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Abstract— In this paper we propose a Lagrangian Coherent
Structures (LCS) based approach to modeling and estimation
of contaminant transport and mixing in large indoor spaces
in buildings. Specifically, we show how the knowledge of LCS
can be exploited to enhance Proper Orthogonal Decomposition
(POD) based model reduction, sensor placement and comparing
effect of different control schemes. We illustrate this approach
in a three-dimensional room equipped with a mechanical
ventilation system.

I. INTRODUCTION

Increasingly, substantial research efforts are underway to

create high performance and energy efficient buildings that

meet or exceed the occupant comfort and safety needs at

lower life cycle costs and resource utilization . Real-time

knowledge of dynamic indoor environment parameters, such

as thermal and airflow state, and contaminant distribution

are critical to the management and optimization of building

occupant comfort and safety. However, the multi-scale spa-

tiotemporal flow dynamics associated with buildings makes

the problem of estimation, optimization and control challeng-

ing. The key issue in such applications is the lack of rigorous

methods for extracting reduced-order model that captures the

essential coupling across spatial and temporal scales, and

for selecting sensor and actuator placement that enable cost

performance trade off’s for practical design problems. Solv-

ing such problems require a tight integration of IT systems

(including sensors, algorithms, computational architecture,

and communications) with control, and dynamics.

In this paper we focus on dynamic modeling of transport

and mixing of passive contaminant in large indoor spaces in

buildings. For such spaces, lumped models like multizone

models [1] with well-mixed assumptions are inadequate,

while CFD models are not directly amenable for real-time

monitoring and control. Thus one has to rely on appropriate

reduced-order models which can capture the inhomogeneous

spatio-temporal dynamics in real time by utilizing informa-

tion from a limited number of sensors.

One of the most widespread techniques for model reduc-

tion in fluids has been Proper Orthogonal Decomposition

and Galerkin projection [2], [3]. The central idea of POD is

to determine a set of empirical mode shapes, that optimally

span the simulation data. Galerkin projection determines the

reduced order dynamics, by orthogonal projection of the

governing equation on the mode shapes. In this framework

the state estimation problem is reduced to estimating a finite

number of Galerkin coefficients. However, an appropriate

choice of modes and sensor location is critical to ensure

that the resulting estimation algorithm is stable and efficient

in predicting the dynamical features of interest. In practice,

limited availability of sensors and restriction on their place-

ment due to lack of accessibility and viability, makes the

estimation problem even more challenging.

As described above, POD based model reduction is

achieved by retaining only those flow modes which capture

a large enough proportion of the net energy. However, it is

not clear as to how efficiently these energetic modes capture

passive contaminant transport and mixing. In order to address

this issue we propose a new Lagrangian Coherent Structure

(LCS) based metric for choosing POD modes. It is well

known that LCS act as templates of transport and mixing in

fluid flows [4],[5] . While hyperbolic LCS enhance mixing

by causing material stretching, folding and filamentation; the

vortical structures trap material and therefore, inhibit mixing

. LCS based metric allows one to choose those POD modes

that can capture relevant mixing scales. Through a case study,

we show that this approach indeed leads to lower order

models with fewer number of states as compared to that

obtained from an energy based norm. We also demonstrate

other applications of LCS, such as in sensor placement for

robust estimation, and in analyzing the effect of different

actuation schemes, such as forced ventilation and heating,

on mixing and transport.

This paper is organized into four sections. In section II

we compare Eulerian Coherent Structure and LCS based

techniques for extracting coherent structures in three dimen-

sional time dependent fluid flows. LCS based techniques

offer several advantages over ECS based ones and are used

subsequently in this paper to highlight mixing templates. We

describe two such criterion in section III: Direct Lyapunov

Exponent (DLE) and MZ , which can be used to partition the

flow domain into hyperbolic and vortex regions. In section

IV we demonstrate the role of LCS in model reduction,

estimation and control through a case study of airflow and

thermal transport in a three dimensional room equipped with

a mechanical ventilation system. Finally, in section V we

conclude with recommendations for future research.
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II. COHERENT STRUCTURES IN THREE DIMENSIONAL

TIME DEPENDENT FLOWS

Understanding transport process in fluids requires parti-

tioning of flow domain into regions with different dynamical

behaviors [5]. Such dynamical regions are known as coherent

structures. Accurate identification of the location and nature

of these structures and their interaction with each other is

fundamental to understanding mixing in fluid flows.

Consider a three dimensional time-dependent velocity field

v(x, t) = (u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)))T , (1)

which describes a fluid flow in domain D ⊂ R
3 of interest.

The velocity field could represent a solution of the Navier-

Stokes equation, is obtained from a flow model or is mea-

sured experimentally. Techniques for defining and extracting

coherent structures broadly fall into two categories:Eulerian

and Lagrangian. The Eulerian coherent structures (ECS)

criteria are typically formulated in terms of the instantaneous

velocity field and its gradient. For example, the Okubo-Weiss

[6] criterion partitions the domain into vortex and strain

regions according to the spatial distribution of the quantity

Q =
1

2
(||Ω||2 − ||S||2), (2)

where, || · || is the Euclidean matrix norm,

S =
1

2
(∇v + ∇v

T ), Ω =
1

2
(∇v −∇v

T ), (3)

denote the rate of strain tensor and the vorticity field,

respectively. Vortex cores are identified with regions where

Q > 0 and region of strain and deformation are characterized

by Q < 0. A survey of other such Eulerian criteria, is

given in [7], which also reveal various shortcomings of such

criteria.

By contrast Lagrangian methods identify flow structures

based on the properties of fluid trajectories. Recall that a fluid

trajectory x(t) = x(t, t0,x0) starting from x(t0, t0,x0) =
x0), satisfies the Lagrange equations of particle motion

ẋ = v(x(t, t0,x0), t). (4)

From the viewpoint of geometric theory of dynamical sys-

tems, the phase space of (4), is actually the physical space

in which the fluid flow takes place. Evidently, “structures”

in the phase space of (4) should have some influence on

the transport and mixing properties of flow. This realization

has lead to plethora of work on applying dynamical systems

techniques to the study of transport issues in fluids over the

past two decades [4],[5].

Within this dynamical systems framework, the impact of

hyperbolic and elliptic structures on mixing in steady, peri-

odic and near-integrable flows has been thoroughly studied.

For these restricted classes of flows, the stable and unstable

manifolds associated with saddle type fixed points of the

velocity field in steady flows or of associated Poincare map

for periodic and quasiperiodic flows form global templates

of mixing. Unstable manifolds act as attracting material lines

(surfaces) that create global folding patterns for passive trac-

ers; stable manifolds act as repelling material lines (surfaces)

that are responsible for stretching of fluid blobs. On the

other hand elliptic structures like KAM tori are examples

of complete barriers to transport, fluid trajectories starting

inside them remain trapped inside forever.

Recent progress in nonlinear dynamics has extended the

above picture to velocity fields with aperiodic or even turbu-

lent time dependence. While no Poincare maps are available

in this context, families of hyperbolic material lines and

surfaces continue to organize passive mixing. These families

are formed by finite-time stable and unstable manifold of

distinguished fluid trajectories [7], [9]-[12]. In next section

we describe two Lagrangian criteria which have duality

property, i.e. can be used to detect vortex cores and the

hyperbolic skeleton simultaneously in 3D aperiodic velocity

fields. Before we proceed further, two remarks are in order:

(1) Neglecting molecular diffusion, passive scalars (e,g,

dye, temperature, CO2, SO6 or any material that can

be considered to have negligible effect on the flow) also

follow the fluid trajectories. Transport of contaminants

with finite volume like smoke is significantly more

challenging problem and is beyond the scope of this

paper. For recent development in this direction, we refer

the reader to [13].

(2) Despite additional computational cost, the Lagrangian

methods in general offer several advantages over Eu-

lerian techniques: they lead to consistent and accurate

description of mixing templates in unsteady flows [9]-

[12], these methods are objective i.e. frame-independent

[7], insensitive to short-term anomalies in the velocity

field [9], have the ability to define structure boundaries

with greater details and most significantly do not rely

on preselected threshold [8].

III. TOOLS FOR DETECTING LCS

A. Direct Lyapunov Exponent

The Direct Lyapunov Exponent (DLE) is a scalar field

which at each point measures the rate of separation of

neighboring particle trajectories initialized near the point. In

the Lagrangian frame, an infinitesimal perturbation ξ to the

initial condition x0 is advected by the linearized flow

ξ̇ = ∇v(x(t), t)ξ, (5)

the equation of variation associated with the trajectory

x(t). Recall that the fundamental matrix solution of the

linear time-dependent system (5) is the deformation gradient

∇x0
x(t, t0,x0). Thus, the coefficient of particle separation is

determined by the largest singular value of ∇x0
x(t, t0,x0),

i.e.

Λmax(t, t0,x0) = λmax
(

∇x0
x(t, t0,x0)

T∇x0
x(t, t0,x0)

)

.
(6)

The DLE field is then defined as [12], [15], [16]

σt

t0
(x0) =

1

2|t − t0|
ln Λmax(t, t0,x0). (7)
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Since the maximum eigenvalue is used in the definition

of Λmax(t, t0,x0), direction information is not retained in

σt
t0

(x0). A point x0 will have a high DLE value if there is

a great amount of expansion in one direction, even if there

is compression in all other directions.

Regions of maximal stretching generates a local maximiz-

ing surface (ridge) for the DLE field. For an appropriate

choice of integration time T > 0 repelling LCS at t0 can be

located as ridges of the σt0+T

t0
(x0) field. Similarly attracting

LCS at t0 can be located as ridges of the σt0−T

t0
(x0). Con-

sideration for time scales of the flow and numerical exper-

imentation is usually sufficient to determine an appropriate

time scale T [17]. For most practical purposes, however, the

primary topological features of the LCS extracted from the

DLE field are insensitive to the integration time T .

While maximal stretching generates ridges for the DLE

field, the converse is not true: local maxima of the DLE

field may indicate either locally maximal stretching or locally

maximal shear. In order to confirm that the ridges are indeed

hyperbolic LCS, instead of regions of maximal shear, one

may calculate the strain rate normal to the ridge as discussed

in [14]. DLE technique is not always well suited to locate

vortices; the primary reason being that, both vortical regions

and parallel shear lead to relatively low values in the DLE

field. In next section we describe another criteria which can

be used to identify vortices unambiguously in incompressible

flows.

B. MZ Criterion

Haller [7], recently derived an objective i.e. frame inde-

pendent criteria to detect vortices as regions of Lagrangian

stirring. This approach is based on partitioning the fluid

domain into hyperbolic and elliptic regions, by examining

the behavior of the quadratic form < ξ,M(x(t), t)ξ >, on

the zero strain cone Z

Z = {ξ| < ξ,S(x, t)ξ >= 0}. (8)

where, S is given by Eq. (3), ξ is the perturbation in Eq. (5)

and < ·, · > is the standard inner product on R
3 and

M = ∂tS + ∇Sv + S∇v + (∇v)T
S, (9)

is the strain acceleration tensor. It turns out that restriction of

< ξ,M(x(t), t)ξ > to Z, which we denote by MZ is either

positive definite or indefinite at a generic point. As result

fluid domain can be partitioned into two complementary

regions

1 Hyperbolic domain H(t), where MZ is positive defi-

nite. It turns out that the fluid trajectories in this domain

are Lagrangian-Hyperbolic.

2 Elliptic Domain E(t), where MZ is indefinite. Physi-

cally in this domain the material elements do not align

with subspaces that are near the positive eigenspaces of

the rate of strain, leading to Lagrangian stirring.

Based on this partition, Haller defines a vortex to be bounded

and connected set of fluid trajectories along which MZ

is indefinite. In practice to account for numerical errors,

a more robust MZ criteria is implemented, according to

which a vortex is a set of fluid trajectory along which

MZ is indefinite for much longer times than along nearby

trajectories (see [7] for details).

C. Numerical Implementation

In this section we summarize the numerical scheme to

compute the DLE field σt
t0

(x0) and MZ criteria over the

fluid domain D.

(1) Initialize a grid x0 of particles at time t0 in D.

(2) Integrate path lines for T seconds. We use a 4th-order

Runge-Kutta integration with constant time step. For

interpolating velocity field at particle positions we use

cubic interpolation in space and linear interpolation in

time.

(3) For each particle trajectory started at (x0, t0) determine

the scalar fields σt
t0

(x0) and MZ :

a) For finding σt
t0

(x0) the deformation gradient is ob-

tained by direct numerical differentiation of particle

paths x(T + t0, t0,x0) w.r.t. to initial grid x0 using

finite differencing.

b) M and Z are computed by finite differencing in

both space and time.

Following points need to be noted,

(1) The time scale T for pathline integration is determined

by numerical experimentation.

(2) For particles which reach the boundary ∂D of the

domain D before time T elapses, pathline integration is

stopped. This may result in spurious ridges in the scalar

fields which need to be filtered out.

(3) The ridge extraction from scalar fields can be ac-

complished using either height ridges[18] or water-

sheds[19]. A comparison of these two approaches is

given in [19]. In this paper we employ sectional visu-

alization of LCS to demonstrate their role in transport

and lower order modeling.

IV. CASE STUDY: 3D ROOM WITH VENTILATION

In this section we demonstrate, how the knowledge of

LCS can be exploited for reduced order modeling and

estimation of contaminant transport in building systems. For

this purpose we consider a room equipped with a mechanical

ventilation system as shown in the figure 1. The dimensions

of the the room are [0, xm]× [0, ym]× [0, zm], where xm =
6.2, ym = 2.2 and zm = 2.9 meters. There are inflow and

outflow ducts located on the ceiling and constant temperature

heat sources on the floor. By controlling the ventilation and

heat inflow, different airflow patterns can be generated in the

room.

A. Model reduction

The airflow in the room with no heat inflow is governed

by incompressible Navier Stokes equations

∂v

∂t
= −v · ∇v + ν∇2

v −
1

ρ
∇p, (10)

∇ · v = 0, (11)
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Fig. 1. 3D Room equipped with a mechanical ventilation system

where, p is the pressure, ρ is density and ν is the kinematic

viscosity of fluid. The numerical solution is obtained using

FLUENT, a commercially available CFD software. We shall

denote by vk = v(x, tk), snapshots of velocity field at time

instants tk, where k = 1, · · · ,m.

In snapshot based POD method, the velocity field is

expanded as

v(x, t) =

n
∑

i=1

ai(t)φi(x), (12)

where, n ≤ m and φk(x), k = 1, · · · ,m are spatial modes

obtained by solving an eigenvalue problem [3]. Reduced

order model is then obtained by Galerkin projection of

Navier Stokes equations, which yields a systems of nonlinear

ODE’s

ȧk = Lka + a
T Qka, (13)

where, a(t) = (a1(t), · · · an(t))T , Lk and Qk are matrices

which depend on φk(x), and k = 1, · · · , n. The initial

conditions a(0) are generally not known and the value

of a(t) must be replaced by an estimate â(t) to obtain

velocity predictions. To obtain an estimate â(t), we employ

an Extended Kalman Filter as the nonlinear observer with

measurements available from two velocity sensors located

at x1 = (0, ym/2, zm/2) and x2 = (xm, ym/2, zm/2). The

sensors measure the three components of the velocity field

at each location.

Figure 2 shows the estimated velocity field at the sensor

locations, using different number of modes. For comparison

we also plot the actual velocity field at these locations. Note

that with n = 4 modes the sensor measurements can be

tracked exactly. However, figure 3 shows that n = 2 modes

can capture 98% of average energy, while for n = 3, 4
the average energy reproduced by POD reduces (due to

spurious effects of higher order modes). Thus from energy

viewpoint first two dominant modes are sufficient to estimate

the velocity field well.

In figures 4 and 5 we show the LCS highlighted by

backward time DLE field in the mid sections of the room

at two different time instants t0 = 50 and t0 = 90. The

darker colors indicate higher DLE values, which correspond

to intersections of attracting material surfaces with the mid

sections. The subplots (a)-(c), in the first column correspond

to LCS computed using CFD data, the subplots (d)-(f) are

LCS obtained from estimated velocity field using n = 1
mode in POD reduction and the last column (subplots (g)-

(i)) being that for n = 2 modes. It is evident from these

plots, that even though one mode on an average captures

only 86% of energy in the simulation data (see Fig. 3) it

is able to reproduce the LCS fairly accurately. Note that

while at t0 = 50, LCS based on one mode differs slightly

(compare subplots (b) and (e) in Fig. 4), but as the estimation

of velocity field improves over time, the LCS become more

accurate. This study reveals that from contaminant transport

viewpoint one mode POD reduction is sufficient, compared

to two mode reduction inferred from the energy metric.

Fig. 2. Comparison of estimated velocity components (dotted red line) with
the exact velocity components (solid blue) at the sensor locations. Different
subplots correspond to different number of modes used in POD based
reconstruction: (a)n = 1, (b)n = 2, (c)n = 3 and (d) n = 4.
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Fig. 3. Time average of energy captured by different number of modes in
POD based velocity estimation.

B. Evaluating actuation schemes

In this section we study the effect of heat inflow in

addition to forced ventilation on the coherent structures in the

room. In order to compute the airflow in this configuration,

compressible Navier Stokes equation are solved in FLUENT;

for brevity we do not describe the details of the computation.

Heating along with ventilation induces an unsteady airflow

in the room. Fig. 6 shows the time evolution of backward

time DLE and MZ fields in x =const sections with heating
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Fig. 4. Comparison of DLE field in mid sections of the 3D room at t0 = 50

sec. Subplots (a)-(c) correspond to backward time DLE field in mid y, z

and x sections, respectively. Subplots (d)-(f) are similar LCS plots computed
using estimated velocity field with n = 1 mode POD. Subplots (g)-(i) are
analogous to (d)-(f), but are based on n = 2 mode POD reduced order
model.

Fig. 5. Same as Figure 4, but for time t0 = 90.

and forced ventilation. In these plots darker colors indicate

higher values of the scalar fields; therefore, darker colors in

DLE plot correspond to attracting LCS, while darker colors

in MZ plot correspond to vortex regions. It is evident that

LCS vary drastically over time. In Fig. 7 we show the DLE

in all the mid sections simultaneously, revealing the intricate

structure of attracting LCS. Such structures typically arise in

flows with chaotic mixing [7].

For comparison we also plot in Fig. 8, the backward time

DLE field and MZ at t0 = 50 sec in the mid sections with

only forced ventilation (color coding is same as in Figs. 6,7 ).

Clearly a vortical structure exists in the left half of the room

and the airflow in not well mixed. Moreover this structure

is stable and does not vary over time. Above analysis, thus

reveals that introducing heating destabilizes this vortex and

gives rise to a well mixed flow.

C. Sensor placement

In this section we address the problem of number of sen-

sors and their placement that would lead to robust contami-

nant estimation. A similar problem for optimal placement of

sensors in order to detect the largest number of contaminant

release scenarios with the minimum number of sensors,

was considered in [20]. In this approach, the data recorded

from all the possible release scenarios at all possible sensor

locations was used to identify the optimal sensor locations.

Fig. 6. Snapshots of DLE and MZ criteria in mid x sections of
the room with ventilation and heat inflow at time instants t0 =

50, 70, 90, 110, 130, 150 sec.

Fig. 7. DLE field in the mid x, y and z sections of the room with ventilation
and heating. The subplots correspond to same time instants as in Fig. 6
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Fig. 8. Backward time DLE and Mz plots at t0 = 50 sec, in the room
with only ventilation active. The slices shown correspond to x = 0.15xm,
x = 0.85xm, y = 0.5ym and z = 0.5zm.

Despite the recursive nature of the scheme proposed [20],

the technique requires extensive computational effort.

The knowledge of LCS however reveals number of sensors

and their locations in a natural fashion. For instance the LCS

computation in previous section showed that the room with

only forced ventilation, is partitioned into two vortical zones,

with no fluid interaction between them. Thus at least two

sensors are required at x = 0 and x = xm wall to detect

contaminant release which could occur at any location in the

room. On the other hand with additional heating the flow

becomes chaotic and well mixed. Hence, even one sensor

is sufficient to detect contaminant release. With this simple

analysis we can conclude that two sensors at two end walls

are sufficient to capture contaminant transport in the room

which operates under two possible conditions. This approach

can be easily generalized to multiple operating scenarios.

V. CONCLUSION AND FUTURE WORK

In this paper we explored a new LCS based metric to

be used in conjunction with POD based model-reduction

technique for large-scale contaminant transport problem in

building environments. This new metric chooses POD modes

that capture relevant mixing scales, rather than the modes

which retain high percentage of energy contained in sim-

ulation data. Application of this metric to airflow in three

dimensional room equipped with a mechanical ventilation

system, showed that it indeed leads to lower order model,

than that based on energy metric. We also showed how

knowledge of LCS can guide sensor placement and help

develop insights into effects of different actuation schemes

on the transport. In particular we found that heat inflow

coupled with forced ventilation leads to a well mixed chaotic

flow.

Undoubtedly, much room is left for further development.

First of all a more quantitative method needs to be devised

for LCS comparison and for identifying the relevant modes

via projection, rather than relying on visual analysis, adopted

in this paper. Compressibility effects become important

with heating; the efficacy of LCS based metric needs to

be investigated for POD reduction in compressible flows.

Another interesting question is the detection of the location

of contaminant source based on the knowledge of LCS.

Finally, design of feedback control laws that rely on the

reduced order models and manipulate the global LCS through

energy efficient micro local actuation [21], remains another

challenging issue to be pursued in future.
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