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Abstract— This paper presents a novel adaptive control
methodology for a class of uncertain systems in the presence of
time-varying unknown nonlinearities. The adaptive controller
ensures uniformly bounded transient and asymptotic tracking
for system’s both input and output signals simultaneously.
The performance bounds can be systematically improved by
increasing the adaptation rate. Part II extends the results to a
class of systems in the presence of unmodeled dynamics.

I. INTRODUCTION

This paper extends the results of [1], [2] to a class of

uncertain systems in the presence of time-varying and state

dependent unknown nonlinearities. We prove that subject to

a set of mild assumptions the system can be transformed

into an equivalent linear system with time-varying unknown

parameters and disturbances. For the latter, we extend the

methodology from [1], [2], which ensures uniformly bounded

transient response for system’s both input and output signals

simultaneously, in addition to stable tracking. The L∞ norm

bounds for the error signals between the closed-loop adaptive

system and the closed-loop reference system can be system-

atically reduced by increasing the adaptation rate.

The paper is organized as follows. Section II gives the

problem formulation. In Section III, the L1 adaptive control

architecture is presented. Stability and uniform performance

bounds are presented in Section IV. In Section V, simulation

results are presented, while Section VI concludes the paper.

Throughout this paper, I indicates the identity matrix

of appropriate dimension, ||H(s)||L1
denotes the L1 gain

of H(s), ||x||L∞
denotes the L∞ norm of x(t), ||xt||L∞

denotes the truncated L∞ norm of x(t) at the time instant

t, and ‖x‖2 and ‖x‖∞ indicate the 2- and ∞- norms of the

vector x respectively. Some of the proofs are in included in

the Appendix.

II. PROBLEM FORMULATION

Consider the following system dynamics:

ẋ(t) = Amx(t) + b
(

ωu(t) + f(x(t), t)
)

,

y(t) = c⊤x(t) , x(0) = x0 , (1)

where x ∈ R
n is the system state vector (measurable), u ∈ R

is the control signal, y ∈ R is the regulated output, b, c ∈ R
n

are known constant vectors, Am is a known n × n Hurwitz

matrix, ω is an unknown constant, and f : R
n × R → R is

an unknown nonlinear function.
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Assumption 1: [Semiglobal Lipschitz condition] For any

δ > 0, there exist Lδ > 0 and B > 0 such that |f(x, t) −
f(x̄, t)| ≤ Lδ‖x − x̄‖∞ , |f(0, t)| ≤ B , for all ‖x‖∞ ≤ δ
and ‖x̄‖∞ ≤ δ uniformly in t.

Assumption 2: [Known sign for control effectiveness]
There exist upper and lower bounds ωu > ωl > 0 such

that ωl ≤ ω ≤ ωu .
Assumption 3: [Semiglobal uniform boundedness of par-

tial derivatives] For any δ > 0, there exist dfx
(δ) > 0,

and dft
(δ) > 0 such that for any ‖x‖∞ ≤ δ, the partial

derivatives of f(x, t) are piece-wise continuous and bounded
∥

∥

∥

∂f(x, t)

∂x

∥

∥

∥
≤ dfx

(δ) ,
∣

∣

∣

∂f(x, t)

∂t

∣

∣

∣
≤ dft

(δ) .

The control objective is to design a full-state feedback

adaptive controller to ensure that y(t) tracks a given bounded

reference signal r(t) both in transient and steady state, while

all other error signals remain bounded.

III. L1 ADAPTIVE CONTROLLER

In this section we develop an adaptive control architecture

for the system in (1) that permits complete transient charac-

terization for both u(t) and x(t). The design of L1 adaptive

controller involves a strictly proper transfer function D(s)
and a gain k ∈ R

+, which leads to a strictly proper stable

C(s) =
ωkD(s)

1 + ωkD(s)
(2)

with DC gain C(0) = 1. The simplest choice of D(s)
is D(s) = 1

s
, which yields a first order strictly proper

C(s) in the following form C(s) = ωk
s+ωk

. Let H(s) =
(sI − Am)−1b , and r0(t) be the signal with its Laplace

transform (sI − Am)−1x0. Since Am is Hurwitz and x0 is

finite, ‖r0‖L∞
is finite.

For the proof of stability and uniform performance bounds

the choice of D(s) and k needs to ensure that there exists

ρr such that

‖G(s)‖L1
<

(

ρr − ‖kgC(s)H(s)‖L1
‖r‖L∞

−‖r0‖L∞

)

/(ρrLρr
+ B) , (3)

where G(s) = H(s)(1 − C(s)) , and

kg = −
1

c⊤A−1
m b

. (4)

Remark 1: We notice that the upper bound in (3) is

a consequence of the semiglobal Lipschitz property of

f(x, t), stated in Assumption 1. If f(x, t) is globally Lips-

chitz with uniform Lipschitz constant L, then lim
ρr→∞

(

ρr −
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‖kgC(s)H(s)‖L1
‖r‖L∞

− ‖r0‖L∞

)

/(ρrL + B) =
1

L
, and

the upper bound in (3) degenerates into ‖G(s)‖L1
< 1/L ,

which is the same as the one derived in [3] for systems with

constant unknown parameters.

We consider the following state predictor (or passive

identifier) for generation of the adaptive laws:

˙̂x(t) = Amx̂(t) + b
(

ω̂(t)u(t) + θ̂(t)‖x(t)‖∞ + σ̂(t)
)

ŷ(t) = c⊤x̂(t) , x̂(0) = x0 . (5)

The adaptive estimates ω̂(t), θ̂(t), σ̂(t) are defined as:

˙̂
θ(t) = ΓProj(θ̂(t),−‖x(t)‖∞x̃⊤(t)Pb), θ̂(0) = θ̂0

˙̂σ(t) = ΓProj(σ̂(t),−x̃⊤(t)Pb), σ̂(0) = σ̂0 (6)

˙̂ω(t) = ΓProj(ω̂(t),−x̃⊤(t)Pbu(t)), ω̂(0) = ω̂0

where x̃(t) = x̂(t)−x(t), Γ ∈ R
+ is the adaptation gain, P

is the solution of the algebraic equation A⊤
mP +PAm = −Q,

Q > 0, and the projection operator ensures that the adaptive

estimates ω̂(t), θ̂(t), σ̂(t) remain inside the compact sets

[ωl, ωu], [−θb, θb], [−σb, σb], respectively, with θb, σb

defined as follows

θb = Lρ, σb = B + ǫ , (7)

where ǫ is an arbitrary positive constant and

ρ = ρr + β , (8)

with β being an arbitrary positive constant that satis-

fies ‖G(s)‖L1
Lρ < 1 . We notice that (3) implies that

‖G(s)‖L1
Lρr

< 1. Since Lρ depends continuously on ρ,

then ‖G(s)‖L1
Lρ < 1 can always be satisfied if β is small

enough.

Remark 2: In the following analysis we demonstrate that

ρr and ρ characterize the domain of attraction of the closed

loop reference system (yet to be defined) and the system in

(1) respectively. We notice that since β can be set arbitrarily

small, ρ can approximate ρr arbitrarily closely.

The control signal is generated through gain feedback of the

following system:

χ(s) = D(s)r̄(s) , u(s) = −kχ(s) , (9)

where k ∈ R
+ is introduced in (2), and r̄(s) is the Laplace

transform of

r̄(t) = ω̂(t)u(t) + θ̂(t)‖x(t)‖∞ + σ̂(t) − kgr(t). (10)

The complete L1 adaptive controller consists of (5), (6)

and (9) subject to the L1-gain upper bound in (3).

IV. ANALYSIS OF L1 ADAPTIVE CONTROLLER

A. Closed-loop Reference System

We now consider the following closed-loop reference

system with its control signal and system response being

defined as follows:

ẋref (t) = Amxref (t) + b
(

ωuref (t) + f(xref (t), t)
)

(11)

uref (s) = (C(s)/ω)(kgr(s) − r̄ref (s)) (12)

yref (t) = c⊤xref (t) , xref (0) = x0 , (13)

where r̄ref (s) is the Laplace transformation of the signal

r̄ref (t) = f(xref (t), t), and kg is introduced in (4). The next

Lemma establishes the stability of the closed-loop reference

system in (11)-(13).

Lemma 1: For the closed-loop reference system in (11)-

(13) subject to the L1-gain upper bound in (3), if

‖x0‖∞ ≤ ρr , (14)

then

‖xref‖L∞
< ρr , (15)

‖uref‖L∞
< ρur

, (16)

where ρr is introduced in (3) and ρur
=

‖C(s)/ω‖L1
(ρrLρr

+ B + kg‖r‖L∞
).

B. Equivalent Linear Time-Varying System

In this section we demonstrate that the nonlinear system

in (1) can be transformed into an equivalent linear system

with unknown time-varying parameters. To streamline the

subsequent analysis, we need to introduce several notations.

Let γ0 be the desired performance bound for ||x̃||L∞
, and

β1 be an arbitrary positive constant verifying the following

upper bound

γ1 ,
‖C(s)‖L1

1 − ‖G(s)‖L1
Lρ

γ0 + β1 < β , (17)

where β was introduced in (8). Further, let

ρu = ρur
+ γ2 , (18)

γ2 =

∥

∥

∥

∥

C(s)

ω

∥

∥

∥

∥

L1

Lργ1 +

∥

∥

∥

∥

C(s)

ω

1

c⊤o Ho(s)
c⊤o

∥

∥

∥

∥

L1

γ0 .(19)

It follows from Lemma 4 in [1] that there exists co ∈ R
n

such that

c⊤o H(s) =
Nn(s)

Nd(s)
, (20)

where the order of Nd(s) is one more than the order of

Nn(s), and both Nn(s) and Nd(s) are stable polynomials.

We will prove that by increasing the adaptation rate Γ, one

can arbitrarily reduce γ0.

Lemma 2: If the truncated L∞ norms of x(t) and u(t)
verify

‖xt‖L∞
≤ ρ , ‖ut‖L∞

≤ ρu , (21)

then there exist differentiable θ(τ) and σ(τ) with uniformly

bounded derivatives over τ ∈ [0, t] such that

|θ(τ)| < θb , (22)

|σ(τ)| < σb , (23)

f(x(τ), τ) = θ(τ)‖x(τ)‖∞ + σ(τ) . (24)

Proof. Using the definitions in (7), we have

f(x(0), 0) ≤ Lρ‖x(0)‖∞ + B < θb‖x(0)‖∞ + σb , (25)

which implies that there exist θ(0) and σ(0) such that

|θ(0)| < θb , |σ(0)| < σb (26)
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and

f(x(0), 0) = θ(0)‖x(0)‖∞ + σ(0) . (27)

We construct the trajectories of θ(τ) and σ(τ) according to

the following dynamics:
[

θ̇(τ)
σ̇(τ)

]

= A−1
η

[

df(x(τ),τ)
dτ

− θ(τ)d‖x(τ)‖∞

dτ

0

]

, (28)

where

Aη =

[

‖x(τ)‖∞ 1
−(σb − |σ(τ)|) θb − |θ(τ)|

]

, (29)

with the initial values being bounded according to (26). The

determinant of Aη is:

det(Aη) = ‖x(τ)‖∞(θb − |θ(τ)|) + σb − |σ(τ)| . (30)

For any τ ∈ [0, t̄), where t̄ is an arbitrary constant or ∞, if

|θ(τ)| < θb ,

|σ(τ)| < σb , (31)

it follows from (30) that det(Aη(τ)) 6= 0 over [0, t̄). Hence,

it follows from (28), (29) that

d
(

θ(τ)‖x(τ)‖∞ + σ(τ)
)

dτ
=

df(x(τ), τ)

dτ
, (32)

σ̇(τ)

σb − |σ(τ)|
=

θ̇(τ)

θb − |θ(τ)|
(33)

for any τ ∈ [0, t̄). Using the initial condition from (27), we

can integrate to obtain

θ(τ)‖x(τ)‖∞ + σ(τ) = f(x(τ), τ) ,∀τ ∈ [0, t̄)(34)
∫ t̄−

0

σ̇(τ)

σb − |σ(τ)|
dτ =

∫ t̄−

0

θ̇(τ)

θb − |θ(τ)|
dτ , (35)

where

∫ t̄−

0

(·)dτ , lim
τ̄→t̄

∫ τ̄

0

(·)dτ with τ̄ approaches t̄ from

the left.

Next we calculate

∫ t̄−

0

σ̇(τ)

σb − |σ(τ)|
dτ , assuming that

|σ(τ)| < σb. Since σ(τ) may cross zero, we divide [0, t̄) into

countable subsets: [0, t1), [t1, t2),..., [tI , t̄) where σ(t1) =
· · · = σ(tI) = 0, and write

∫ t̄−

0

σ̇(τ)

σb − |σ(τ)|
dτ =

∑

i=1,..,I

∫ ti

ti−1

σ̇(τ)

σb − |σ(τ)|
dτ

+

∫ t̄−

tI

σ̇(τ)

σb − |σ(τ)|
dτ = lim

τ→t̄
sign(σ(τ)) ln(σb − |σ(τ)|)

−sign(σ(0)) ln(σb − |σ(0)|) . (36)

From (35) and (36), we have

lim
τ→t̄

sign(σ(τ)) ln(σb − |σ(τ)|)

−sign(σ(0)) ln(σb − |σ(0)|) = (37)

lim
τ→t̄

sign(θ(τ)) ln(θb − |θ(τ)|)

−sign(θ(0)) ln(θb − |θ(0)|) .

In what follows, we prove (22)-(23) by contradiction. If

(22)-(23) is not true, since θ(τ) and σ(τ) are continuous, it

follows from (26) that there exists t̄ ∈ [0, t] such that either

(i) lim
τ→t̄

|θ(τ)| = θb , or (38)

(ii) lim
τ→t̄

|σ(τ)| = σb , (39)

while

|θ(τ)| < θb , |σ(τ)| < σb , ∀ τ ∈ [0, t̄) . (40)

i) In this case we have

| lim
τ→t̄

sign(θ(τ)) ln(θb − |θ(τ)|)| = ∞. (41)

Since it is obvious that sign(σ(0)) ln(σb − |σ(0)|) and

sign(θ(0)) ln(σb − |θ(0)|) are bounded, it follows from (37)

that

| lim
τ→t̄

sign(σ(τ)) ln(σb − |σ(τ)|)| = ∞ ,

and hence

lim
τ→t̄

|σ(τ)| = σb . (42)

It follows from (34) that lim
τ→t̄

(θ(τ)‖x(τ)‖∞ + σ(τ)) =

lim
τ→t̄

f(x(τ), τ) , which along with (38) and (42) implies that

| lim
τ→t̄

f(x(τ), τ)| = |f(x(t̄), t̄)| = θb‖x(t̄)‖∞ + σb . (43)

From Assumption 1 it follows that |f(x(t̄), t̄)| ≤
Lρ‖x(t̄)‖∞ + B = θb‖x(t̄)‖∞ + σb − ǫ , which contradicts

(43), and therefore (38) is not true.

ii) Following the same steps as above, one can derive a

contradicting argument to (39).

Since (38), (39) are not true, then the relationships in (22),

(23) hold. Eq. (24) follows from (22), (23) and (34) directly.

Further, notice from (1) that bounded x(τ) and u(τ) imply

bounded right hand side for the system dynamics, and hence

bounded ẋ(τ) over [0, t]. In the light of Assumption 3,
df(x(τ),τ)

dτ
and

d‖x(τ)‖∞

dτ
are bounded, although the derivative

d‖x(τ)‖∞

dτ
may not be continuous. Since θ(τ) is bounded,

then
df(x(τ),τ)

dτ
− θ(τ)d‖x(τ)‖∞

dτ
is bounded. From (22), (23)

it follows that detAη(τ) 6= 0, and therefore we conclude

from (28) that θ̇(τ) and σ̇(τ) are bounded. This concludes

the proof. �

If (21) holds, Lemma 2 implies that the system in (1) can

be rewritten over τ ∈ [0, t] as:

ẋ(τ) = Amx(τ) + b (ωu(τ) + θ(τ)‖x(τ)‖∞ + σ(τ)) ,

y(τ) = c⊤x(τ), x(0) = x0 , (44)

where θ(τ), σ(τ) are unknown time-varying signals subject

to the upper bounds (22), (23) for all ∀ τ ∈ [0, t], while

their derivatives for all τ ∈ [0, t] are subject to

|θ̇(τ)| ≤ dθ(ρ, ρu) < ∞ , |σ̇(τ)| ≤ dσ(ρ, ρu) < ∞ . (45)

Remark 3: We notice that though Lemma 2 proves the

existence and boundedness of θ̇(τ), σ̇(t), their continuity is

not guaranteed. The reason is that
d‖x(τ)‖∞

dτ
can be piece-

wise continuous due to the definition of the ∞ norm. Thus,

in (28) the right-hand sides can be piece-wise continuous

functions of t.
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C. Tracking error signal

Lemma 3: For the system in (1) and the L1 adaptive

controller in (5), (6) and (9), for any t such that (21) holds,

we have

‖x̃t‖L∞
≤

√

θm(ρ, ρu)

λmin(P )Γ
, (46)

where

θm(ρ, ρu) , 4θ2
b + 4σ2

b + (ωu − ωl)
2

+4
λmax(P )

λmin(Q)
(θbdθ(ρ, ρu) + σbdσ(ρ, ρu)) . (47)

D. Transient and Steady-State Performance

Theorem 1: Consider the reference system in (11)-(13)

and the closed-loop L1 adaptive controller in (5), (6), (9)

subject to (3). If

‖x0‖∞ ≤ ρr , (48)

and the adaptive gain is chosen to verify the lower bound:

Γ >
θm(ρ, ρu)

λmin(P )γ2
0

, (49)

we have:

‖x̃‖L∞
≤ γ0 , (50)

‖x − xref‖L∞
< γ1 , (51)

‖u − uref‖L∞
< γ2 , (52)

where γ1 and γ2 are defined in (17) and (19).

It follows from (49) that arbitrarily small γ0 can be obtained

by increasing the adaptive gain.

V. SIMULATIONS

Consider the dynamics of a single-link robot arm rotating

on a vertical plane:

Iq̈(t) + F (q(t), q̇(t), t) = u(t) , (53)

where q(t) and q̇(t) are the measured angular position and

velocity, respectively, u(t) is the input torque, I is the

unknown moment of inertia, F (q(t), q̇(t), t) is an unknown

nonlinear function that lumps the forces and torques due to

gravity, friction, disturbance and other external sources. The

control objective is to design u(t) to achieve tracking of a

bounded reference input r(t) by q(t), where ‖r‖L∞
≤ 1. Let

x = [x1 x2]
⊤ = [q q̇]⊤ . The system in (53) can be presented

in the canonical form:

ẋ(t) = Amx(t) + b(ωu(t) + f(x(t), t)) , y(t) = c⊤x(t),

where b = [0 1]⊤, c = [1 0]⊤, Am =

[

0 1
−1 −1.4

]

,

ω = 1/I , and f(x(t), t)) = [1 1.4]x(t)−F (x2(t), x1(t), t) .
Let ω = 1/I = 1 and F (x2(t), x1(t), t) = x2

2(t) + x2
1(t) +

sin(0.2t) , so that the compact sets can be conservatively

chosen as ωl = 0.5, ωu = 2, θb = 20, σb = 10 .
In the implementation of the L1 adaptive controller, we

set Q = 2I, and hence P =

[

1.4143 0.5000
0.5000 0.71430

]

.
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(a) x1(t) (solid), x̂1(t) (dashed), and r(t)(dotted)

0 5 10 15 20 25 30
−2
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−0.5

0

0.5

1

1.5

time t

(b) Time-history of u(t)

Fig. 1. Performance of L1 adaptive controller for F (x2(t), x1(t), t) =
x2
2(t) + x2

1(t) + sin(0.2t)
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(a) x1(t) (solid), x̂1(t) (dashed), and r(t)(dotted)

0 5 10 15 20 25 30
−3

−2

−1

0

1

2

time t

(b) Time-history of u(t)

Fig. 2. Performance of L1 adaptive controller for F (x2(t), x1(t), t) =
x2
2(t) + x2

1(t) + sin(5t)
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Fig. 3. Performance of L1 adaptive controller for F (x2(t), x1(t), t) =
x2
2(t) + x2

1(t) + sin(20t)
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We need to verify the condition in (3). Letting

D(s) = 1/s , we have G(s) = s
s+ωk

H(s), H(s) =

[ 1
s2+1.4s+1

s
s2+1.4s+1 ]⊤ , and we choose conservative Lρ =

20. One can numerically verify that for ωk > 30 the upper

bound ‖G(s)‖L1
Lρ < 1 holds. Since ω > 0.5, we set

k = 60. We set the adaptive gain Γc = 10000.

The simulation results of the L1 adaptive controller are

shown in Figures 1(a)-1(b) for reference input r = cos(0.5t).
Next, without any retuning of the controller we consider

different nonlinearity F (x2(t), x1(t), t) = x2
2(t) + x2

1(t) +
sin(5t). The simulation results are shown in 2(a)-2(b). Fi-

nally, we consider much higher frequencies in the nonlin-

earity: F (x2(t), x1(t), t) = x2
2(t) + x2

1(t) + sin(20t). The

simulation results are shown in 3(a)-3(b). We note that

the L1 adaptive controller guarantees smooth and uniform

transient performance in the presence of different unknown

nonlinearities without requiring any retuning. We also notice

that x1(t) and x̂1(t) are almost the same in Figs. 1(a), 2(a)

and 3(a).

VI. CONCLUSION

A novel L1 adaptive control architecture is presented

that has guaranteed transient response in addition to stable

tracking for uncertain systems in the presence of unknown

state and time-dependent nonlinearities. The control signal

and the system response approximate the same signals of

a closed-loop reference system, which can be designed to

achieve desired specifications. In Part II, we present an

extension to a class of systems in the presence of unmodeled

dynamics, [5]. The results of these papers question the need

for the neural network based adaptive control paradigm.
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APPENDIX

Proof of Lemma 1. It follows from (11)-(13) that

xref (s) = G(s)r̄ref (s) + H(s)C(s)kgr(s) + (sI − Am)−1x0 .
(54)

Example 5.2 in [6] (page 199) implies that

‖xreft‖L∞
≤ ‖G(s)‖L1

‖r̄reft‖L∞
+

‖kgC(s)H(s)‖L1
‖rt‖L∞

+ ‖r0‖L∞
. (55)

If (15) is not true, since ‖xref (0)‖∞ = ‖x0‖∞ < ρr and xref (t)
is continuous, there exists t such that

‖xreft‖L∞
≤ ρr , (56)

xref (t) = ρr . (57)

Using Assumption 1 and the upper bound in (56), we arrive at the
following upper bound

‖r̄reft‖L∞
≤ Lρr‖xreft‖L∞

+ B . (58)

Substituting (58) into (55), and noticing that ‖rt‖L∞
≤ ‖r‖L∞

,
we obtain

‖xreft‖L∞
≤ ‖G(s)‖L1

Lρr ρr + ‖kgC(s)H(s)‖L1
‖r‖L∞

+‖r0‖L∞
+ ‖G(s)‖L1

B . (59)

The condition in (3) can be solved for ρr to obtain the following
upper bound

‖G(s)‖L1
Lρr ρr + ‖kgC(s)H(s)‖L1

‖r‖L∞

+‖r0‖L∞
+ ‖G(s)‖L1

B < ρr , (60)

which implies that ‖xreft‖L∞
< ρr , and contradicts (57). This

proves (15).
Using (15), it follows from Assumption 1 that

‖r̄ref‖L∞
< ρrLρr + B . (61)

Example 5.2 in [6] (page 199) further implies that

‖uref‖L∞
< ‖C(s)/ω‖L1

(ρrLρr + B + kg‖r‖L∞
) , (62)

which proves (16). �

Proof of Lemma 3. It follows from (21) that (44) and (45)
hold for any τ ∈ [0, t]. Consider the following Lyapunov function
candidate:

V (x̃(τ), ω̃(τ), θ̃(τ), σ̃(τ)) = x̃⊤(τ)P x̃(τ) +

Γ−1
(

ω̃2(τ) + θ̃2(τ) + σ̃2(τ)
)

, (63)

where

ω̃(τ) , ω̂(τ)−ω, θ̃(τ) , θ̂(τ)−θ(τ), σ̃(τ) , σ̂(τ)−σ(τ) . (64)

It follows from (5) and (44) that over [0, t]

˙̃x(τ) = Amx̃(τ) + b
(

ω̃u(t) + θ̃(τ)‖x(τ)‖∞ + σ̃(τ)
)

, (65)

where x̃(0) = 0 . We can verify straightforwardly that

V (0) ≤
(

4θ2
b + 4σ2

b + (ωu − ωl)
2
)

/Γ ≤
θm(ρ, ρu)

Γ
.

Let t1 ∈ (0, t] be the first time-instant of the discontinuity of either

of the derivatives of
˙̂
θ(t), ˙̂σ(t), θ̇(t), σ̇(t). Next we prove that

V (τ) ≤
θm(ρ, ρu)

Γ
, ∀ τ ∈ [0, t1] . (66)

Using the projection based adaptation laws from (6), one has the

following upper bound for V̇ (τ):

V̇ (τ) ≤ −x̃⊤(τ)Qx̃(τ) + 2Γ−1
∣

∣

∣
θ̃(τ)θ̇(τ) + σ̃(τ)σ̇(τ)

∣

∣

∣
(67)

for any τ ∈ [0, t1). The projection algorithm ensures that for all
τ ∈ [0, t1)

ωl ≤ ω̂(t) ≤ ωu , |θ̂(τ)| ≤ θb, |σ̂(τ)| ≤ σb , (68)

and therefore

max
τ∈[0,t1)

(

Γ−1(ω̃2 + θ̃2(τ) + σ̃2(τ)
)

≤

(

(ωu − ωl)
2 + 4θ2

b + 4σ2
b

)

/Γ (69)

for any τ ∈ [0, t1). If at any τ ∈ [0, t1)

V (τ) ≥
θm(ρ, ρu)

Γ
, (70)
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where θm(ρ, ρu) is defined in (47), then it follows from (69) that

x̃⊤(τ)P x̃(τ) ≥
4λmax(P )

Γλmin(Q)
(θbdθ(ρ, ρu) + σbdσ(ρ, ρu)) , (71)

and hence

x̃⊤(τ)Qx̃(τ) ≥
λmin(Q)

λmax(P )
x̃⊤(τ)P x̃(τ)

≥ 4
θbdθ(ρ, ρu) + σbdσ(ρ, ρu)

Γ
. (72)

It follows from (22), (23) and (68) that

|θ̃(τ)| ≤ 2θb, |σ̃(τ)| ≤ 2σb (73)

for all τ ∈ [0, t1). Since θ̇(τ) and σ̇(τ) are continuous over [0, t1),
the upper bounds in (45) and (73) lead to the following upper bound:

|θ̃(τ)θ̇(τ) + σ̃(τ)σ̇(τ)|

Γ
≤ 2

θbdθ(ρ, ρu) + σbdσ(ρ, ρu)

Γ
. (74)

Hence, if V (τ) ≥
θm(ρ, ρu)

Γ
, then from (67) and (72) we have

V̇ (τ) ≤ 0 . (75)

It follows from (75) that V (τ) ≤
θm(ρ, ρu)

Γ
for any τ ∈ [0, t1).

Since λmin(P )‖x̃(τ)‖2 ≤ x̃⊤(τ)P x̃(τ) ≤ V (τ), then for any
τ ∈ [0, t1)

||x̃(τ)||2 ≤
θm(ρ, ρu)

λmin(P )Γ
.

Since V (τ) is continuous, we further have

‖x̃(τ)‖∞ ≤

√

θm(ρ, ρu)

λmin(P )Γ
, τ ∈ [0, t1] . (76)

Given t1 ∈ [0, t] such that

V (t1) ≤
θm(ρ, ρu)

Γ
,

let t2 ∈ (t1, t] be the next time-instant such that discontinuity of

any of the derivatives
˙̂
θ(t), ˙̂σ(t), θ̇(t), and σ̇(t). Using similar

derivations as above, we can prove that

‖x̃(τ)‖
∞

≤

√

θm(ρ, ρu)

λmin(P )Γ
, τ ∈ [t1, t2] . (77)

Iterating the process until the time instant t, we get

‖x̃t‖L∞
≤

√

θm(ρ, ρu)

λmin(P )Γ
, (78)

which concludes the proof. �

Proof of Theorem 1. The proof will be done by contradic-
tion. Assume that (51)-(52) are not true. Then, since ‖x(0) −
xref (0)‖∞ = 0 ≤ γ1, u(0) − uref (0) = 0, and x(τ), xref (τ),
u(τ), uref (τ) are continuous, there exists t ≥ 0 such that

‖x(t) − xref (t)‖∞ = γ1 , or (79)

‖u(t) − uref (t)‖∞ = γ2 , (80)

while

‖(x − xref )t‖L∞
≤ γ1, ‖(u − uref )t‖L∞

≤ γ2 . (81)

Since (48) holds, (15)-(16) follow from Lemma 1 directly. Taking
into consideration the relationships in (8), (18) and (81), we have
‖xt‖L∞

≤ ρ , ‖ut‖L∞
≤ ρu . Hence, it follows from (49) and

Lemma 3 that
‖x̃t‖L∞

≤ γ0 . (82)

Let r̃(τ) = ω̃(τ)u(τ) + θ̃(τ)‖x(τ)‖∞ + σ̃(τ) , r1(τ) =
θ(τ)‖x(τ)‖∞ + σ(τ) . It follows from (9) that χ(s) =
D(s)(ωu(s)+r1(s)−kgr(s)+r̃(s)) , where r̃(s) and r1(s) are the
Laplace transformations of signals r̃(τ) and r1(τ). Consequently

χ(s) =
D(s)

1 + kωD(s)
(r1(s) − kgr(s) + r̃(s)) ,

u(s) = −
kD(s)

1 + kωD(s)
(r1(s) − kgr(s) + r̃(s)) . (83)

Using the definition of C(s) from (2), we can write

ωu(s) = −C(s)(r1(s) − kgr(s) + r̃(s)) , (84)

and the system in (1) consequently takes the form:

x(s) = H(s)
(

(1 − C(s))r1(s) + C(s)kgr(s) −

C(s)r̃(s)
)

+ (sI − Am)−1x0. (85)

Let e(τ) = x(τ) − xref (τ). It follows from (54) that e(s) =
H(s) ((1 − C(s))r2(s) − C(s)r̃(s)) , e(0) = 0 , where r2(s) is
the Laplace transformation of the signal

r2(τ) = θ(τ)(‖x(τ)‖∞ − ‖xref (τ)‖∞) . (86)

Example 5.2 in [6] (page 199) gives the following upper bound:

‖et‖L∞
≤ ‖G(s)‖L1

‖r2t‖L∞
+ ‖r3t‖L∞

, (87)

where r3(τ) is the signal with its Laplace transformation being
r3(s) = C(s)H(s)r̃(s). From the relationship in (65) we have
x̃(s) = H(s)r̃(s) , which leads to r3(s) = C(s)x̃(s) , and hence
‖r3t‖L∞

≤ ‖C(s)‖L1
‖x̃t‖L∞

. Since ‖x(τ)‖∞ −‖xref (τ)‖∞ ≤
‖x(τ) − xref (τ)‖∞ ≤ ‖et‖L∞

for any τ ∈ [0, t], it follows from
(7), (22) and (86) that ‖r2t‖L∞

≤ Lρ‖et‖L∞
. From (87) we have

‖et‖L∞
≤ ‖G(s)‖L1

Lρ‖et‖L∞
+ ‖C(s)‖L1

‖x̃t‖L∞
. Eq. (82)

and the L1-gain upper bound from (3) lead to the following upper

bound ‖et‖L∞
≤

‖C(s)‖L1

1−‖G(s)‖L1
Lρ

γ0, which along with (17) leads to

‖et‖L∞
≤ γ1 − β1 < γ1 . (88)

We notice that from (12) and (84) one can derive u(s) −
uref (s) = −C(s)

ω
θ⊤(τ)(x(s) − xref (s)) − r4(s) , where r4(s) =

C(s)
ω

r̃(s). Therefore, it follows from Example 5.2 in [6] (page 199)

‖(u − uref )t‖L∞
≤

Lρ

ω
‖C(s)‖L1

‖(x − xref )t‖L∞
+ ‖r4t‖L∞

.

(89)

We have r4(s) = C(s)
ω

1
c⊤o H(s)

c⊤o H(s)r̃(s) = C(s)
ω

1
c⊤o H(s)

c⊤o x̃(s) ,

where co was introduced in (20). Using the polynomials from (20),

we can write that
C(s)

ω
1

c⊤o H(s)
= C(s)

ω

Nd(s)
Nn(s)

. Since C(s) is stable

and strictly proper, the complete system C(s) 1
c⊤o H(s)

is proper and

stable, which implies that its L1 gain exists and is finite. Hence, we

have ‖r4t‖L∞
≤

∥

∥

∥

C(s)
ω

1
c⊤o H(s)

c⊤o

∥

∥

∥

L1

‖x̃‖L∞
. The upper bound in

(82) leads to the following upper bound:

‖r4t‖L∞
≤

∥

∥

∥

C(s)

ω

1

c⊤o H(s)
c⊤o

∥

∥

∥

L1

γ0 . (90)

It follows from (88), (89), and (90) and the definition of γ2 in (19)
that

‖(u − uref )t‖L∞
≤ (Lρ/ω)‖C(s)‖L1

(γ1 − β1) +
∥

∥

∥

C(s)

ω

1

c⊤o H(s)
c⊤o

∥

∥

∥

L1

γ0 < γ2 . (91)

We note that the upper bounds in (88) and (91) contradict the
equality in (80), which proves (51)-(52). The upper bound in (50)
follows from (51)-(52) and (82) directly. �
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