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Abstract— This paper concerns the effects of generator con-
troller limits on long-term power system stability. It is shown
through an example that when the system operates near its
limits, interactions between the speed governor limits and
the automatic voltage regulator (AVR) can lead to frequency
instability that would not be evident from power-flow analysis
or simulations of only the electromechanical dynamics. Analysis
of the case study shows that when the generation limit is
reached there is an unstable eigenvalue in the system matrix,
but we show this observation alone cannot predict whether the
instability will occur. We also show that stability can be achieved
with the introduction of a power system stabilizer (PSS), which
is normally used for transient (fast) stability. This work suggests
several directions for further research.

I. INTRODUCTION

A reliable power grid is vital to the well-being of our
society, because we have come to depend on reliable elec-
tricity for nearly all aspects of modern life [1]. Power system
stability has been recognized as an important problem for
secure system operation since the 1920s. Kundur et al.
classify power system stability into three categories: rotor
angle stability (transient stability), frequency stability, and
voltage stability [2]. Historically, research has focused on
transient stability [3]. As power systems have evolved with
larger interconnections and new technologies and controls, it
has become important to understand and mitigate conditions
that can lead to the other forms of instability. This paper
focuses on frequency stability, which is the ability of a power
system to maintain steady frequency following a severe
system upset, resulting in a significant imbalance between
generation and load. In contrast to transient stability, this is a
longer-term stability that involves slower phenomena associ-
ated with turbine speed control and boiler/reactor protection,
with the time frame ranging from tens of seconds to several
minutes after severe system upsets.

Due to the increasing demand for electricity and envi-
ronmental and regulation pressure, today’s power systems
are more heavily loaded than ever and are often operated
near generation, transmission and control limits to maximize
the use of existing infrastructure. When saturation in control
occurs, the dynamic responsiveness of the system may be
severely compromised. Thus, special attention needs to be
paid to analyzing and understanding the impact of saturation
on the viability of the system. If the limiting condition cannot
be alleviated over a period of time, it is possible that one
binding constraint will lead to another limit being reached,
thus causing a cascading effect that can ultimately result
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in system collapse. In this paper, an example is presented
in which the post-disturbance steady-state solution exists,
but the system becomes unstable and cannot reach the
desired post-disturbance equilibrium in some cases due to
the saturation in the speed governor control.

The paper is organized as follows. Section II presents the
differential-algebraic equations (DAE) model that is used
to simulate a two-bus power system. Section III shows the
instability in the two-bus power system due to controller sat-
uration. In Section IV we investigate the instability through
linearization and eigenvalue analysis. Section V shows that
the instability can be eliminated by introducing a power
system stabilizer (PSS) to achieve coordination between the
governor and AVR. The final section summarizes the paper
and discusses directions for future research.

II. GENERATOR-TRANSMISSION-LOAD MODEL

We study the the two-bus generator-transmission-load sys-
tem shown in Fig. 1. The system nominal frequency is 50Hz
and the system MVA base SNREF is 400MVA. In general,
the dynamic model of power systems is a set of differential-
algebraic equations (DAE) of the form [4]:

ẋ = f(x, y) (1)
0 = g(x, y), (2)

where x is the vector of dynamic state variables, including
the generator flux linkage, rotor angle, shaft speed, and
control state variables, and y is the vector of bus voltages and
angles in the power flow constraints. We use the following
third-order model for generators with flux linkage λf , rotor
angle δ and shaft speed ω as state variables [5]:

λ̇f =
ω0rf

Lf

(
LMD

Lf
− 1

)
λf +

ω0rf

Lf
LMDId

− ω0rf

Mdv
Efd

δ̇ = ω0 (ω − ωs)

ω̇ =
PN

2HSNREF
TM +

LMD

2HLf
Iqλf

+
1

2H
(LMD − Mq) IdIq,

where Efd is field voltage, TM is the mechanical torque to
the generator shaft, Id and Iq are the currents of d-axis and
q-axis respectively, and ωs is the system frequency. All these
variables are in the per unit system. Efd is provided by the
exciter controlled by the automatic voltage regulator (AVR)
and TM is provided by the prime mover, a hydroturbine
in our case, controlled by a governor. Through the AVR
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Fig. 1. System configuration.

and governor, the terminal voltage and speed are adjusted
automatically. Values for the system parameters and details
of the IEEE Type 1 DC exciter and the hydroturbine and its
speed governing system used in this example are given in
the Appendix.

It is customary to treat frequency dynamics and voltage
dynamics separately because the former is more related to
generator electromechanics while the latter is more related
to electromagnetics. Two reduced-order models are used
accordingly. For frequency stability, it is usually assumed
that the machine voltage regulator or excitation is strong
enough to keep the voltage steady, so the AVR and excitation
can be eliminated from the model. For voltage stability, it is
assumed that the generator can keep the real power balanced
and there is no frequency deviation, so the generator swing
equation and governor action can be eliminated from this
model. These assumptions may not hold, however, when the
generator is operating near full capacity or the excitation
limit is reached. Therefore, in our long-term stability study
both the AVR and speed governing systems and their physical
limits are modeled in detail.

The first algebraic constraints come from the power flow
equations [8]. We use the power-balance equations with
a constant impedance load model. The transmission line
is assumed to be lossless and the load consumes power
proportional to the square of its voltage. The other algebraic
constraints come from the stator algebraic equations, which
relate Id and Iq to the state and network variables as

0 = (Ld + LMD) ωId +
LMD

Lf
ωλf

+ V1 cos (δ − θ1)
0 = (Lq + Mq) ωIq − V1 sin (δ − θ1) .

Note that the machine internal fluxes are functions of the
network frequency [5].

In electric power systems, there are many hard limits due
to physical constraints and safety considerations, for exam-
ple, the limits on the excitation, generator speed, generation,
ramp rate, and turbine temperature. Mathematically, there are
two types of limits: windup and non-windup [3]. Both types
of limits appear in our dynamic model: the control input to
the hydroturbine gate position has a windup limit and the
AVR excitation has a non-windup limit.

III. INSTABILITY DUE TO SATURATION

We consider the following scenario. The generator has
a capacity of 250MW. The initial load is 200MW and
100MVar. Therefore the generator loading level in terms

TABLE I
EQUILIBRIUM POINTS.

Initial Post-disturbance
equilibrium point equilibrium point

λf -1.1481 -1.1529
δ 0.6138 0.6138
ω 1.0000 0.9919

Efd 2.2310 2.4352
VR 0.1348 0.1919
TM 0.8000 0.9628
V1 1.0000 0.9989
θ1 0.0000 -0.0680
V2 0.9412 0.9377
θ2 -0.1064 -0.1957

of real power is 80%. Assuming the system is initially
at equilibrium, we can solve for all state variables x and
algebraic variables y from (1) and (2).

The disturbance is a sudden increase of 40MW real power
in the load at time t = 0s. The total load of 240MW
equals 96% of the generator capacity. Therefore the generator
should be able to serve the load and the values of state and
algebraic variables can be calculated. Table I lists the initial
and post-disturbance equilibria.

The post-disturbance operating point is acceptable because
both system frequency and voltage are kept close to 1
per unit. Also at equilibrium, the AVR and governor are
both below their limits. Therefore, if only static power flow
analysis is performed, one would conclude that this system
can withstand this particular disturbance. We show that this
is not necessarily the case, however. When the system is
operated near its limits, it is possible that during the transient
process, some variables may saturate and thus alter the
trajectory and eventually drive the system into instability.

Two cases are studied in this section. First, we observe the
system response taking the system from the pre-disturbance
equilibrium to the post-disturbance equilibrium when there
are no control limits; second, we perform the dynamic
simulation with control limits being considered. In Section V
the dynamic response is studied when the control limits are
taken into account and the AVR is equipped with a PSS. The
simulations are performed using the MATLAB DAE solver.

If we remove the hard limit in the governor, allowing the
mechanical torque to go over 1 per unit, the system reaches
a steady-state equilibrium as shown in Fig. 2. The system is
stable and the post-disturbance operating point is acceptable.
But the mechanical torque is higher than 1 per unit from 8
sec to 24 sec, which is unrealistic because the gate is beyond
its limit. It is thus necessary to see how the system behaves
if the hard limit is taken into consideration.

We now consider the simulation of the same scenario with
the constraints that the mechanical torque cannot exceed 1
per unit and VR, the state variable of AVR, cannot exceed
3.53 per unit. It can be seen from Fig. 3 that at t = 8.4s, the
governor and turbine reach the mechanical torque limit. The
mechanical torque is constant at 1 per unit from then on.
Due to the lack of mechanical torque, the system frequency
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Fig. 2. Simulation without saturation.

continues to decline away from nominal value, though the
rate of the decay is slow. Meanwhile the AVR is able
to maintain the system voltage steady and close to 1 per
unit until t = 114.0s. At this time, the excitation also
reaches its hard limit. Now both controllers are against their
limits and thus lose their ability to affect the system. The
system voltage and frequency then experience fast decay
and finally settle at a very low equilibrium which is outside
the acceptable operating limits for the power system. Low
frequency tripping would occur long before this equilibrium
would be reached.

The existence of such a low final equilibrium is due to
the constant impedance load model. If a constant power
load model is used instead, the low equilibrium does not
exist and the system just diverges after both controller limits
are reached. The system is unstable for either load model.
This instability phenomenon is perhaps surprising to power
engineers because according to the static analysis the post-
disturbance equilibrium exists and is acceptable. It is well
known, however, that saturation can lead to instabilities.

IV. ANALYSIS OF THE CASE STUDY

In this section, we analyze the example in Section III using
linearization and eigenvalue analysis. To study the dynamic
process, we take snapshots along the trajectory and examine
them in detail, similar to the procedure used in [9].

Linearizing the DAE model (1) and (2) about an operating
point (x1, y1) gives:

Δẋ = AΔx + BΔy + f(x1, y1)
0 = CΔx + DΔy, (3)

where

A =
∂f

∂x
|x1,y1 , B =

∂f

∂y
|x1,y1 ,

C =
∂g

∂x
|x1,y1 , D =

∂g

∂y
|x1,y1 ,

Fig. 3. Simulation with saturation.

and f (x1, y1) is a constant term. If the operating point
(x1, y1) is an equilibrium, f (x1, y1) = 0, otherwise it is
nonzero.

In our case study the matrix D is always invertible, so
(3) can be transformed to express Δy in terms of Δx. The
linearized dynamic model with algebraic constraints being
eliminated is then obtained as

Δẋ =
(
A − BD−1C

)
Δx + f (x1, y1) .

We define Asys = A − BD−1C and study its eigenval-
ues to gain insight into the stability characteristics of the
dynamic system. If we are linearizing the system around
an equilibrium, then the property of the associated matrix
Asys can tell us if this equilibrium is stable or unstable in
the small-signal sense. When we are linearizing the system
around points that are not equilibria along the trajectory, we
cannot draw similar conclusions with regard to stability just
by examining the eigenvalues of the corresponding Asys. In
other words, if at one instant during the transient process we
discover that there is one eigenvalue in the right-half plane,
we cannot say that the system is necessarily unstable because
the notion of stability applies only to equilibrium points. But
if we observe the eigenvalues of Asys for several snapshots,
the trend in eigenvalues may give some indication whether
or not the system is stable. In Fig. 3, there are two important
time points: when the governor reaches its limit and when
the AVR is against its limit. We therefore take snapshots at
the following points:

1) t=0-, pre-disturbance;
2) t=0+, immediately after the disturbance;
3) t=8.07, before governor reaches limit;
4) t=8.44, after governor reaches limit;
5) t=113.93, before AVR reaches limit;
6) t=114.01, after AVR reaches limit;
7) t=179.60, post-disturbance lower equilibrium.
In addition, also take a snapshot of the post-disturbance

equilibrium (called snapshot 8) when the hard limits are
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TABLE II
EIGENVALUES OF Asys .

Snapshots 1 2 3 4

Eigenvalues

-10.319+10.285i
-10.319-10.285i
-2.769
-1.026
-1.000
-0.535+0.618i
-0.535-0.618i
-0.034+0.173i
-0.034-0.173i

-10.323+10.288i
-10.323-10.288i
-2.767
-1.035
-1.000
-0.514+0.627i
-0.514-0.627i
-0.029+0.173i
-0.029-0.173i

-10.394+10.357i
-10.394-10.357i
-2.768
-1.031
-1.000
-0.507+0.614i
-0.507-0.614i
-0.026+0.172i
-0.026-0.172i

-10.393+10.357i
-10.393-10.357i
-2.000
-1.923
-1.000
-0.482+0.605i
-0.482-0.605i
-0.026
0.050

Snapshots 5 6 7 (8)

Eigenvalues

-12.760+12.239i
-12.760-12.239i
-2.000
-1.923
-1.000
-0.501+0.359i
-0.501-0.359i
-0.026
0.093

-5.150
-2.000
-1.923
-1.000
-1.000
-0.394
-0.026
-0.021

0

-5.438
-2.000
-1.923
-1.000
-1.000
-0.769
-0.122
-0.026

0

-10.370+10.333i
-10.370-10.333i
-2.767
-1.034
-1.000
-0.513+0.622i
-0.513-0.622i
-0.029+0.173i
-0.029-0.173i

neglected for comparison purposes.
Table II shows the eigenvalues of Asys evaluated at each

snapshot. There is one common zero eigenvalue which is
due to the lack of a reference angle. This zero eigenvalue
is omitted in the table. We observe that beginning from
snapshot 4 (t = 8.44s) to snapshot 5 (t = 113.93s), there is
always one positive real eigenvalue of Asys. This is due to
the effect of the governor saturation.

Participation factor analysis can be used to identify which
state variable has the most significant participation in a given
mode or eigenvalue [8]. We use this method to identify the
state variable associated with the positive real eigenvalue λ =
0.050 at snapshot 4. First, the right eigenvector v and the
left eigenvector w associated with λ are obtained. Then the
participation factor pk relating the kth state variable to the
given eigenvalue is calculated as

pk =
wkvk

wT v
,

where wk and vk are the kth components of the left and right
eigenvectors, respectively. It can be shown that the sum of all
the participation factors associated with a given eigenvalue is
equal to 1. The trajectory of the state variable with the largest
corresponding participation factor is most influenced by the
given eigenvalue. The above participation factor analysis
identifies the frequency ω as the state variable associated
to the positive real eigenvalue λ = 0.050. This indicates that
the system is not able to balance the mechanical torque and
electrical torque leading to frequency instability.

When the AVR also reaches its limit, there is one zero
eigenvalue from snapshot 6 (t = 114.01s) to snapshot 7
(t = 179.60s). This is because the hard limit of AVR is of
non-windup type and VR stops acting as a state variable. In
other words, the AVR loses its ability to control starting from
snapshot 6.

Fig. 4. A power system stabilizer [3].

V. EFFECTS OF PSS

The AVR and governor in the unstable case in Section III
act independently. The AVR responds only to voltage devi-
ations and adjusts the excitation accordingly. The governor
reacts only to frequency deviations and adjusts mechanical
torque accordingly. When the governor first hits its limit,
the system cannot balance the large increase of electrical
torque and the frequency decreases. In the meantime, the
AVR observes only the voltage deviation, and attempts to
increase excitation to maintain a high voltage level, which
in fact is bad for the system under this extreme condition
because the electrical torque is also kept high indirectly. If
by some means, the AVR could know that the governor is
experiencing difficulty, then the AVR could help alleviate the
situation by temporarily reducing the excitation and thereby
reduce the electrical torque. This allows the governor time
to recover from the limiting condition and the system would
then be stable.

Some generators in electric power systems are equipped
with power system stabilizers (PSS). The basic function of
a PSS is to improve power system dynamic performance by
controlling the excitation system using ancillary stabilizing
signals. Commonly used input signals to PSS are generator
shaft speed, terminal frequency and power. Figure 4 shows
the diagram of PSS using the speed deviation as input with
KP = 2.0, TP = 5.0, T1 = 0.3, T2 = 1.0. We simulate the
unstable case again, except that the AVR is now equipped
with PSS. Fig. 5 shows that even though the governor is
against its limit for about 30 seconds, with the coordination
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Fig. 5. Simulation with saturation and a PSS.

of AVR and PSS, the system is able to recover the frequency
and reach the desired acceptable post-disturbance operating
point. A zoom-in of the above three cases in the first 40
seconds of simulation is shown in Fig. 6. We can see that
in this time frame, the PSS actually reduces the excitation
to help reduce the electrical torque. The transient frequency
drop is smaller and it can be recovered later by governor
action. Although the voltage drop is slightly larger, it is still
within acceptable bounds. This coordination proves to be
crucial to preserve the system integrity at the expense of
reducing the AVR action immediately after the disturbance.

We take snapshots at the following four instants:
1) t=12.18, before governor reaches limit;
2) t=13.54, after governor reaches limit;
3) t=42.48, before governor becomes unsaturated;
4) t=44.48, after governor becomes unsaturated.
Table III gives the eigenvalues of linearized system ma-

trices Asys at each point. The eigenvalues all have negative
real parts before the governor saturates. From t = 13.54s to
t = 42.48s, there is a small positive real eigenvalue corre-
sponding to the state variable ω. In contrast to the unstable
case in Section III, the system returns to an unsaturated
condition at t = 44.48s and the positive real eigenvalue
disappears. This shows that the eigenvalue analysis is not
sufficient and a more sophisticated method is needed to
determine whether or not instability will occur.

VI. DISCUSSION

As today’s power systems are operated closer to physical
and control limits, traditional static load flow analysis and
simulation of reduced-order models may be inadequate to
determine whether or not a system will operate safely when
subjected to disturbances. As shown in this paper, even if the
static solution exists for the post-disturbance conditions, it is
still possible for the system to lose stability when constraints
are taken into account. The examples in this paper also
illustrate that eigenvalue analysis alone is inadequate for
predicating instability.

The instability observed in the example in this paper
is caused by a saturation constraint. We are currently in-
vestigating the application of hybrid system techniques to
determine conditions for stability and instability in power
systems [10], [11]. Methods for designing controllers that
will improve stability even when saturation occurs, such as
the introduction of a PSS as discussed in Section V, are also
of interest. One approach for designing controllers that deal
with generator limits has been proposed in [12].

APPENDIX

The generator parameters used in our paper are:
rf = 0.0011 LMD = 0.203 Ld = 0.219
Lq = 0.219 Lf = 0.2222 Mdv = 2.351
Mq = 2.351 Td0 = 7.695 H = 6.3
PN = 250MW

The block diagram of AVR and associated parameters are:

Fig. 7. IEEE Type 1 DC exciter/AVR [6].

AEX = 0.0033 BEX = 1.303 KA = 50
KE = 0 KF = 0.2 TA = 0.05
TB = 1.0 TC = 1.0 TE = 1.0
TF = 1.0 VRMax = 3.53

The block diagram of turbine and governor and associated
parameters are:

Fig. 8. Hydroturbine and governor [7].

K = 20 T1 = 38.48 T2 = 5.0
T3 = 0.52 TW = 1.0 PMax = 1.0
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