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Abstract— In this paper global stabilization of a complex
network is attained by applying local decentralized output
feedback control to a minimum number of nodes of the network.
The stabilization of the network is treated as a rank constrained
problem. Necessary conditions for stabilization of a complex
network is derived as a convex LMI representation. Strict
positive realness conditions on the node level dynamics allow
nonlinearities/uncertainties which satisfy sector conditions to be
considered. A randomly generated academic example with 20
nodes is used to demonstrate the efficacy of the approach.

I. INTRODUCTION

The increasing number of control applications involving
sensor arrays, cooperative unmanned air vehicles, forma-
tions of satellite systems, etc. have spotlighted the problems
in the control of network systems. A significant research
problem in such applications is answering how the multiple
dynamical systems operating over a network can achieve
global stabilization or performance. Many researchers have
contributed to the research area of control of network
systems/cooperative control (see [1] for an overview). In
comparison to conventional control problems, the control of
networks is much more demanding. The key issue is how
the information topology of the network distribution can be
exploited. The topology of the network and its associated
connectivity plays an important role in determining the
dynamical behaviour of the networked system. Making use of
local controlling strategies is attractive from the perspective
of limited computing power and sensing capability.

Early efforts in developing network models have appeared
in [2]–[4]. A general scale-free dynamical network model
was discussed in [5], and subsequently conditions for syn-
chronization [6] and the V-stability concept [7] for such
networks were derived. The results depend on establishing
a common Lyapunov function for studying the ‘pinning’ of
complex networks. In [7] a state feedback control structure
was utilised to obtain the pinning result. State agreement,
synchronisation, and consensus, can all be viewed from a
similar point of view [8]. Central to these problems is the
graph describing the topology of the network of dynamical
systems. Algebraic graph theory has been employed in a
variety of research dealing with network systems (e.g. [1],
[3]–[16]).

An approach based upon graph and system theoretic
methods has been investigated in [15]. The paper makes
use of convexity properties to describe how state agreement
is achieved. Provided the systems move toward the convex
hull of a set of systems, then state agreement can be
achieved. In [8], [14] this work was further investigated for
state agreement/synchronization of continuous time coupled
nonlinear systems and the rendezvous problem of mobile
robots. The consensus problem was also studied in [13] based
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on tools from matrix, algebraic graph, and control theory. In
[11], the consensus problem (which is also a state agreement
problem [14]) over a network has been formulated as a semi-
definite programming problem and solved.

Recently, the passivity concept has been used in [12] to
study the coordination of dynamical systems in a group. In
[12] the difference between the output variables of individual
dynamical systems in a group is controlled to belong to a
defined compact set, and studied as a set stability problem.
The passivity concept is then employed to design the control
law. The compact set is defined as a sphere in the case
of a formation of vehicles and as the origin for consensus
problems. Decentralized robust control has been studied for
large scale interconnected nonlinear systems in [17].

In this paper, the stabilization of a class of systems
operating over a network is considered. Algebraic graph
theoretical tools, based on the connectivity of the graph, are
used to represent the dynamical systems operating over the
network. The individual node level dynamics are represented
as a combination of linear and nonlinear parts. The objective
is to stabilize the network in a locally decentralized manner
using only a few of the nodes of the network. Such a
requirement imposes a rank constraint in the stabilization
problem. In this paper, the stabilization of the networked
dynamical systems is formulated as a rank constrained linear
matrix inequality problem. The paper also investigates the
possibilities of exploiting positive realness in the closed-loop
nodes so that the formulation can handle a certain class of
nonlinearities/uncertainties satisfying sector conditions.

II. PRELIMINARIES

The set of real numbers is denoted by R. The set of
real-valued vectors of length m is given by Rm. The set of
arbitrary real-valued m×n matrices are given by Rm×n. The
expression col(.) defines a column vector and diag(.) defines
a diagonal matrix. For a symmetric positive definite (s.p.d)
matrix P = PT > 0, λmin(P) and λmax(P) are the minimum
and maximum eigenvalues. The symbols N (·) and R(·)
represent the null space and range space of a matrix.

The graph theoretic terminology employed is also quite
standard. A network G = (V ,E ), represents a simple, finite
graph consisting of N vertices and p edges. For the graph
G , the adjacency matrix A(G ) = [ai j], is defined by setting
ai j = 1 if i and j are adjacent nodes of the graph, and
ai j = 0 otherwise. This is a symmetric matrix. The symbol
∆(G ) = [δi j] represents the degree matrix, and is an N ×N
diagonal matrix, where δii is the degree of the vertex i.
The Laplacian of G , L(G ), is defined as ∆(G ) − A(G ).
The smallest eigenvalue of L(G ) is exactly zero and the
corresponding eigenvector is given by 1. The Laplacian L(G )
is always rank deficient and positive semi-definite [16].

III. NETWORK STRUCTURE

A distributed dynamical system operated over a connected
network, consisting of N identical dynamical elements in-
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dexed 1,2, ...,N is considered in this paper. The system
is viewed as a graph G with N labelled vertices, each
representing a dynamical system. The state of the vertex
i will be denoted as xi ∈ Xi. The topology of the network
interconnection of the dynamical systems is represented
as a graph G and the connectivity between the systems
is provided a-priori by the Laplacian of the graph L(G ),
from here on denoted as L. The N identical dynamical
systems represent the N nodes of the Graph G . If there is
an interconnection between any two dynamical systems, it
constitutes an edge connecting those nodes. The dynamics of
the ith individual node of the graph G is given in equations
(1) and (2)

Ẋi = AXi + BUi−
N

∑
j=1

cLi jΓX j + fi(Xi) (1)

Yi = CXi (2)

where, Xi = [xi1 ,xi2 , ...,xin ]∈Rn represents the n-dimensional

state vector of the ith node of the network. The symbol X

represents collective state X = [Xi,X2, ...,XN ]. The matrices
A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n represent the nominal
linear part of the system comprising the dynamics of the ith

node. Assume that the matrices B and C have full column
and row rank respectively. The triplet (A,B,C) is assumed
to be a minimal or irreducible realization of the ith node
of the network. The real constant c > 0 is the coupling
strength between the ith and jth node. The coupling strength
is assumed to be identical for all the connections between
the nodes. As described earlier, L ∈ RN×N denotes the
connectivity of the topology of the network being considered.
If there is a connection between node i and node j, then Li j =
L ji = −1; otherwise Li j = L ji = 0. The diagonal elements
Lii = ki, i = 1,2, ..,N where ki is the degree of the node
defined as the number of connection incidents at the ith node.

The matrix Γ = τi j ∈ R
n×n represents the local coupling

configuration among the states of the nodes. All the entries
of Γ are 1 or 0 and represent the existence or non-existence
of coupling/distribution in the respective channels in the
network. In the present study it is assumed that

Γ = diag[τ1,τ2, ..,τi, ..,τn]

is diagonal, implying the coupling is identical in each node
of the network. The signals Ui ∈ R

m and Yi ∈ R
p represent

the control input and the measured outputs of the ith node
respectively. Here it is assumed that p ≥ m. The functions
fi(Xi), represent the nonlinear part of the dynamical system
and are assumed to satisfy certain sector bounds which
will be precisely defined later in the paper. Note that the
intention is to apply local decentralized output feedback

control to a minimum number of nodes of the network such
that stabilization is achieved globally.

IV. NETWORK STABILISATION

A. Linear Case

Initially, the theory will be developed for the linear case.
The nonlinear part in (1) will not be considered and instead
the linear system

Ẋi = AXi + BUi−
N

∑
j=1

cLi jΓX j (3)

Yi = CXi (4)

is studied first. The theory is developed in such a way as
to utilize the structure of the problem maximally, so that by
looking at the node level dynamics, conditions for network
stabilization are achieved. Some assumptions used in the
paper will now be introduced and discussed.

A0) Assume that rank(Γ) = m

Since Γ is a diagonal matrix comprising entries 1 or 0, by
rearrangement of the states of the dynamics of each node,
it is possible to ensure without any loss of generality that Γ
consists of the block diagonal matrices:

Γ =

[
Im 0
0 0

]

The following assumptions will be imposed on the linear
system triples (A,B,C) throughout the paper:

A1) N (Γ)∩R(B) = {0}
A2) There exists an F ∈ Rm×p such that Γ = BFC
A3) The linear system (A,B,FC) is controllable, ob-
servable and minimum phase.

Some ramifications of these assumptions will be explored.
First notice that rank(FCB) = rank(B) = m. This can

be shown as follows: first observe from the dimensions of
the matrices Γ and B that rank(ΓB) ≤ m. Now consider
the homogeneous linear equation ΓBη = 0 where η ∈ Rm.
Considering this equation as Γ(Bη) = 0, it is clear that the
vector Bη ∈ N (Γ) and Bη ∈ R(B). By assumption A1,
N (Γ) and R(B) are disjoint and hence Bη = 0. However
since by assumption B is full rank, Bη = 0 implies η = 0.
Hence the only solution to ΓBη = 0 is η = 0 which means ΓB

has full column rank and therefore rank(ΓB)= m. According
to assumption A2 there exists a design parameter matrix
F ∈ Rm×p such that Γ = BFC holds. Multiplying both sides
on the right by the matrix B and using the result that
rank(ΓB) = m, it follows rank(BFCB) = m. Since

rank(ΓB) = rank(BFCB) ≤ min{rank(B), rank(FCB)}

it follows rank(FCB) = m since if rank(FCB) < m then
the inequality above implies rank(ΓB) < m, which is a
contradiction.
Remarks:

1) Assumptions A0 and A1 imply the range space of
the coupling configuration matrix is constrained within
a subspace of the range space of the control input.
Intuitively this ensures that the control signals can be
injected into the states of a particular node in the same
channels that the interactions with the other nodes occur.
2) Having rank(CB) = rank(FBC) = m can be inter-
preted as the dynamical mapping between the control
signals and the measured outputs are relative degree one.

Using the fact that rank(FCB) = m, and from A3 that
(A,B,FC) is minimum phase, as argued in [24] there exists
a change of coordinates such that the triple (A,B,FC) has
the special form

A =

[
A11 A12

A21 A22

]

B =

[
B1

0

]

FC = [ F1 0 ]

where B1,F1 ∈ Rm×m and both matrices are nonsingular.
Furthermore the matrix A22 ∈ R(n−m)×(n−m) is stable since
the eigenvalues of A22 represents the invariant zeros of the
triple (A,B,FC) (which are stable by assumption). Further
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details are given in [24]. In order that BFC = Γ holds, it
follows that by choice of F , the relationship FB1 = Im or
equivalently F1 = B−1

1 must hold.
The objective is now to develop conditions under which

the closed loop node level system (A−γBFC) is Hurwitz for
all γ > γ0 for some scalar γ0 ≥ 0. From assumption A2, this
is equivalent to showing (A− γΓ) is Hurwitz for all γ > γ0.
Here a slightly stronger condition will be required: namely,
that there exists a s.p.d Lyapunov matrix P such that

L = P(A− γΓ)+ (A− γΓ)TP < 0 (5)

for all γ ≥ γ0 for some γ0 ≥ 0. This of course is a sufficient
condition for (A− γΓ) to be Hurwitz for all γ > γ0 ≥ 0.

First an observation will be made on the properties re-
quired of the symmetric matrix (PΓ+ΓTP). In order for (5)
to hold for all γ > γ0 the matrix inequality

(PΓ+ ΓTP) ≥ 0

must hold. Suppose for a contradiction that (PΓ+ΓTP) is not
semi-positive definite. If this is the case, then the symmetric
matrix (PΓ+ ΓTP) has a negative eigenvalue λ < 0 and an
associated eigenvector v 6= 0 such that

vT(PΓ+ ΓTP)v = λ‖v‖2

Multiplying L from (5) on the left and right by vT and v
respectively, it follows

vT
L v = vT(PA + ATP)v− γvT(PΓ+ ΓTP)v (6)

= vT(PA + ATP)v− γλ‖v‖2 (7)

Since −λ‖v‖2 > 0, for a sufficiently large value of γ ,

vT
L v = vT(PA + ATP)v− γλ‖v‖2 > 0

which contradicts P(A−γΓ)+(A−γΓ)TP < 0 for all γ > γ0.
Consequently a necessary condition for (5) to hold is that

(PΓ+ ΓTP) ≥ 0

The s.p.d matrix P from (5) is partitioned into the 4-block
matrix form

P =

[
P1 P2

PT
2 P3

]

where P1 ∈ R
m×m. By direct computation

(PΓ+ ΓTP) =

[
2P1 P2

PT
2 0

]

Therefore necessary and sufficient conditions in order for
(PΓ+ ΓTP) ≥ 0 are that P2 = 0 and so P = diag{P1,P3}.

Notice if P1 is chosen as (B−1
1 )TB−1

1 (which is quite

legitimate since (B−1
1 )TB−1

1 > 0 because det(B1) 6= 0) then
by direct computation it can be shown that

PB = (FC)T (8)

for any choice of P3. The significance of (8) will be discussed
later in the paper.

It will now be shown by direct construction that there
does indeed exist a γ0 such that (5) holds for all γ > γ0. By
direction computation, L from (5) has the form

L =

[
P1A11 + AT

11P1 −2γP1 P1A12 + AT
21P3

P3A21 + AT
12P1 P3A22 + AT

22P3

]

(9)

where P1 = (B−1
1 )TB−1

1 . Recall that from the minimum phase
assumption A3, the matrix A22 is stable. Let P3 be any
symmetric positive definite matrix such that

Q3 := P3A22 + AT
22P3 < 0

From classical Lyapunov theory the existence of such a P3

is guaranteed to exist. From the Schur complement (see for
example [23]), L < 0 if and only if

2γP1 > P1A11 +AT
11P1−(P1A12 +AT

21P3)Q
−1
3 (P1A12 +AT

21P3)
T

Since P1 > 0 this can always be satisfied for a large enough
γ . Let γ0 be the minimum value of γ with respect to the
choice of P3 and P1 = (B−1

1 )TB−1
1 . Then by construction:

P(A− γ0Γ)+ (A− γ0Γ)TP < 0

Furthermore since

L = P(A− γΓ)+ (A− γΓ)TP

= P(A− γ0Γ)+ (A− γ0Γ)TP
︸ ︷︷ ︸

<0

+(γ0 − γ)(PΓ+ ΓTP)
︸ ︷︷ ︸

≥0

If follows L < 0 for all γ ≥ γ0 as required.

Formally the minimum value of γ0 can be found via the
LMI optimization [18]. Formally:

Min. w.r.t γ > 0 and P3 > 0 the LMIs

[
(B−1

1 )TB−1
1 A11 + AT

11(B
−1
1 )TB−1

1 −2γ(B−1
1 )TB−1

1

P3A21 + AT
12(B

−1
1 )TB−1

1

(B−1
1 )TB−1

1 A12 + AT
21P3

P3A22 + AT
22P3

]

< 0 (10)

0 < γ (11)

This is a convex optimization problem and can be solved
using standard LMI solvers.

Remark 2: This result can be interpreted as each node
triple ((A− γiBFC),B,FC) is strictly positive real [27] for
γ > γ0 since there exists a P such that

P(A− γiBFC)+ (A− γiBFC)TP < 0 (12)

and PB = (FC)T. This is similar to the Constrained Lyapunov
Problem studied in [24]–[26].

B. Output Feedback Control

The output feedback control algorithm, Ui =−γiYi, will be
employed to achieve synchronization. Note that the intention
is to apply decentralized output feedback control to the min-
imum number of nodes of the network such that stabilization
is achieved globally. This is beneficial from the point of view
of minimising computational effort, and minimising sensory
information. For ease of exposition the local feedback control
law will be written as

Ui = −γiFYi for i = 1 . . .N

where in the nodes in which no control signal is injected,
γi ≡ 0. Substituting for Yi, yields

Ui = −γiFCXi for i = 1 . . .N
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and (1) can be re-written as

Ẋi = AXi − γiΓXi −
N

∑
j=1

cLi jΓX j (13)

Yi = CXi (14)

since by construction BFC = Γ. With simple algebraic ma-
nipulation equation (13) can be conveniently written as

Ẋi = AXi −
N

∑
j=1

cL̃i jΓX j (15)

where
L̃ := L+ Dr (16)

and by definition

Dr = diag[γ1,γ2, ..,γi, ...,γN ] (17)

When Dr is full rank, it implies that control signals are
injected in every node of the network. The objective of the
paper is to obtain global stabilization with most of the γi

entries as zero. The solution to the problem is not trivial and
necessarily this imposes a rank constraint on this matrix. The
dynamics of the overall network can conveniently be written
as

Ẋ =
(
IN ⊗A− c(L̃⊗Γ)

)
X (18)

Note that by construction, L̃ is dependent on the control
gains γi, i = 1 . . .N. Also by construction L̃ is a symmetric
matrix since both L and Dr are symmetric. In [7] a similar
separation of the topology matrix is achieved and a condition
is introduced by incorporating the concept of a passivity
degree. The methodology in this paper has origins in a more
classical control approach. By spectral decomposition (see
[22]), the symmetric matrix L̃ can be written as

L̃ = VDV T (19)

where the orthogonal matrix V ∈ RN×N is formed from the
eigenvectors of L̃, and D∈RN×N is a diagonal matrix formed
from the eigenvalues so that

D := diag(d1,d2, ..,di, ...,dN)

Define a co-ordinate transformation T : X 7→ Z := T X , where

T = (V T ⊗ In) (20)

and V is the orthogonal matrix from the spectral decompo-
sition in (19). The transformation matrix T is an orthogonal
transformation since using the properties of Kronecker prod-
ucts (see Appendix 1)

(V T ⊗ In)
T(V T ⊗ In) = (V ⊗ In)(V

T ⊗ In) = (VV T ⊗ In) = InN

since V is orthogonal. Such a transformation will be shown
to provide a decoupled structure for analysis, and restricts
the analysis to the node level dynamics of the network.

On application of the transformation T to the state X of
the graph, the first derivative of the new states are given by:

Ż = (V T ⊗ In)Ẋ (21)

The transformation given in (21) is applied to (18) and alge-
braic manipulations making using of the Kronecker identities
discussed in Appendix 1 yields

Ż = ((IN ⊗A)− c(D⊗Γ))Z (22)

The structure which is obtained is simple and consistent
with classical control systems theory. This structure enables
the output feedback control problem for stabilization of the
network to be investigated by considering the individual node
level dynamics. The dynamics of an individual node in the
transformed co-ordinates given in (22) can be written as

Żi = (A− cdiΓ)Zi (23)

where Z = col(Z1,Z2, . . .ZN) because of the diagonal nature
of D. It follows from the earlier results that if

cdi > γ0, ∀i = 1 . . .N

then (A− cdiΓ) is Hurwitz and furthermore there exists a
s.p.d. P such that, for nodes i = 1 . . .N, the following strict
matrix inequality holds.

P(A− cdiΓ)+ (A− cdiΓ)TP < 0 (24)

For stabilization of the network to a fixed point solution, the
objective is to choose γi such that the stability condition is
satisfied for the system at node level given in (23). Since the
di are the eigenvalues of L̃ if

L̃ >
γ0

c
IN (25)

then di > γ0
c

for i = 1 . . .N. Thus the network stability
problem is to choose the gains γi for all i = 1 . . .N from (17)
such that (25) holds. The LMI formulation of the problem
is discussed in the next section.

C. Nonlinear Case

The results discussed so far pertain to the linear system
in (3)-(4). This is now extended to the nonlinear case in
(1)-(2). The dynamics of the network having nonlineari-
ties/uncertainties can be represented as:

Ẋ = (IN ⊗A)X − c(L̃⊗Γ)X + f (X) (26)

where the augmented state vector X = col(X1,X2, . . .XN)
and f (X) = col( f1(X1), . . . fN(XN)) represents the vector of
nonlinearities.

A4) Suppose that the nonlinearities satisfy

fi(Xi) = Bξi(Xi) i = 1 . . .N

for some functions of the states ξi(Xi) where

(Fyi)
T(ξi) ≤ 0 (27)

is satisfied for all Xi where yi is thought of as CXi.

Equation (27) represents a sector condition on the nonlin-
earity ξi(Xi). Define ξ = col(ξ1, . . . ,ξN). As argued earlier,
the triples ((A− γiBFC),B,FC) are strictly positive real for
γi > γ0 i.e. there exists a P such that

P(A− γiBFC)+ (A− γiBFC)TP < 0 (28)

and PB = (FC)T. Define

B := IN ⊗B (29)

C := IN ⊗C (30)

F := IN ⊗F (31)

P := IN ⊗P (32)
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then

(FY )Tξ =
N

∑
i=1

(FYi)
Tξi ≤ 0

since from A4, for i = 1 . . .N, the nonlinearities satisfy
(FYi)

Tξi ≤ 0. Also notice that

PB = (FC)T

since PB = (FC)T and

P(IN ⊗A− c(L̃⊗Γ))+ (IN ⊗A− c(L̃⊗Γ))T
P < 0

It follows that V(X) = XTPX is a Lyapunov function for the
nonlinear system in (26) written as

Ẋ = (IN ⊗A)X − c(L̃⊗Γ)X +(IN ⊗B)ξ (33)

V. COMPUTATIONAL ALGORITHM

For a given network system, the problem of designing
the local decentralized output feedback control laws will
be tackled as a two stage LMI optimization problem: the
first one as a convex LMI and the second one as a rank
constrained LMI (and hence nonconvex).

For the node dynamics represented by the triple (A,B,C),
assuming A0-A3 are met, the first the problem which is
tackled is that of finding the minimum γ0 such that

P(A− γiBFC)+ (A− γiBFC)TP < 0

for some s.p.d matrix P. As argued earlier this can be cast
as a convex optimization problem:

Minimize γ: subject to the LMIs (10) and (11).
This is can be solved using any LMI solver and is a well
defined generalized eigenvalue problem (see [18]).

Once γ0 has been computed, a second optimization prob-
lem can be solved involving the matrix Dr from (17) which
represents the output feedback gains injected at each node.
If the nodes at which the control is applied are decided upon
a-priori (based on the designer’s intuition), then the problem
can be posed as:
Minimize Trace(Dr) subject to:

L+ Dr > γ0/cIN

Dr ≥ 0

This also represents a convex optimization problem and so
can be tackled using LMI solvers [18].
Remarks:

• The trace minimization attempts to minimize the use of
control effort by choosing ‘small’ feedback gains.

• This approach is reliant on the designer choosing a-
priori the nodes in which to inject control signals –
which will be difficult for large networks.

Instead, a different (nonconvex) approach may be adopted
to try to minimize the number of nodes at which control
is applied. The numerical algorithm is required to find the
solution to a rank constrained LMI problem: see [19] and
the references therein. A new optimization problem can be
cast as:
Minimize Trace(Dr) subject to:

L+ Dr > γ0/cIN

Dr ≥ 0

rank(Dr) ≤ r

where the positive integer r is chosen by the designer.
Such a problem is generally hard to solve, however

there exist available algorithms, such as LMIRank [20]. The
LMIRank can be called using YALMIP [21], a MATLAB
toolbox for rapid prototyping of optimization algorithms.
However, LMIRank does not support objective functions,
and only solves feasibility problems. However the objective
function can be minimized using an outer loop bisection
algorithm. The rank computations being inherently hard from
a numerical view point, means occasionally the actual rank
obtained is higher than r, even though LMIRank claims
feasibility. Such situations require tuning of the tolerances
of the solver. These are entirely known, reported issues
associated with the solver [19], [20].

VI. NUMERICAL EXAMPLE

To demonstrate the application of the theory developed
in this paper, an academic example is provided. Consider
the graph G (20,47). The graph represents a network of
dynamical systems consisting of 20 identical nodes. Note
that an arbitrary network has been constructed consisting of
20 nodes and 47 interconnections (edges of the graph). The
individual node dynamics are given as follows:

ẋi1 = xi1 + xi2 − x2
i1sign(xi1) (34)

ẋi2 = −xi2 (35)

yi = xi1 (36)

Compared with the usual state feedback policies, only output
information will be utilised for stabilizing the network,
which is realistic. The use of only output information is
advantageous from the perspective of minimising sensor
requirements. The objective is to achieve local decentralised
output feedback stabilization of the network by injecting
control signals at a minimum number of nodes. The two
stage LMI optimization problem discussed in Section V is
employed. Three different case studies are reported in this
paper: solutions with rank 5, 7 and 9. In the LMI’s, a stability
margin has been selected as 0.005. By solving the necessary
LMI conditions, γ0 is obtained as 1.005. In the second stage
of the optimization, the rank constraints are imposed.

Consider Case I with rank 5 (the minimum rank ob-
tained for which the network is stabilisable). The LMI-
Rank solver gives a solution which correspond to nodes
2,4,6,11, and 18, having nonzero feedback. The respec-
tive output feedback control gains for these nodes are
[112.693, 55.130, 40.864, 114.287, 108.130]. The nodes in
which control signals have been injected and the respective
control gains are provided in Table I. Note that all the nodes
that were controlled in Case I, are also used in Case II;
however the gains are of lower value in an average sense.
However in Case III, a different set of nodes (apart from
node 4 and 6) have been provided by the solver. Recall that
the solver tries to minimize the trace and hence there might
also exist other combinations of nodes that could be used
to stabilise the network. In Table I the average value of the
control gains in the case of rank 5 is larger than that of
rank 7 and rank 9. When more nodes are used to inject the
output feedback control signals, the smaller the gains. Fig.
1 shows the simulation results. The left subplots in figure 1
show the time history of the outputs for 200 seconds in the
three different cases. The right subplots are enlarged views
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TABLE I

RESULTS OF STABILISATION OF THE NETWORK

Case Rank Parameter Values

Node 2 4 6 11 18
I 5

Gain 112.693 55.130 40.864 114.287 108.130

Node 2 4 5 6 9 11 18
II 7

Gain 55.815 13.628 7.610 17.392 13.833 53.543 53.999

Node 1 3 4 6 12 13 14 16 20
II 9

Gain 1.232 6.841 7.288 1.998 3.655 1.083 4.126 5.155 3.863
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Fig. 1. Simulation results of stabilization of the network - cases

over the time window of 10 seconds. From figure 1, it can
be seen that convergence is faster in case III compared to
the other two cases.

VII. CONCLUSION

In this paper, the stabilization of the network dynamical
system is achieved using a decentralised output feedback
strategy. The four block representation and associated in-
variance structure of the networked dynamical systems have
been exploited in the problem formulation. The stabilisation
problem is formulated as a rank constrained Linear Matrix
Inequality problem. The non-convex rank constraint emanat-
ing from the constraint on the minimum number of nodes for
control signal injection is solved using LMIRank methods.
This paper has further demonstrated how to exploit the notion
of positive realness in the closed-loop node level dynamics
so that the formulation can easily handle a wide class of
nonlinearities/uncertainties satisfying sector conditions. The
theory is applied to a relatively complex academic example
and its efficacy is demonstrated.

APPENDIX 1

The Kronecker products of two matrices A and B, writ-
ten A ⊗ B, is a block matrix C with generic block entry
Ci j = Ai jB. The following identities hold [28]:

1 (A+B)⊗C = (A⊗C)+(B⊗C),
2 (A⊗B)(C⊗D) = AC⊗BD,

3 (A⊗B)T = AT ⊗BT,

4 (A⊗B)−1 = A−1 ⊗B−1.
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