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Abstract— Fault detection problem is studied using output
estimator design rather than observer design for a class of
nonlinear systems with unknown inputs. In order to carry
out the output estimator design, an input-output relation is
derived from the original state space model, which removes
the effect of the unknown inputs on fault detection completely.
Based on the input-output relation, a necessary and sufficient
condition is derived for the existence of an output estimator
which is invariant to the unknown inputs. An output estimator
is designed based on the input-output relation for the purpose of
fault detection, and a novel fault detection strategy using output
estimator design is proposed which neither has the relative
degree restriction, nor requires the system under consideration
to be detectable. The efficacy of the proposed fault diagnosis
strategy is tested on a single-link flexible robot manipulator
model thorough computer simulations.

I. INTRODUCTION

Unknown inputs which could account for uncertainties

and/or unknown disturbances present a challenge to model

based fault diagnosis. To deal with various types of unknown

inputs, observer design based strategy has been developed to

remove their effect completely by designing fault diagnosis

schemes that are invariant to the unknown inputs. Some

unknown input observer (UIO) and sliding mode observer

(SMO) based schemes adopt this strategy. For example, UIO

based schemes can be found in [1], [2], [3], while SMO based

ones can be found in [9]–[14].

One limitation of observer design based strategy is that it

often requires restrictive matching conditions. For example,

conventional UIOs or SMOs require the relative degrees

from the known systems inputs and/or the unknown inputs

to the system outputs to be no larger than one [1], [2],

[3], [9]–[14]. Higher order sliding mode observers, though

removes the relative degree limitation, require the system

under consideration has or can be put into a triangular

system form [15]. For systems that do not satisfy the relaxed

matching conditions in [15], it is not clear whether observer

based fault diagnosis schemes can be designed. Another

obvious requirement of observer design based strategy is that

the system under consideration has to be detectable.

When the system under consideration does not satisfy

the relaxed matching in [15] or is not even detectable,

the observer design based fault diagnosis strategy is either

extremely difficult or impossible. In order to develop a new

fault diagnosis strategy that requires less restrictive matching

conditions or even when system is not detectable, a new
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strategy which uses output estimator design and does not rely

on observer design was employed in [16], [17], [18], [19],

[20], [21]. In [16], robust output estimators were designed

based on the state space model and system decomposition

to deal with unmatched unknown inputs. Unlike in [16], the

output estimators designed in [17], [18], [19] were based

input-output relations using the recently developed high order

sliding mode differentiators. Although the adaptive output

estimators in [20], [21] were also based on input-output

relations, they took a very different approach from those in

[17], [18], [19], which can avoid the use of higher order

derivatives of the outputs. However, unknown inputs were

not considered in [20], [21].

The purpose of this paper is to employ the approach in

[20], [21] to develop a novel output estimator based fault

detection strategy, which does not have the relative degree

restriction, is applicable to systems that are not detectable,

and is capable of removing the effect of unknown inputs

completely.

The remainder of the paper is arranged as follows: In

Section 2, a system model is introduced and the problem of

interest is formulated. In Section 3, an input-output relation

is established. In Section 4, an output estimator is designed

based on the input-output relation for the purpose of fault

detection. In Section 5, a fault detection scheme is proposed

based on the output estimator. The proposed fault detection

scheme is tested on a single-link flexible robot manipulator

model in Section 6 and simulation results are provided.

Finally, concluding remarks are made in the last section.

II. SYSTEM AND PROBLEM FORMULATION

Consider MIMO nonlinear systems described as below

ẋ(t) = Ax(t) + Ff(y(t)) + Bu(t) + Dd(t)

y(t) = Cx(t) (1)

where x(t), y(t), u(t), and d(t) are the system state vector,

output vector, known input vector, and unknown input vector

respectively, and x(t) ∈ Rn, y(t) = (y1(t) · · · yp(t))
T ,

u(t) = (u1(t) · · · um(t))T , d(t) = (d1(t) · · · dγ(t))T ,

f(y(t)) = (f1(y(t)) · · · fq(y(t)))T is a vector of nonlinear

functions.

• Assumption A1: The system matrices A, B, C, D, and

F are known.

• Assumption A2: fj(y(t)), j = 1, · · · , q are known.

The following problem is formulated.
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Output Estimator Based Fault Detection Problem:

Under the condition that assumptions A1 and A2 are satis-

fied, design a fault diagnosis scheme for system (1) using

output estimator design such that it can detect faults regard-

less of the presence of unknown inputs.

For system (1), if rank(CD) 6= rank(D), conventional

SMOs or UIOs in [1], [2], [3], [9]–[14] can no longer be

designed to be invariant to the unknown inputs. It is not

clear how to design high order sliding mode observers if

the relaxed matching conditions in [15] are not matched.

Moreover, if system (1) is not detectable, no observers can be

designed to estimate all the states asymptotically. Because of

all these difficulties in observer design, the idea of observer

based fault diagnosis is abandoned in this paper. Instead, a

novel fault detection strategy using output estimator design is

proposed. As will be shown later in this paper, it is the idea

of designing output estimators rather than state observers

that leads to an elegant solution to the formulated Output

Estimator Based Fault Detection Problem.

III. AN INPUT-OUTPUT RELATION

It is found that trying to estimate all the outputs directly

from the MIMO system given by (1) without observer design

is very difficult. This observation motivates us to use the idea

proposed in [21], that is, to transform the difficult MIMO

output estimator design problem into several simpler MISO

output estimator design problems through decomposing (1)

into a group of MISO systems, as will be shown in the sequel.

Let C = (CT
1 · · · CT

p )T , B = (B1 · · · Bm), F =
(F1 · · · Fq), and D = (D1 · · · Dγ). It is obvious that a

MIMO system given by (1) can be decomposed into p MISO

systems, where for 1 ≤ j ≤ p, the jth MISO system is of

the following form

ẋ(t) = Ax(t) + Ff(y(t)) + Bu(t) + Dd(t),

yj(t) = Cjx(t). (2)

Because (Cj , A) is not necessarily detectable even when

(C, A) is, it is not appropriate to design any observer for the

MISO system defined by (2). Therefore, the outputs will not

be estimated through observer design in this paper.

In order to be able to estimate the outputs without de-

signing observers for the MISO systems defined by (2), the

input-output relation of u(t), d(t) and yj(t) described by the

following transfer function will be used.

yj(t) =
m

∑

l=1

Gjl(s)ul(t)

+

q
∑

k=1

Gjk(s)fk(y(t)) +

γ
∑

r=1

Gjr(s)dr(t) (3)

where for 1 ≤ j ≤ p, 1 ≤ l ≤ m, 1 ≤ k ≤ q, and 1 ≤ r ≤ γ,

Gjl(s) = Cj(sI − A)−1Bl

=
bjl,n−1s

n−1 + · · · + bjl,1s + bjl,0

sn + an−1sn−1 + · · · + a1s + a0
, (4)

Gjk(s) = Cj(sI − A)−1Fk

=
fjk,n−1s

n−1 + · · · + fjk,1s + fjk,0

sn + an−1sn−1 + · · · + a1s + a0
, (5)

Gjr(s) = Cj(sI − A)−1Dr

=
djr,n−1s

n−1 + · · · + djr,1s + djr,0

sn + an−1sn−1 + · · · + a1s + a0
, (6)

and sn + an−1s
n−1 + · · · + a1s + a0 = det(sI − A).

For convenience, define a(s) = sn + an−1s
n−1 + · · · +

a1s + a0, bjl(s) = bjl,n−1s
n−1 + · · · + bjl,1s + bjl,0,

fjk(s) = fjk,n−1s
n−1 + · · · + fjk,1s + fjk,0, and djr(s) =

djr,n−1s
n−1 + · · · + djr,1s + djr,0.

In the remaining part of this paper, the dependence of

variables on time t will not be shown explicitly for the sake

of simplicity, for example, uj(t) will be simply written as uj .

For each 1 ≤ j ≤ p, based on (3), (4), and (5), and inspired

by [22] and [23], the following state space realization can

be given for (3).

ẋj = Āxj − ayj + bj1u1 + · · · + bjmum

+fj1f1(y) + · · · + fjqfq(y)

+dj1d1 + · · · + djγdγ

yj = xj,1 (7)

where xj = (xj,1 · · · xj,n)T and

Ā =

















0 1 0 · · · 0

0 0 1
. . . 0

...
...

...
. . .

...

0 0 · · · 0 1
0 0 0 · · · 0

















, a =







an−1

...

a0






,

bjl =







bjl,n−1

...

bjl,0






, 1 ≤ l ≤ m,

fjk =







fjk,n−1

...

fjk,0






, 1 ≤ k ≤ q,

djr =







djr,n−1

...

djr,0






, 1 ≤ r ≤ γ. (8)

It is important to note that (7), which is observable, is

not the same as (2), which might not be observable. It is

also crucial to know that the outputs for both (7) and (2) are

the same. Therefore, (7) can always be used to estimate yj

regardless of whether (2) is observable or not. This implies

that it is not necessary to require the original system (1) to

be observable for the purpose of output estimation.

For each 1 ≤ j ≤ p, in order to estimate yj , it is required

to first derive the state estimate for (7). To do so, ul, 1 ≤
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l ≤ m, yj , fk(y), 1 ≤ k ≤ q, and dr, 1 ≤ r ≤ γ are filtered

by the following n−dimensional filters:

λ̇l = A0λl + enul, 1 ≤ l ≤ m, (9)

η̇j = A0ηj + enyj , (10)

ν̇k = A0νk + enfk(y), 1 ≤ k ≤ q, (11)

and

φ̇r = A0φr + endr, 1 ≤ r ≤ γ, (12)

where A0 = Ā − K(1 0 · · · 0) and K = (K1 · · ·Kn)T is

chosen such that A0 is Hurwitz, and for any 1 ≤ i ≤ n,

ei = (ei,1, · · · , ei,n)T ∈ Rn is defined by ei,i = 1 and

ei,j = 0 for j 6= i.

After some matrix manipulations, it can be shown that

a(A0)en = a − K,

bjl(A0)en = bjl, 1 ≤ l ≤ m,

fjk(A0)en = fjk, 1 ≤ k ≤ q,

djr(A0)en = djr, 1 ≤ r ≤ γ, (13)

where a(A0), bjl(A0), 1 ≤ l ≤ m, fjk(A0), 1 ≤ l ≤ q,

and djr(A0), 1 ≤ r ≤ γ are matrix polynomials with a(s),
bjl(s), 1 ≤ l ≤ m, fjk(s), 1 ≤ k ≤ q, and djr(s), 1 ≤ r ≤ γ

being defined earlier.

Now the estimate for xj is formed as

x̂j =
m

∑

l=1

bjl(A0)λl +

q
∑

k=1

fjk(A0)νk

−a(A0)ηj +

γ
∑

r=1

djr(A0)φr (14)

Using (7) and (9)-(14), it can be verified that the estimation

error εj = (εj,1, εj,2, · · · , εj,n)T = xj − x̂j satisfies ε̇j =
A0εj . Denote ξji = Ai

0ηj , 0 ≤ i ≤ n − 1, ξjn = −An
0ηj ,

υli = Ai
0λl, 0 ≤ i ≤ n−1, 1 ≤ l ≤ m, ϕki = Ai

0νk, 0 ≤ i ≤
n−1, 1 ≤ k ≤ q, and ωri = Ai

0φr, 0 ≤ i ≤ n−1, 1 ≤ r ≤ γ,

then (14) can be rewritten as

xj = ξjn −
n−1
∑

i=0

aiξji +
m

∑

l=1

n−1
∑

i=0

bjl,iυli

+

q
∑

k=1

n−1
∑

i=0

fjk,iϕki +

γ
∑

r=1

n−1
∑

i=0

djr,iωri + εj (15)

It can be checked that all the ξ, υ, and ϕ signals and their

derivatives are explicitly available:

ξjn = −An
0ηj , ξ̇jn = A0ξjn + kyj ,

ξji = Ai
0ηj , ξ̇ji = A0ξji + en−iyj ,

υli = Ai
0λl, υ̇li = A0υli + en−iul,

ϕki = Ai
0νk, ϕ̇ki = A0ϕki + en−ifk(y), (16)

where 0 ≤ i ≤ n − 1, 1 ≤ l ≤ m, 1 ≤ k ≤ q.

However, because the unknown input vector d is not

available, none of the ω signals and their derivatives are

computable. Therefore, the estimate given by (14) can not

be applied directly.

For each 1 ≤ j ≤ p, under a no fault scenario, it follows

from (7) and (15) that

ẏj = ξjn,2 − (ξj(2) + eT
1 yj)a

+
m

∑

l=1

(υl(2) + eT
1 ul)bjl +

q
∑

k=1

(ϕk(2) + eT
1 fk(y))fjk

+

γ
∑

r=1

(ωr(2) + eT
1 dr)djr + εj,2

= ξjn,2 − (ξj(2) + eT
1 yj)a

+
m

∑

l=1

bT
jl(υl(2) + eT

1 ul)
T +

q
∑

k=1

fT
jk(ϕk(2) + eT

1 fk(y))T

+

γ
∑

r=1

dT
jr(ωr(2) + eT

1 dr)
T + εj,2 (17)

where ξT
jn = (ξjn,1, ξjn,2, · · · , ξjn,n), ξ(2) =

(ξj(n−1),2, · · · , ξj0,2), υl(2) = (υl(n−1),2, · · · , υl0,2), ϕk(2) =
(ϕk(n−1),2, · · · , ϕk0,2), and ωr(2) = (ωk(n−1),2, · · · , ωk0,2).

Let’s define vectors ξn,2 = (ξ1n,2, · · · , ξpn,2)
T and ε2 =

(ε1,2, · · · , εp,2)
T and several matrices My = ((ξ1(2) +

eT
1 y1)

T , · · · , (ξp(2) + eT
1 yp)

T )T , Mu,l = (b1l, · · · , bpl)
T ,

Mf,k = (f1k, · · · , fpk)T , and Md,r = (d1r, · · · , dpr)
T , then,

it follows from (17) that

ẏ = ξn,2 − Mya +
m

∑

l=1

Mu,l(υl(2) + eT
1 ul)

T

+

q
∑

k=1

Mf,k(ϕk(2) + eT
1 fk(y))T

+

γ
∑

r=1

Md,r(ωr(2) + eT
1 dr)

T + ε2 (18)

(18) reveals the effect of the unknown inputs on the out-

puts explicitly through the term
∑γ

r=1 Md,r(ωr(2) +eT
1 dr)

T .

In (18), ωr(2) + eT
1 dr is unknown because d is unknown.

However, the matrix Md,r is known because it depends only

on the known system matrices A, C,D. Because Md,r, 1 ≤
r ≤ γ are all known, one can eliminate the effect of the

unknown inputs by choosing a nonzero matrix T0 of full

row rank such that T0Md,r = 0 for all 1 ≤ r ≤ γ.

By defining a new output vector as ȳ = T0y, it follows

from (18) that

˙̄y = T0ξn,2 − T0Mya +
m

∑

l=1

T0Mu,l(υl(2) + eT
1 ul)

T

+

q
∑

k=1

T0Mf,k(ϕk(2) + eT
1 fk(y))T

+ T0ε2 (19)
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On the right hand side of (19), only ε2 is not available

but approaches zero exponentially. This observation together

with the definition of ȳ makes (19) ready for output estimator

for ȳ. Because (19) only involves the system outputs and the

known system inputs, it is called an input-output relation in

this paper.

Before one can design an estimator for ȳ, one has to

guarantee the existence of ȳ, that is, the existence of a

nonzero matrix T0.

Let us define

(sI − A)−1 =
1

a(s)
(R0s

n−1

+ R1s
n−2 + · · · + Rn−2s + Rn−1).(20)

A necessary and sufficient condition for the existence of a

nonzero matrix T0 is given in the following theorem.

Theorem 1: Under Assumptions A1 and A2, a

nonzero matrix T0 of full row rank exists such that

T0Md,r = 0 for all 1 ≤ r ≤ γ if and only if

rank(C(R0D · · · Rn−2D Rn−1D)) < p.

Proof: (20) together with the definition of Gjr(s) implies

that

Gjr(s) = Cj(sI − A)−1Dr

=
1

a(s)
(CjR0Drs

n−1 + CjR1Drs
n−2

+ · · · + CjRn−2Drs + CjRn−1Dr) (21)

By comparing this expression of Gjr(s) with the second

equality in (6), it is easy to see that

dT
jr = Cj(R0Dr · · · Rn−2Dr Rn−1Dr). (22)

Based on (22) and the definition of Md,r, it is easy to get

Md,r = C(R0Dr · · · Rn−2Dr Rn−1Dr) (23)

The above equation implies that

(Md,1 · · · Md,γ) = C(R0D · · · Rn−2D Rn−1D)Ttrans,

(24)

where Ttrans is an invertible matrix.

It is obvious that T0Md,r = 0 for all 1 ≤ r ≤
γ is equivalent to T0C(R0D · · · Rn−2D Rn−1D) =
0. Since the matrix C(R0D · · · Rn−2D Rn−1D) has

p rows, it follows that a nonzero T0 exists such that

T0C(R0D · · · Rn−2D Rn−1D) = 0 if and only if

rank(C(R0D · · · Rn−2D Rn−1D)) < p. This completes

the proof. ¶

IV. FAULT DETECTION BASED ON OUTPUT

ESTIMATOR DESIGN

In this section, a fault detection scheme will be proposed

using output estimator design based on the input-output

relation given by (19).

Suppose a nonzero matrix T0 exists and is obtained, then,

based on (19), an estimator for ȳ can be given as follows.

˙̄̂y = −cM (ˆ̄y − ȳ) + T0ξn,2 − T0Mya

+
m

∑

l=1

T0Mu,l(υl(2) + eT
1 ul)

T

+

q
∑

k=1

T0Mf,k(ϕk(2) + eT
1 fk(y))T (25)

where cM is a positive definite diagonal design matrix.

The following result is obtained.

Theorem 2: Under Assumptions A1 and A2, if there is no

fault in the control system, then limt→∞‖ˆ̄y − ȳ‖ = 0.

Proof: Define ey = ˆ̄y− ȳ, it follows from (19) and (25) that

ėy = −cMey − T0ε2 (26)

Note that ε2 approaches zero exponentially and cM is a

positive definite diagonal matrix, the conclusion of theorem

follows from (26) immediately. ¶
Theorem 2 serves as a foundation for fault detection. If

a residual is defined as r = ‖ˆ̄y − ȳ‖ and there is no fault

in presence, then, according to Theorem 2, r will tend to

zero. Hence, a fault is declared if it becomes nonzero. To be

specific, a fault detection scheme is proposed as follows.

1) Solve equations (25) to obtain ˆ̄y.

2) Compute the residual r.

3) Choose a threshold ǫ.

4) Compare the residual r with the threshold ǫ. If it ex-

ceeds its corresponding threshold, faults are detected.

Theoretically speaking, the threshold, that is, ǫ could be

chosen arbitrarily small. However, in practical situations,

because other unconsidered uncertainties may exist, too small

ǫ may lead to too many false alarms. On the other hand, too

large ǫ may increase the missed detections. Trade-off has to

be made on the choice of a suitable threshold.

V. AN EXAMPLE AND SIMULATION RESULTS

In this section, a single-link flexible robot manipulator

model in [24] is used to test the proposed fault detection

scheme. The single-link flexible robot manipulator model in

[24] takes the following form

J1q̈1 + F1q̇1 + K(q1 −
q2

N
) + mgdcosq1 = 0

J2q̈2 + F2q̇2 −
K

N
(q1 −

q2

N
) = Kti

LDi + Ri + Kbq̇2 = u (27)

According to [24], after suitable change of variables, (27)

can be made into the following form

ẋ1 = x2 + θ1x1

ẋ2 = x3 + θ2x1 + θ3cosx1

ẋ3 = x4 + θ4x1 + θ5cosx1

ẋ4 = x5 + θ6x1 + θ7cosx1

ẋ5 = θ8cosx1 + b0u

(28)
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Due to lack of space, the physical meanings of all variables

and notations in this section are omitted but can be found in

[24]. Assume that all parameters are known.

Since this model does not have any unknown input, to

test the proposed scheme, the nonlinear function cosx1 in

θ5cosx1 and θ7cosx1 is treated as an unknown input, and

thus one has D = (0 0 θ5 θ7 0)T . Assume that y1 = x1 and

y2 = x5, (28) can be rewritten as

ẋ = Ax + Bu + Fcosy1 + Dd(t),

y = Cx, (29)

where d(t) = cosx1, F = (0 θ3 0 0 θ8)
T , and

A =







θ1 1 0 0 0
θ2 0 1 0 0
θ4 0 0 1 0
θ6 0 0 0 1






, C =

(

1 0 0 0 0
0 0 0 0 1

)

.

Obviously, one has CD = 0, which means conventional

SMOs and UIOs can not be designed to remove the effect

the unknown input. However, it is easy to see that (29)

takes the form (1). Therefore, the fault detection scheme

developed can be readily applied to the single-link flexible

robot manipulator model.

Simulations are done based on (29). The design parameters

are chosen as K = (17.5 120 402.5 659 420)T , cM (which

is one dimensional for this example) is chosen as 2. Three

fault cases are considered.

• Case A The actuator is stuck at a constant, that is, u = 0
for t > 20s.

• Case B The sensor for x5 has a scaling error, that is,

y2(t) = 0.9x5(t) for t > 6s, where x5(t) is the real

output, and y2(t) is the measurement provided by the

sensor.

• Case C The actuator has a slow changing scaling error

(an incipient fault), that is, u(t) = (1 − 0.1(1 −
e−0.005t))u∗(t) for t > 20s.

The results for Case A and Case B are presented in

Figure 1 and Figure 2, respectively. After the presence of

an actuator fault at t = 20s, the residual in Figure 1 exceeds

the threshold 0.05 at t = 20.02s. After the presence of a

scaling sensor fault at t = 6s, the first residual in Figure 2

exceeds the threshold 0.05 at t = 6.01s. Both figures show

that abrupt faults can be detected correctly very quickly.

The results for Case C are presented in Figure 3, where the

two straight lines represent two thresholds, that is, 0.05 and

0.01, respectively. For threshold 0.05, the fault detection time

is t = 17.76s, which is much longer than the abrupt faults.

For threshold 0.01, the fault detection time is t = 0.05s,

which is quite fast.

In summary, for the considered example, the proposed

fault detection scheme is able to detect both abrupt and

incipient faults successfully. Moreover, it is observed that

a larger threshold may be chosen for abrupt faults and a

smaller threshold should be used in order to detect the faults

in a timely manner for incipient faults.
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VI. CONCLUSIONS AND FUTURE WORK

A. Conclusions

In this paper, fault detection problem in a class of nonlin-

ear systems with unknown inputs was solved using output

estimator design. A necessary and sufficient condition for the

existence of the fault detection output estimator was derived.

Simulation results on a single-link flexible robot manipulator

model showed the proposed fault detection scheme was able

to detect faults correctly.

B. Future Works

Because both observer design and output estimator design

can be used to eliminate the effect of unknown inputs under

different conditions, comparisons between the two design

strategies are needed to ascertain the strength and weakness

of each strategy in the future.
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