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Abstract— This paper presents a novel class of self-organizing
multi-agent systems that form a swarm and learn a spatio-
temporal process through noisy measurements from neighbors
for various global goals. The physical spatio-temporal process of
interest is modeled by a spatio-temporal Gaussian process. Each
agent maintains its own posterior predictive statistics of the
Gaussian process based on measurements from neighbors. A set
of biologically inspired navigation strategies are identified from
the posterior predictive statistics. A unified way to prescribe a
global goal for the group of agents is presented. A reference
trajectory state that guides agents to achieve the maximum
of the objective function is proposed. A switching protocol
is proposed for achieving the global maximum of a spatio-
temporal Gaussian process over the surveillance region. The
usefulness of the proposed multi-agent system with respect
to various global goals is demonstrated by several numerical
examples.

I. INTRODUCTION

In recent years, significant enhancements have been made
in the areas of sensor networks and mobile sensing agents.
Emerging technologies have been reported on coordination
of mobile sensing agents [1], [2], [3], [4], [5], [6], [7], [8],
[9], [10]. Mobile sensing agents form an ad-hoc wireless
communication network in which each agent operates under
a short communication range and has some computational
power. Among challenging problems of distributed coordi-
nation of mobile sensing agents, tracing the maximum of an
unknown field has attracted much attention of control engi-
neers. This has numerous applications including homeland
security, toxic-chemical plume tracing and environmental
monitoring. For instance, the most common approach to
toxic-chemical plume tracing has been biologically inspired
chemotaxis [11], [12], in which a mobile sensing agent is
driven according to a local gradient of the chemical plume
concentration. However, in this case, the convergence rate
can be slow and the mobile robot may easily get stuck in
the local maxima of chemical plume concentration. Thus,
robots require collective intelligence for them to estimate and
predict global features of a spatio-temporal field based on
samples in different time and space, which is the subject of
this paper. The cooperative network of agents that performs
adaptive gradient climbing in a distributed environment was
presented in [13], [14].

Many of the mobility of the mobile agents are designed
based on a certain field of interest. Recently distributed
interpolation schemes for field estimation by mobile sensor
networks are developed by [6]. Swarming sensing agents
with a gradient ascent strategy for tracing the maximum
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of an unknown field via radial basis function learning were
proposed by [9].

Our motivation is to design the mobility of sensing agents
for various tasks by intelligently dealing with uncertainty
in the estimation of a spatial phenomenon based on online
measurements, and exploiting the posterior predictive statis-
tics, which will lead to “learning agents”. In maximizing an
objective function, we are interested in achieving the global
maximum rather than obtaining usual local maxima.

In our approach, the dynamical phenomenon in the surveil-
lance region R will be specified by a spatio-temporal
Gaussian process. A Gaussian process (or Kriging in geo-
statistics) has been successfully in geostatistical analysis
[15], [16] and machine learning [17], [18], [19] to esti-
mate complex nonlinear processes from a finite number
of samples. A spatio-temporal Gaussian process z(s, t) ∼
GP(µ(s, t),K({s, t}, {s′, t′})), s(t), s′(t′) ∈ R, t, t′ ∈ Z+

is specified by its mean function µ(·, t) and a symmet-
ric positive definite covariance function K(·, ·). Gaussian
processes enable us to predict physical values, such as
temperature and plume concentration, at any of spatial points
with a predicted uncertainty level. A class of spatio-temporal
Gaussian processes has been extensively investigated in the
form of combining spatial Gaussian processes and Kalman
filtering, which became so-called “space-time Kalman filter”
[20], [21], [22], [23]. This model will be used in the paper.
Recently near-optimal static sensor placements with a mutual
information criterion in Gaussian processes were proposed
by [24]. Distributed Kriged Kalman filter for spatial estima-
tion based on mobile sensor networks are developed by [8].
Asymptotic optimality of multicenter Voronoi configurations
for random field estimation is reported by [7].

The contribution of this paper is to introduce coordination
algorithms that exploit posterior predictive statistics from
a Gaussian process learning mechanism. Combined with
a flocking algorithm [4], [5], [9] for distributed sampling,
this approach provides collective intelligence to each agent
to form cooperatively learning mobile agents that perform
useful tasks. Depending on the tasks for the sensing agents,
the collective mobility of sensing agents can be designed
for various performance criterions. In particular, a set of
navigation modes (tracing, avoidance, exploration with re-
spect to the predicted field) for swarming agents is pre-
cisely prescribed based on the recursively updated Gaussian
process. An interesting switching protocol is introduced to
overcome the tradeoff between exploitation and exploration,
which leads to the global maximum. The usefulness of the
proposed coordination algorithm is demonstrated by several
interesting numerical examples.

The proposed cooperatively learning control consists of
motion coordination based on the recursive estimation of
an unknown field of interest with measurement noise. Our
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strategy of the cooperative learning control can be applied to
a large class of coordination algorithms for mobile agents to
deal with the field of interest that requires to be recursively
estimated.

This paper is organized as follows. In Section II, we
briefly review the mobile sensing network model, notations
related to a graph, and artificial potentials to form a swarm-
ing behavior. A recursive learning algorithm for estimat-
ing parameters and predicting a spatio-temporal Gaussian
process is presented in Section III. Section IV explains
the biologically inspired navigation and a unified way to
prescribe the global goal for agents. A reference trajectory
state that guides agents to achieve the global maximum of
the objective function is presented as well. In Section V,
the resulting cooperatively learning control is described.
In Section VI, we numerically test agents under different
navigation strategies and a switching protocol with respect
to several configurations and different Gaussian processes.

II. PRELIMINARIES

In this section, we explain notations and concepts that will
arise throughout the paper.

A. Mobile Sensing Agent Network

First, we explain the mobile sensing network and sensor
models used in this paper. Let Ns be the number of sensing
agents distributed over the surveillance region R ⊂ R

2.
Assume that R is a compact set. The identity of each agent
is indexed by I := {1, 2, · · · , Ns}. Let qi(t) ∈ R be the
location of the i-th sensing agent at time t ∈ R+ and let
q := col(q1, q2, · · · , qNs

) ∈ R
2Ns be the configuration of

the swarm system. The discrete time, high-level dynamics
of agent i is modeled by

{

qi(t+ 1) = qi(t) + ǫpi(t),
pi(t+ 1) = pi(t) + ǫui(t)

, (1)

where ǫ is the iteration step size. qi, pi, ui ∈ R
2 are,

respectively, the position, the velocity, and the input of the
mobile agent. We assume that the measurement y(qi(t), t) of
sensor i includes the scalar value of the field z(qi(t), t) and
sensor noise w(t), at its position qi(t) and the measurement
time t,

y(qi(t), t) := z(qi(t), t) + w(t). (2)

B. A Graph

The group behavior of mobile sensing agents and their
complicated interactions with neighbors are best treated by a
graph with edges. Let G(q) := (I, E(q)) be a communication
graph such that an edge (i, j) ∈ E(q) if and only if agent
i can communicate with agent j 6= i. We assume that each
agent can communicate with its neighboring agents within a
limited transmission range given by a radius of r. Therefore,
(i, j) ∈ E(q) if and only if ‖qi(t) − qj(t)‖ ≤ r. We define
the neighborhood of agent i with a configuration of q by
N(i, q) := {j : (i, j) ∈ E(q), i ∈ I}. The adjacency
matrix A := [aij ] of an undirected graph G is a symmetric
matrix such that aij = k3 > 0 if vertex i and vertex j are
neighbors and aij = 0 otherwise, where k3 is a positive
scalar. The scalar graph Laplacian L = [lij ] ∈ R

Ns×Ns

is a matrix defined as L := D(A) − A, where D(A) is
a diagonal matrix whose diagonal entries are row sums of

A, i.e., D(A) := diag(
∑Ns

j=1 aij). The 2-dimensional graph

Laplacian is defined as L̂ := L ⊗ I2, where ⊗ is the
Kronecker product. A quadratic disagreement function [5]

can be obtained via the Laplacian L̂:

ΨG(p) := pT L̂p =
1

2

∑

(i,j)∈E(q)

aij ||pj − pi||
2, (3)

where p := col(p1, p2, · · · , pNs
) ∈ R

2Ns .

C. A Swarming Behavior

In order for agents to sample measurements of a scalar
field at spatially distributed locations simultaneously, a group
of mobile agents will be coordinated by a flocking algorithm
([5], [4], [9]). We use attractive and repulsive smooth po-
tentials similar to those used in [4], [5], [9] to generate a
swarming behavior. To enforce a group of agents to satisfy a
set of algebraic constraints ‖qi−qj‖ = d for all j ∈ N (i, q),
we introduce a collective potential

U1(q) :=
∑

i

∑

j 6=i

Uij(‖qi − qj‖
2) =

∑

i

∑

j 6=i

Uij(rij), (4)

where rij := ‖qi − qj‖2. Uij in (4) is defined by

Uij(rij) :=
1

2

(

log(α+ rij) +
α+ d2

α+ rij

)

, if rij < d2
0, (5)

otherwise (i.e., rij ≥ d2
0), it is defined according to the

gradient of the potential, which will be described shortly.
Here α, d ∈ R+ and d < d0. The gradient of the potential
w.r.t. qi for agent i is given by

∇U1(qi) :=
∂U1(q)

∂q̃i

∣

∣

∣

q̃i=qi

=
∑

j 6=i

∂Uij(r)

∂r

∣

∣

∣

r=rij

(qi − qj)

=







∑

j 6=i

(rij−d2)(qi−qj)
(α+rij)2

if rij < d2
0

∑

j 6=i ρ
(√

rij−d0

|d1−d0|

)

‖d2

0
−d2‖

(α+d2

0
)2

(qi − qj) otherwise,

(6)

where ρ : R+ → [0, 1] is the bump function

ρ(z) :=











1, z ∈ [0, h);
1
2

[

1 + cos
(

π
(z−h)
(1−h)

)]

, z ∈ [h, 1];

0, otherwise,

that smoothly varies from 1 to 0 as the scalar input increases.
In equations (4), (5), and (6), α was introduced to prevent the
reaction force from diverging at rij = ‖qi − qj‖2 = 0. This
potential yields a reaction force that is attracting when the
agents are too far and repelling when a pair of two agents are
too close. It has an equilibrium point at a distance of d. We
also introduce a potential U2 to model the environment. U2

enforces each agent to stay inside the closed and connected
surveillance region R and prevents collisions with obstacles
in R. We construct U2 such that it is radially unbounded in
q, i.e.,

U2(q) → ∞ as ‖q‖ → ∞. (7)

Define the total artificial potential by

U(q) := k1U1(q) + k2U2(q), (8)

where k1 > 0 and k2 > 0 are weighting factors.
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III. LEARNING AGENTS FOR GAUSSIAN PROCESSES

To model the noisy measurement of the dynamical random
field z(s, t), s ∈ R, consider the space-time Kalman filter
model or the spatio-temporal Gaussian process [21], [22],
[23], [8]:

z(s, t) = µ(s, t) + ς(s, t)

∼ GP(µ(s, t),K({s, t}, {s∗, t∗})),
(9)

where s, s∗ ∈ R, t, t∗ ∈ Z+. The mean field µ(·, t) is a linear
function of the temporal state θ(t):

µ(s, t) :=

m
∑

j=1

φj(s)θj(t) = φT (s)θ(t), (10)

where φT (s) and θ(t) are respectively by

φT (ν) :=
(

φ1(s) φ2(s) · · · φm(s)
)

∈ R
1×m

θ(t) :=
(

θ1(t) θ2(t) · · · θm(t)
)T

∈ R
m×1.

Gaussian kernels φj(s) are given by

φj(s) :=
1

Zµ

exp

(

−‖s− νc
j‖

2

σ2
µ

)

, (11)

where σµ is the width of the Gaussian basis and Zµ

is a normalizing constant. νc
j for j ∈ {1, · · · ,m} are

distributed in the surveillance region R based on prior
knowledge about the region 1. We also specify a prior over
θ(0) by θ(0) ∼ N (θ0,Σθ(0)). The spatial correlation can
be further prescribed by the zero-mean Gaussian process
ς(s, t) ∼ GP(0,K({si, ti}, {sj, tj})) with a covariance ma-
trix K({si, ti}, {sj, tj}) := κ(si, sj)δ(ti,tj), where δ(·,·) is
the Kronecker delta and

κ(si, sj) :=
1

Zκ

exp

(

−‖si − sj‖2

σ2
κ

)

. (12)

The dynamical part of the spatio-temporal Gaussian process
and the noisy observation are given by

θ(t+ 1) = F (t)θ(t) +G(t)u(t) ∈ R
m,

y(s, t) = φT (s)θ(t) + ς(s, t) + w(t) ∈ R,
(13)

where u(t) ∼ N (0, Q(t)) and w(t) ∼ N (0, σ2
w) are respec-

tively the usual zero-mean system noise and the uncorrelated
measurement noise.

Suppose that at time t, agent i can collect observations
Y (t) := [y(q1(t), t), · · · , y(qn(t), t)]T taken at the n sites
{q1(t), · · · , qn(t)} by itself and its n−1 neighbors, then we
have:

Y (t) = ΦT (t)θ(t) + v(t) ∈ R
n, (14)

where Φ(t) := [φ(q1(t)), · · · , φ(qn(t))]T and v(t) ∼
N (0,Σv(t)). Here we assume that agent i can compute the
covariance function by

Σv(t) :=
(

[κ(qi(t), qj(t))] + diag(σ2
w1, · · · , σ

2
wn)
)

∈ R
n×n,
(15)

where σ2
wj are due to sensor noise and communication noise

between agent i and neighboring agents.

Let θ̂(t|t−1) and θ̂(t|t) be the estimates of θ(t) based on
the observations obtained up to time t−1 and t, respectively.

1In simulation, we placed them uniformly over R

The estimation error is θ̃(t|t − 1) := θ(t) − θ̂(t|t − 1). Let

P (t|t− 1) and P (t|t) be the covariance matrices of θ̂(t|t−
1) and θ̂(t|t), respectively. For (13) and (14), the standard
Kalman filter [25] provides the measurement updates:

Kf (t) = P (t|t− 1)ΦT (t)
[

Σv(t) + Φ(t)P (t|t− 1)ΦT (t)
]−1

,

θ̂(t|t) = θ̂(t|t− 1) +Kf (t)
[

Y (t) − Φ(t)θ̂(t|t− 1)
]

,

P (t|t) = [I −Kf(t)Φ(t)]P (t|t − 1),
(16)

and the predictions:

θ̂(t+ 1|t) = F (t)θ̂(t|t− 1)

+ F (t)Kf (t)[Y (t) − Φ(t)θ̂(t|t− 1)],

P (t+ 1|t) = F (t)P (t|t− 1)FT (t) +G(t)Q(t)GT (t)

− F (t)Kf (t)[Σv(t) + Φ(t)P (t|t− 1)ΦT (t)]−1

KT
f (t)FT (t).

(17)

For a fixed θ(t), we have the following :

Σz(t) := Cov(z(s, t), z(s, t)|θ(t)) = κ(s, s),

ΣY (t) := Cov(Y (t), Y (t)|θ(t)) = Σv(t),

ΣY z(t) = ΣT
zY (t) := Cov(Y (t), z(s, t)|θ(t)) = ψ(s),

(18)

where Cov(x, y) := E(x − Ex)(y − Ey)T and ψ(s) :=
[κ(si, s)] ∈ R

n. From the Kalman filter, we have

θ(t)|Y≤t := {Y (t), · · · , Y (1)} ∼ N (θ̂(t|t), P (t|t)).

The posterior predictive distribution of z(s, t) conditioned
on Y≤t can be obtained by marginalizing p(z(s, t)|θ(t), Y≤t)
over p(θ(t)|Y≤t):

z(s, t|t) := z(s, t) |Y≤t ∼ N
(

ẑ(s, t|t), σ2(s, t|t)
)

, (19)

where ẑ(s, t|t) := E{z(s, t|t)} is:

ẑ(s, t|t) := φT (s)θ̂(t|t) + ΣzY (t)Σ−1
Y (t)

(

Y (t) − Φ(t)θ̂(t|t)
)

,

= φT (s)θ̂(t|t) + ψT (s)Σ−1
v (t)

(

Y (t) − Φ(t)θ̂(t|t)
)

,

and σ2(s, t|t) is given by

σ2(s, t|t) := Σz(t) − ΣzY (t)Σ−1
Y (t)ΣT

zY (t)

+ (φT (s) − ΣzY Σ−1
Y Φ(t))P (t|t)(φT (s) − ΣzY Σ−1

Y Φ(t))T

= κ(s, s) − ψT (s)Σ−1
v (t)ψ(s)

+ [φT (s) − ψT (s)Σ−1
v Φ(t)]P (t|t)[φT (s) − ψT (s)Σ−1

v Φ(t)]T .

The last term is due to using the MMSE estimate θ̂(t) as
compared to applying a simple kriging or a prediction of
the Gaussian process for a known θ(t). This formulation
is a popular way to embed a finite number of determin-
istic kernels to represent a mean trend [26], [20], [19],
[8]. This algorithm combines parametric and nonparametric
estimations, which is robust w.r.t possible mismatches in the
selected radial basis functions that parameterize the mean
trend. In the following section, navigation strategies based
on the spatial prediction and the estimated uncertainty in
(19) are presented.
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TABLE I

A LIST OF COMMON GOALS AND THEIR RELATED SMOOTH

PERFORMANCE CRITERIONS TO BE MAXIMIZED.

Goals Smooth objective function
Avoidance (Negative prediction) β0 = −ẑ(s, t|t)

Tracing (Prediction) β1 = ẑ(s, t|t)
Exploration (Variance) β2 = σ2(s, t|t)
Exploration (Entropy) β3 = H(z(s, t|t))

IV. NAVIGATION STRATEGIES

Depending on the tasks for the sensing agents, the col-
lective mobility of sensing agents is designed to maximize a
specified performance criterion. In this section, we introduce
a set of different objective functions for navigation, their
parameterization, and a way to maximize such an objective
function via a reference trajectory state.

A. Biologically Inspired Navigation

We propose a set of useful, biologically inspired naviga-
tion modes (tracing, avoidance, and exploration) for agents:
(i) for tracing, agents move to the maximum location of the
estimated field:

qi(t) = arg max
s∈R

ẑ(s, t|t), (20)

(ii) for avoidance, we also have:

qi(t) = argmax
s∈R

−ẑ(s, t|t), (21)

(iii) for exploration, the agents can move to a location
associated to the maximum variance

qi(t) = arg max
s∈R

σ2(s, t|t), (22)

or differential entropy of the Gaussian process:

qi(t) = arg max
s∈R

H(z(s, t|t)) =
1

2
ln(2πeσ2(s, t|t)). (23)

By using (22) and (23), we expect the variance and the
entropy of the Gaussian process in the surveillance region
R to decrease. Notice that prediction in (19) and gradients
in (20), (21), (22) and (23) are smooth functions of a location
s, which ensures the existence of extreme values over a
compact set.

In Table I, a list of common goals and their related per-
formance criterion functions for coordinating sensing agents
are summarized.

B. The Parameterization of a Global Goal

The optimal balance between exploitation and exploration
is commonly observed in biological searchers [27], [28] as
well as in learning theory. The balance can be achieved by
switching amongst or a convex combination of such goals
with different nature. For instance, a global goal can be
parameterized in the following way:

Ji(Λ(t); s, t) :=

∑3
k=1 λik(t)βik(s, t)
∑3

k=1 λik(t)
, for all i ∈ I, (24)

where βi1(s, t) := ẑi(s, t|t), βi2(s, t) := σ2
i (s, t|t) and

βi3(s, t) := H(zi(s, t|t)) are specifically chosen for the later
simulation study. A global goal is a function of a navigation

strategy Λ(t) := [λik(t)] ∈ R
|I|×3
+ that sets the individual

weights on the all possible performance criterions (typical
ones are shown in Table I).

C. Reference Trajectory State

It is important to notice that agents have access to the
maximum location of posterior predictive entities (such as
prediction, variance, and entropy) over s ∈ R, using the
Gaussian process. Hence, instead of using local gradient
ascent strategy [9], [10] that converges to a local maximum,
we introduce a reference trajectory state, which will guide
agents to maximize the objective function in (24) directly
for the global maximum. For each of agents at each time
instant, the maximum location of the corresponding posterior
predictive entity will be evaluated and this value will be fed
into a lowpass filter to generate a reference trajectory state.
Therefore, agents can directly locate the global maximum of
the posterior predictive entity.

ηi(t) = argmax
s∈R

Ji(Λ(t); s, t). (25)

The reference trajectory ri(t) is generated by a lowpass filter
with a time constant T , i.e., Gf (s) = 1

Ts+1 fed by ηi(t). The
discretized version is given by:

ri(t) = ri(t− 1) + ǫ

[

−
1

T
ri(t− 1) +

1

T
ηi(t)

]

. (26)

Agent i then can perform a gradient ascent strategy with
respect to the following objective function:

Ĵi(Λ(t); qi, t) := −
1

2
‖qi(t) − ri(t)‖

2,

∇Ĵi(Λ(t); qi, t) = −(qi(t) − ri(t)).
(27)

V. COOPERATIVELY LEARNING CONTROL

Each of mobile agents receives measurements from neigh-
bors, then updates its estimation of the Gaussian process in
R via the recursive algorithm presented in (16), (17) and
an update in (19). Subsequently, based on the update of a
gradient of a performance criterion in Table I, the control
for its coordination will be decided. For agent i, the update
becomes:

Σ∗
Y i(t) = Σi(t) + Φi(t)Pi(t|t− 1)Φi(t)

T

Kfi(t) = Pi(t|t− 1)Φi(t)
T Σ∗

Y i
−1(t),

θ̂i(t|t) = θ̂i(t|t− 1) +Kfi(t)
[

Yi(t) − Φi(t)θ̂i(t|t− 1)
]

,

Pi(t|t) = [I −Kfi(t)Φi(t)]Pi(t|t− 1),

θ̂i(t+ 1|t) = Fi(t)θ̂i(t|t− 1)

+ Fi(t)Kfi(t)[Yi(t) − Φi(t)θ̂i(t|t− 1)],

Pi(t+ 1|t) = Fi(t)Pi(t|t− 1)FT
i (t) +Gi(t)Qi(t)G

T
i (t)

− Fi(t)Kfi(t)Σ
∗
Y i

−1(t)KT
fi(t)F

T
i (t),

(28)

where Yi(t) is the collection of collaboratively measured data
at iteration time t. Based on the gradient of the performance

function ∇Ĵi(·; ·, ·) in (27), which is updated by (28), a
distributed control for agent i is decided as follows:

ui(t) := −∇U(qi(t)) − kdipi(t) + k4∇Ĵi(Λ(t); qi(t), t)

+
∑

j∈N(i,q(t))

aij(q(t))(pj(t) − pi(t)),

(29)
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here k4 ∈ R+ is a gain for the global objective function
and kdi ∈ R+ is a gain for the velocity feedback. The
first term in (29) is the gradient of (8) which attracts agents
while avoiding collisions among them. Also it restricts the
movements of agents inside R. The last term in (29) is
an effort for agent i to match its velocity with those of
neighbors. This term is also called a “velocity consensus”
and serves as a damping force among agents. Incorporating
the closed-loop discrete time model in (1) along with the
proposed control in (29) and the reference trajectory state
(27) gives

ri(t+ 1) = ri(t) + ǫ

[

−
1

T
ri(t) +

1

T
ηi(t+ 1)

]

,

qi(t+ 1) = qi(t) + ǫ[pi(t)]

pi(t+ 1) = pi(t) + ǫ
[

−∇U(qi(t)) − kdipi(t)

−∇ΨG(pi(t)) + k4(ri(t) − qi(t))
]

,

(30)

where the iteration step ǫ is sufficiently small so that the
trajectories of states may be approximated by the associated
ODE (see more details in [29]). A velocity saturation can be
imposed in (30), which can be thought of a projection onto
a space with a bounded velocity [29].

VI. SIMULATION RESULTS

To demonstrate the proposed learning agents, we applied
the control (29) to spatio-temporal Gaussian processes intro-
duced in Section III under various global goals generated by
(24).

Hereafter plots contain updated posterior predictive values
of agent 1 along with trajectories of all agents. Mode 1,
Mode 2, and Mode 3 denote the tracing in (20), exploration
via variance in (22), exploration via entropy in (23) respec-
tively.

A. Tracing

A swarm of nine learning agents performed a tracing
strategy as shown in Fig. 1. Here η(t) in (25) is gen-
erated by the location associated to the maximum of the
predicted value ẑ(s, t|t) over R. The maximum is obtained
by evaluating ẑ(s, t|t) at a fine grid over R. The reference
trajectory generated by (26) is plotted by the smaller stars
and a dotted black line. The white star represents the latest
reference point for agent 1 to track. Learning agents with the
tracing mode alone converge to a configuration for a local
maximum. Agents with the tracing strategy alone can not
find the maximum point if they are far from it.

B. Exploration

Learning agents performed group exploration by tracking
the maximal variance location as shown in Fig. 2. The plots
show σ2(s, t|t) of agent 1. Stars represents the reference
state trajectory for agent 1 to follow. As depicted in Fig. 2,
the reference state can travel between alternating maximum
points, since the maximum point decreases as agents collect
samples near the maximum variance location. The worst-
case error variance maxs∈R σ2(s, t|t) and the RMS value of
a error field between µ(s, t|t) and µ̂(s, t|t) quickly converges
to a small number. In the same way, the entropy driven
exploration strategy is shown with H(z(s, t|t)) in Fig. 3.

Fig. 1. Tracing: The plot of ẑ(s, t|t). The error field between ẑ(s, t|t)
and z(s, t|t) is plotted by colored contours.

Fig. 2. Variance driven exploration: The plot of σ2(s, t|t) updated by
agent 1 (blue-lowest, red-highest).

C. A Switching Protocol

We propose a switching protocol between exploration
(Mode 2 or Mode 3) and exploitation (Mode 1). Each agent
starts with an exploration strategy, when an agent obtains
a maximum prediction error variance within a specified
tolerance, it switches to the tracing strategy in order to locate
the maximum of the predicted field within the variance error
tolerance. Fig. 4 shows that the convergence rates of the trace
of P (t|t), the RMS value of the error field, and the maximum
value η(t) under the switching protocol. Agent 1 switches
from Mode 1 to Mode 2 when the maximum variance error
becomes less than 10 as in Fig. 4. As shown in Fig. 5,

Fig. 3. Entropy driven exploration: The plot of entropy H(z(s, t|t)).
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Fig. 4. A switching protocol: The convergence rates of the trace of P (t|t),
the RMS value of the error field, and maximum value η(t) under a switching
protocol. Agent 1 switched from Mode 1 to Mode 2 around iteration time
47.

Fig. 5. Plots for a switching protocol. Left: the plot of σ2(s, t|t) under
variance driven exploration. Right: the plot of ẑ(s, t|t) under the tracing
mode. The error field between ẑ(s, t|t) and z(s, t|t) is plotted by colored
contours.

learning agents under this switching protocol successfully
locate the global maximum point in R.

VII. CONCLUSIONS

In this paper, we presented a novel class of self-organizing
multi-agent systems that form a swarm and learn a spatio-
temporal process through noisy measurements from neigh-
bors for various global goals. The physical spatio-temporal
process of interest is modeled by a spatio-temporal Gaussian
process. Each agent maintains its own posterior predictive
statistics of the Gaussian process based on online measure-
ments from neighbors. The proposed learning agents perform
a prescribed task by tracking the maximum location of an
objective function. A switching protocol was proposed for
achieving the global maximum of a spatio-temporal Gaussian
process. The usefulness of the proposed multi-agent system
with respect to various global goals was demonstrated by
several numerical examples. Future work is to generalize our
schemes by incorporating learning algorithms for covariance
functions of Gaussian processes to the proposed multi-agent
systems.
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