
nc∑

j=1

Λ̂j(k)z(k − j), (2.1)

for all k ≥ 0, where u ∈ Rm, z ∈ Rl and nc is
order of the instantaneously linear controller Gc(k). Also
the controller parameter matrices Γ̂1, Γ̂2 . . . , Γ̂nc ∈ Rm×m

and Λ̂1, Λ̂2 . . . , Λ̂nc ∈ Rm×l are determined by a yet
unspecified controller parameter estimator. Next, define the
control horizon vector

U(k)
4
=




u(k − 1)
...

u(k − nc)


 ∈ Rq1 , (2.2)



the performance horizon vector

Z(k)
4
=




z(k − 1)
...

z(k − nc)


 ∈ Rq2 , (2.3)

the regressor

φ(k)
4
=

[
U(k)
Z(k)

]
∈ Rq3 , (2.4)

and the controller parameter matrix

Θ̂(k)
4
= [ −Γ̂1(k) · · · −Γ̂nc

(k) Λ̂1(k) · · · Λ̂nc
(k)]
(2.5)

where Θ̂(k) ∈ Rm×q3 ,q1 = ncm, q2 = ncl and q3 = q1+q2.
With this notation, (2.1) can be written as

u(k) = φ(k)Θ̂(k). (2.6)

To vectorize the matrix Θ̂ we use the Kronecker product
identity [4, p. 245]

vec (Iφ(k)Θ̂(k)) = (φT ⊗ I)vec Θ̂(k), (2.7)

to obtain

u(k) = ψT (k)θ̂(k), (2.8)

where

ψT (k)
4
= φ(k)⊗ I, ∈ Rq4×l (2.9)

is the regressor matrix and

θ̂(k)
4
= vec Θ̂, ∈ Rq4

is the estimated controller parameter vector. Also, q4
4
= mq3.

III. CLOSED-LOOP SYSTEM
From Fig. 1 the closed-loop performance is given by

z(k) = w(k)− u(k) (3.1)

From (2.8)

z(k) = w(k)− ψT (k)θ̂(k) (3.2)

Assumption 3.1: The disturbance w(k) is generated by
the free response of a Lyapunov stable LTI system of order
nw ≤ nc.

Remark 3.1: Assumption 3.1 is satisfied by the linear
combinations of sinusoidal and step signals.
Assumption 3.1 implies that ∃ Θ∗ ∈ Rm×q3 such that
w(k) = ψT (k) vec Θ∗, where

θ∗
4
= vec Θ∗ ∈ Rq4

From (3.2)

z(k) = ψT (k) vec Θ∗ − ψT (k)θ̂(k)

= ψT (k)θ∗ − ψT (k)θ̂(k)

= ψT (k)[θ∗ − θ̂(k)] (3.3)

Define the parameter error vector

θ̃
4
= θ∗ − θ̂(k), (3.4)

then

z(k) = ψT (k)θ̃(k). (3.5)

IV. ADAPTIVE ALGORITHM AND ITS STABILITY
ANALYSIS WITH REGULAR ESTIMATOR

UPDATING

A. Adaptive Algorithm

The adaptive feedback mechanism in Figure 1 consists
of an instantaneously linear controller Gc(k) given by (2.6)
and a parameter update law that modifies the controller
parameters at each time step k.

To obtain the parameter update law for θ̂, we define the
a priori performance as

ẑ(k)
4
= ψT θ̃(k + 1) (4.1)

and the cost function

J(k, θ̂(k + 1)) , 1
2
ẑT (k)ẑ(k)

=
1
2
[ψT (k)θ̃(k + 1)]T [ψT (k)θ̃(k + 1)]

(4.2)

which is quadratic in the a priori performance ψT(k)θ̃(k +
1). Then we use a recursive least squares estimate of θ̂(k +
1) to minimize (4.2); for details see, for example, [5]. The
recursive least square estimate of θ̂(k + 1) is given by

θ̂(k + 1) = θ̂(k)−P(k + 1)ψ(k)z(k), (4.3)

P(k + 1) = P(k)−G(k)ψT(k)P(k), (4.4)

where

G(k) = P(k)ψ(k)
[
I + ψT(k)P(k)ψ(k)

]−1

Using (3.4), (4.3) and (4.4) the closed-loop error system is
given by

θ̃(k + 1) = θ̃(k)−P(k + 1)ψ(k)ψT(k)θ̃(k), (4.5)

P(k + 1) = P(k)−G(k)ψT(k)P(k). (4.6)

where P(0) > 0.

B. Stability Analysis

The Lyapunov stability of every equilibrium of the system
(3.5),(4.5) and (4.6) is demonstrated in [6].

V. ADAPTIVE ALGORITHM WITH STAGGERED
ESTIMATOR UPDATING AND STABILITY

ANALYSIS

In this section we consider the case where the estimator
is updated less frequently i.e, it is not updated at each time
step. In subsection (V-A), first we consider the same adaptive
algorithm described in section (IV) except that the parameter
estimates remains unchanged for n steps. We then explain
the problem encountered by adopting this methodology.
Finally we suggest staggered estimator updating as a means
of allowing more time for estimator computations while
avoiding the problem of estimator aliasing.



A. Adaptive Algorithm

The adaptive feedback mechanism in Figure 1 consists of
an instantaneously linear controller Gc(jn) given by (2.6)
and a parameter update law that modifies the controller
parameters at time step jn. Consider the control law (2.8)
under the constraint

θ̂(jn) = θ̂(jn− 1) =, · · · ,= θ̂(jn− n + 1), (5.1)

where j = 1, 2, 3, . . .. The gain estimate is not updated for
n steps. To obtain the parameter update law for θ̂, we define
the a priori performance as

ẑ(jn)
4
= ψT θ̃(jn + 1) (5.2)

and the cost function

J =
1
2
[ψT (jn)θ̃(jn + 1)]T [ψT (jn)θ̃(jn + 1)] (5.3)

which is quadratic in the a priori performance ψT(jn)θ̃(jn).
Then we use a recursive least square estimate of θ̂(jn + 1)
to minimize (5.3); for details see,for example, [5], [7] and
[8]. The recursive least square estimate of θ̂(jn+1) is given
by

θ̂(jn + 1) = θ̂(jn)− P(jn + 1)ψ(jn)z(jn), (5.4)

P(jn + 1) = P(jn)−G(jn)ψT(jn)P(jn), (5.5)

where

G(jn) = P(jn)ψ(jn)
[
I + ψT(jn)P(jn)ψ(jn)

]−1

Using (3.4), (5.4) and (5.5) the closed-loop error system is
given by

θ̃(jn + 1) = θ̃(jn)− P(jn + 1)ψ(jn)ψT(jn)θ̃(jn),
(5.6)

P(jn + 1) = P(jn)−G(jn)ψT(jn)P(jn). (5.7)

where P(0) > 0, and

θ̂(jn) = θ̂(jn− 1) =, · · · , = θ̂(jn + n− 1),
P(jn) = P(jn− 1) =, · · · , = P(jn + n− 1).

B. Stability Analysis

To demonstrate that every equilibrium of the system (5.2),
(5.6) and (5.7) is Lyapunov stable we require the following
lemma

Lemma 5.1: Define

VP(P)
4
= tr P2, (5.8)

4VP(jn)
4
= tr

[P2(jn + 1)− P2(jn)
]
, (5.9)

Vθ̃(θ̃,P)
4
= θ̃TP−1θ̃, (5.10)

and

4Vθ̃(jn)
4
= θ̃T(jn + 1)P−1(jn + 1)θ̃(jn + 1)

− θ̃T(jn)P−1(jn)θ̃(jn). (5.11)

Then,
4VP(jn) ≤ 0, (5.12)

4Vθ̃(jn) = −θ̃T(jn)ψ(jn)
[
I + ψT(jn)P(jn)ψ(jn)

]−1
ψTθ̃

(5.13)

≤ −‖z(jn)‖22
1 + γ

∑nc

i=0

[
‖u(jn− i)‖22 + ‖z(jn− i)‖22

] ,

(5.14)

where

γ
4
= λmax [P(0)] , (5.15)

Furthermore,
lim

k→∞
4Vθ̃(jn) = 0, (5.16)

and limk→∞ θ̃(jn) and limk→∞ P(jn) exist.
Proof. The results (5.12), (5.13), (5.16), and the conver-

gence of {θ̃(jn)}∞k=0 and {P(jn)}∞k=0 follow from standard
properties of recursive least square, see [8, p. 60], [9, p. 22],
[10, p. 58] and [11, p. 202]. From (5.12) follows that

P(jn) ≤ P(jn− 1).

Now we demonstrate the asymptotic convergence of the
performance to zero. From (2.9) it follows that

ψT (jn)ψ(jn) = φT (jn)φ(jn)⊗ I. (5.17)

where I ∈ Rq4×q4 . Equation (5.17) follows that

‖ψ(jn)‖2 = ‖φ(jn)‖2, (5.18)

Using (5.18) in (2.4) we have

ψT (jn)ψ(jn) =
nc∑

i=1

[
‖u(jn− i)‖22 + ‖z(jn− i)‖22

]
.

(5.19)

It follows from (3.1), (5.14) and (5.19) that

4Vθ̃(jn) ≤ −‖z(jn)‖22
1 + γ

∑nc

i=1

[
‖u(jn− i)‖22 + ‖z(jn− i)‖22

]

≤ −‖z(jn)‖22
1 + γ

∑nc

i=1

[
‖u(jn− i)‖22 + ‖z(jn− i)‖22

]
+ M(jn)

,

(5.20)

where

γ = λmax [P(0)] > λmax [P(jn)] , (5.21)

and

M(jk) = γ ‖z(jn)‖22 + γ ‖u(jn)‖22 . (5.22)

From (3.1) it follows that

‖u(jn)‖ ≤ ‖w(jn)‖+ ‖z(jn)‖ (5.23)

From (5.20), (5.22) and (5.23), we have

4Vθ̃(jn) ≤ −‖z(jn)‖22
1 + γ

∑nc

i=0

[
‖w(jn− i)‖22 + 2 ‖z(jn− i)‖22

]



From Assumption 3.1 it follows that w(jn) is bounded
therefore ∃ c ∈ R+ such that

∑nc

i=0 ‖w(jn− i)‖22 < c.
Consequently

4Vθ̃(jn) ≤ −‖z(jn)‖22
1 + γc + 2γ

∑nc

i=0 ‖z(jn− i)‖22
=

−‖z(jn)‖22
c1 + c2

∑nc

i=0 ‖z(jn− i)‖22
,

where c1
4
= 1 + γc and c2

4
= 2γ. Now suppose that

{‖z(jn)‖}∞k=0 is unbounded. Then it follows from Lemma
1.1 that there exist c3 > 0 and c4 > 0 such that the max-
imal monotonically increasing subsequence {‖z(jni)‖}∞i=0

satisfies

c1 + c2

nc∑

i=0

‖z(jn− i)‖22 < c3 + c4 ‖z(jn)‖22

which implies that

4Vθ̃(jni) ≤ −‖z(jni)‖22
c3 + c4 ‖z(jni)‖22

for all i = 1, 2, · · · . Furthermore, since by (5.16)
limi→∞4Vθ̃(jni) = 0, it follows that

lim
i→∞

−‖z(jni)‖22
c3 + c4 ‖z(jni)‖22

= 0

Therefore the maximally monotonically increasing subse-
quence z(jni) → 0 as k → ∞, which is a contradic-
tion. Hence {‖z(jn)‖}∞k=0 is bounded and it follows from
Lemma. (1.1) that there exist c5 > 0 and c6 > 0 such that,
for all k ≥ 0,

4Vθ̃(n) ≤ −‖z(jn)‖22
c5 + c6 ‖z(jn)‖22

Now using (5.16) we have

lim
i→∞

−‖z(jn)‖22
c5 + c6 ‖z(jn)‖22

= 0 (5.24)

Therefore, z(jn) → 0 as k →∞. 2

Remark 5.1: Although Lemma 5.1 ensures conver-
gence of the performance to zero only at the time instants
when the parameter estimate is updated.

C. Estimator Aliasing
Estimator aliasing refers to the inability of the estimator

to adapt controller parameters in spite of a periodically
growing performance variable whose period ia an integral
multiple of the estimator update period. Therefore, even
though Lemma 5.1 ensures convergence of the performance
to zero at the time instants when the parameter estimate is
updated estimator aliasing can still lead to a periodic and
performance vector.
The mechanism of estimator updating suggests the use a
staggered updating i.e., the time between two consecutive
gain updates be varied instead of updating after a fixed
interval. We idea is presented formally in the lemma below.

Lemma 5.2: Let n be a positive integer and let

τ(j + 1) = τ(j) + n + 1 if j is odd
τ(j + 1) = τ(j) + n if j is even.

where j = 1, 2, . . . and τ(1) = n. Furthermore let k =
0, 1, 2, . . .. Then there does not exist an integer T > 1 such
that for all k = τ(j)

sin
(

2πk

T
+ φ

)
= 0, (5.25)

where 0 ≤ φ < 2π.
Proof. To satisfy (5.25) for all k = τ(j), T/2 must divide

n, 2n + 1, 3n + 1, 4n + 2, 5n + 2, 6n + 3, . . .

Therefore T can not be an integer. 2

Using Lemma 5.2 and Lemma 5.1 we state the following
lemma.

Lemma 5.3: Define the gain update

θ̂(τ(j + 1)) = θ̂(τ(j))

+ P(τ(j) + 1)ψ(τ(j))ψT (τ(j))θ̂(τ(j)),
(5.26)

P(τ(j) + 1) = P(τ(j))

−P(τ(j))ψ(τ(j))L(τ(j))ψT(τ(j))P(τ(j)),

θ̂(τ(j)− 1) = θ̂(τ(j)− 2) =, . . . , = θ̂(τ(j − 1) + 1),
P(τ(j)− 1) = P(τ(j)− 2) =, . . . , = P(τ(j − 1) + 1),

P(0) > 0 (5.27)

and

τ(j + 1) = τ(j) + n + 1 if j is odd (5.28)
τ(j + 1) = τ(j) + n if j is even, (5.29)

where

L(τ(j)) =
[
In + ψT(τ(j))P(τ(j))ψ(τ(j))

]−1
, (5.30)

also j = 1, 2, . . . and τ(1) = n. Then all parameters of the
closed-loop system (3.1),(5.26)-(5.29) remain bounded, and
z(k) → 0 as k →∞.

Proof. From Lemma 5.1 with jn+1 replaced by τ(j) we
have x(τ(j)) → 0 as j → ∞. Now we use Lemma 5.2 to
conclude that z(k) → 0 as k →∞. 2

VI. COMPUTER SIMULATION

Example 6.1: In this example the interference is a
single tone at 0.8 rad/sec, and the controller is of the order
4. A plot of the performance ’z’ vs time is shown in Fig. 2.
A bode plot of the controller after the controller parameters
have converged is shown in Fig. 3. Note that the controller
has high gain at the interference frequency of 0.8 rad/sec.
In this regard our proposed method can be viewed as an
adaptive internal model control (IMC) scheme.

Example 6.2: In this example, two interferences are
given at two different channels. The first channel is affected
by a single tone interference at 0.2 rad/sec, while on the
second channel the interference frequency is 0.9 rad/sec.
Plots of the closed-loop performance ’z’ vs time for two
channels are shown in Fig. 4 and Fig. 5 respectively. In this
example the order of controller is nc = 4.

Example 6.3: In this example we again consider the
two channels interference problem with the first channel
be affected by a tone at frequency 5Hz and the second
channel be affected by Amplitude modulated wave with
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Fig. 2. Performance for the interference at 0.2 rad/sec [Example 6.1]
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Fig. 3. Bode plot of controller obtained after converges of parameter with
frequency at 0.8 rad/sec [Example 6.1]

carrier frequency is 100Hz and modulating signal at 10Hz .
The controller order used for this example was nc = 8. A
plot of closed-loop performance ’z’ vs time is shown in Fig.
6.

VII. HARDWARE IMPLEMENTATION
A. Experimental Setup

The controller was implemented on a real time
TMS320C6713 DSP Kit at a sampling rate of 8000 Hz.
The interference signals were generated via a external signal
generator and the output of the DSP Kit was sent to a PC
via the audio card where the performance variable ’z’ was
recorded using the Windows audio recorder.

B. Experiment 1

In first experiment the interference was a tone at 5 kHz.
The plot of closed-loop ’z’ vs time are shown in Fig.7.
Initially, the interference is allowed to effect the performance
and then the adaptive algorithm was switched on via a DIP
switch on the DSP kit. The adaptive algorithm then adapted
the controller parameters to reject the tonal disturbance.

C. Experiment 2

In this experiment two interference channels are consid-
ered. Channel one being effected by a tonal disturbance of
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Fig. 4. Performance for the interference at 0.2 rad/sec [Example 6.2]
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Fig. 5. Performance for the interference at 0.9 rad/sec [Example 6.2]

5 kHz and channel 2 by an Amplitude modulated wave at 1
kHz. The plots of closed-loop ’z’ vs time are shown in Fig.
8 and Fig. 9.

VIII. CONCLUSIONS

A. Conclusions

In this paper we proposed an algorithm for multiple chan-
nel interference cancelation via a multi-variable feedback
control law and infrequent estimator updating. The theoreti-
cal foundation for the proposed algorithm was established
via a comprehensive proof of Lyapunov stability of the
closed-loop system. Effectiveness of the algorithm as an
interference canceler was demonstrated via simulations and
experiments.

APPENDIX

Lemma 1.1: Let {α(k)}∞k=0 be a sequence of positive
scalars. Let N be a positive integer, let g1 > 0, g2 > 0, and
define

L(k)
4
= g1 + g2

N∑

j=0

α(k − j). (1.1)

Also, define the maximal monotonically increasing subse-
quence {α(ki)}∞i=0 such that α(k) < α(ki) for all k < ki.
Then the following statement hold
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0 2 4 6 8 10 12 14 16 18

x 10
4

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Samples

P
er

fo
rm

an
ce

Fig. 7. Performance for the Tone interference at frequency 5kHz [Exper-
iment:1]

1) If {α(k)}∞k=0 is bounded, then there exist g3 > 0,
g4 > 0 such that, for all k ≥ 0

L(k) ≤ g3 + g4α(k). (1.2)

2) If {α(k)}∞k=0 is unbounded then there exist g3 > 0,
g4 > 0 such that for all i = 1, 2, . . . the maximal
monotonically increasing subsequence {α(ki)}∞i=0,
satisfies

L(ki) ≤ g3 + g4α(ki). (1.3)
Proof. If {α(k)}∞k=0 is bounded, then (1.2) is satisfied

with g3 = g1 + (N + 1)g2 supk≥0 α(k) and g4 > 0. Now
,suppose that {α(k)}∞k=0 is unbounded, then (1.3) is satisfied
with g3 = g1 and g4 = N + 1. 2
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