
Mean First-Passage Time Control Policy versus Reinforcement-Learning

Control Policy in Gene Regulatory Networks

Golnaz Vahedi, Babak Faryabi, Jean-Francois Chamberland, Aniruddha Datta, Edward R. Dougherty

Abstract— Probabilistic Boolean Networks are rule-based
models for gene regulatory networks. They are used to design
intervention strategies in translational genomics such as cancer
treatment. Previously, methods for finding control policies with
the highest effect on steady-state distributions of probabilistic
Boolean networks have been proposed. These methods were de-
rived using the theory of infinite-horizon stochastic control. It is
well-known that the direct application of optimal control meth-
ods is problematic owing to their high computational complexity
and the fact that they require the inference of the system model.
To bypass the impediment of model estimation, two algorithms

for approximating the optimal control policy have been intro-
duced. These algorithms are based on reinforcement learning
and mean first-passage times. In this work, the performance of
these two methods are compared using both a melanoma-related
network and randomly generated networks. It is shown that
the mean-first-passage-time-based algorithm outperforms the
reinforcement-learning-based algorithm for smaller amount of
training data, which corresponds better to feasible experimental
conditions. In contrary to the reinforcement-learning-based
algorithm, during the learning period of the mean-first-passage-
time-based algorithm, the application of control is not required.
Intervention in biological systems during the learning phase
may induce undesirable side-effects.

I. INTRODUCTION

Modeling of genetic regulatory networks as a means

for gaining insight into the underlying processes of living

systems is becoming increasingly widespread. An ultimate

objective of modeling genetic regulatory networks is the

development of computational tools for the discovery of

potential targets in diseases such as cancer [1].

To date, stochastic regulatory intervention has been studied

in the context of probabilistic Boolean networks (PBNs) [2].

On the topic, initial efforts have focused on manipulating

external (control) variables that affect the transition proba-

bilities of the network and can, therefore, be used to desirably

affect its dynamical evolution over a finite time horizon [3]

[4].

These short-term policies can change the dynamical per-

formance of the network for a small number of stages;

however, they are not necessarily effective in changing the

This work was supported in part by the National Science Foundation
(ECS- 0355227, CCF-0514644 & ECCS-0701531), the National Cancer
Institute (R01 CA-104620, & CA-90301) and the Translational Genomics
Research Institute.

G. Vahedi, B. Faryabi, J.F. Chamberland, A. Datta are with Depart-
ment of Electrical and Computer Engineering, Texas A&M University,
College Station, TX 77843 golnaz, bfariabi, chmbrlnd,
datta@ece.tamu.edu

E. Dougherty is with Department of Electrical and Computer Engineering,
Texas A&M University, College Station, TX 77843 and Computational
Biology Division, Translational Genomics Research Institute, Phoenix, AZ
85004 edward@ece.tamu.edu

steady-state behavior of a PBN. To address this issue, the

theory of infinite-horizon optimal stochastic control has been

employed to find stationary policies that affect the steady-

state distributions of PBN [5]. An optimum stationary policy

can be found using dynamic programming. In general, the

direct application of optimal control methods is limited by

the size of the state-space – this is known as the curse of

dimensionality [6]. In our scenario, the complexity of these

methods increases exponentially with the number of genes

included in the model. Therefore, they can only be applied

to small network models.

For larger biological models involving interactions among

many genes, a stochastic control method that has less com-

plexity is needed. To this end, we proposed two methods in

[7] and [8]. In [7], we proposed an approximate stochas-

tic control policy based on reinforcement learning (RL)

methods. More specifically, Q-learning is employed to over-

come the curse of dimensionality. The proposed approximate

method assigns a stationary control policy which is called the

RL control policy. The RL control policy yields an effective

stationary policy, while possessing constant complexity with

respect to the number of genes [7]. In [8], we proposed an

algorithm based on mean first-passage times (MFPT) and

referred to it as the MFPT algorithm. The MFPT algorithm

assigns a stationary control policy, called the MFPT control

policy, that reduces the likelihood of being in undesirable

states. We showed that to reduce the complexity of the

optimal stochastic control problem, the MFPT control policy

can be used as an approximate solution.

A salient feature in both methods ([7] and [8]) is that

they are model-free, i.e. they do not require the perfect

knowledge of all system’s parameters. Traditionally, the

proposed intervention methods for PBNs have been model

dependent, requiring at least knowledge of the transition

probability matrix. This can be derived from the PBN if

the latter is known. Since in practice PBNs are not known

except via system identification from experimental data, one

is faced with a difficult inference problem [9]. This problem

can be avoided by directly inferring the transition probability

matrix; however, this is still a formidable task because the

complexity of estimating the transition probabilities of a

Markov chain increases exponentially with the number of

genes in the model.

When time-course data are available, the RL and MFPT

control policies can be implemented directly from the data

points. In the RL method, the value of the Q-factor for a

state-control pair is updated whenever a transition occurs in

the system, given the control is selected randomly among all

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

WeC04.5

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 1394

the possible controls [7]. The MFPT control policy can be

designed based on estimates of the mean first-passage times

from the time-course data [8]. These model-free intervention

methods have low complexity, are robust to modeling errors,

and are adaptive to changes in the underlying biological

system.

In this work, we compare the RL and MFPT methods.

Numerical results suggest that for a limited amount of time-

course data the approximation by the MFPT control policy is

more accurate than the RL control policy. The performance

of the RL-based algorithm becomes superior upon increasing

the size of the training data. We discuss the necessary random

application of control in the learning phase of the RL algo-

rithm as another disadvantage of the RL control policy. The

paper is organized as follows. We give necessary definitions

and introduce the RL and MFPT policies in Section II.

Comparative simulation results are presented in Section III

and Section IV contains some concluding remarks.

II. BACKGROUND

A. Probabilistic Boolean Networks

A context-sensitive probabilistic Boolean network (PBN)

consists of a sequence V = {xi}
n
i=1, of n nodes, where

xi ∈ {0, 1}, and a sequence {fl}
k
l=1 of vector-valued

functions, called predictor functions. In the framework of

gene regulation, each xi represents the expression value of

a gene. Every vector-valued function fl, which has the form

of fl = (fl1, . . . , fln), determines a constituent network of

the context-sensitive PBN. The function fli : {0, 1}n →
{0, 1} is a predictor of gene i, whenever network l is

selected. At each time step, the context is switched with

probability q. If the network is not switched, then the context-

sensitive PBN behaves as a fixed network and synchronously

updates the values of all the genes according to the current

predictor function. If it is decided that the network should be

switched, a predictor function is randomly selected according

to a distribution {r1, . . . , rk}. After selecting the predictor

function fl, the values of genes are updated accordingly, that

is, according to the network determined by fl. We consider

context-sensitive PBNs with perturbations. Each gene may

change its value with small perturbation probability p at

every time step.

The gene-activity profile (GAP) is an n-digit binary vector

x(t) = (x1(t), . . . , xn(t)) giving the expression values of

genes at time t where xi ∈ {0, 1}. There is a natural bijection

between the GAP (x(t)) and its decimal representation zt

which takes values from 0 to 2n − 1.

In the presence of external controls, we suppose that

the PBN has m binary control inputs: c1(t), . . . , cm(t). A

control ci(t) takes values in {0, 1} at each dynamical step

t. The decimal bijection of the control vector, u(t) ∈ C =
{0, 1, . . . , 2m−1}, describes the complete status of all the

control inputs. It is worthwhile to note that biological or

economic considerations will likely constrain us to use only

one treatment at a time. Hence in this work, we focus on the

application of one gene as a control.

The system evolution can be modeled by the equation:

zt+1 = f(zt, ut, wt) for t = 0, 1, . . .

where the state zt is an element of the state-space S =
{0, 1, . . . 2n − 1}. The disturbance wt is the manifestation

of uncertainties in the context-sensitive PBN. The PBN is

then modeled as a Markov chain with 2n states where the

state zt at any time step t is the decimal bijection of the

GAP. Originating from a state i, the successor state j is

selected randomly within the set S according to the transition

probability pij(u):

pij(u)
△
= P (zt+1 = j|zt = i, ut = u)

for all i and j in S, and for all u in C. Gene perturbation

insures that all the states in the Markov chain communicate

with each other. Hence, the finite-state Markov chain has a

unique steady-state distribution [1].

B. Optimal Intervention

A cost-per-stage, g(i, u, j), is associated to each interven-

tion in the system. A cost-per-stage depends on the origin

state i, the successor state j, and the control input u. We

assume the cost-per-stage is stationary and bounded for all

i, j, and u. We define the expected immediate cost in state

i, when control u is selected, by

g(i, u) =
∑

j∈S

pij(u) g(i, u, j).

To define the expected total cost, we consider a discounted

cost formulation. The discounting factor, α ∈ (0, 1), insures

the convergence of the expected total cost over the long-

run [6]. Including a discounting factor in the expected total

cost signifies that the incurred cost at a later time is less

significant than the incurred cost at an earlier time. In the

case of cancer therapy, the discounting factor emphasizes that

obtaining treatment at an earlier stage is better than doing

so at a later stage since the former brings about a larger cost

reduction.

Among all admissible policies Π, the infinite-horizon opti-

mal stochastic control methodology finds a policy π = {µ0

, µ1, . . .}, where µt : S → C is the decision rule at time step

t that minimizes the expected total discounted cost.

The infinite-horizon expected total discounted cost, given

the policy π and the initial state i, is

Jπ(i) = lim
N→∞

E

{
N−1∑

t=0

αt g(i, µt(i), j)

}
. (1)

The vector of accumulated cost, J = (J(1), . . . , J(|S|)), is

called the value function. We seek a policy that minimizes the

value function for each state i. The optimal value function,

J
∗, is a solution to the infinite-horizon optimal stochastic

control with discounted cost:

J∗(i) = min
π∈Π

Jπ(i), ∀ i ∈ S. (2)

A stationary policy is an admissible policy of the form

π = {µ, µ, . . .}. The vector Jµ denotes its corresponding

1395

value function. The stationary policy π is optimal if Jµ(i) =
J∗(i) for any state i. It is known that an optimal stationary

policy exists for the discounted infinite-horizon stochastic

optimal control problem, and it is given by the fixed-point

solution of the Bellman optimality equation [6]. A dynamic

programming algorithm is used to iteratively find the fixed

point of the Bellman optimality equation. At each iteration

the value function must be computed for all states in the

state-space. Hence, the computational complexity of the

method increases exponentially with the number of genes

present in the system model.

C. Reinforcement Learning Control Policy

Using the definition of expected immediate cost, the

Bellman optimality equation can be rewritten as follows: for

each state i ∈ S,

J∗(i) = min
u∈ C

[
2n

−1∑

j=0

pij(u)

(
g(i, u, j) + α J∗(j)

)]
.

Accordingly, we can define the Q-factor for each state-

control pair (i, u) by

Q(i, u)
△
=

2n

−1∑

j=0

pij(u)

(
g(i, u, j) + α J∗(j)

)
. (3)

The relation between the optimal value function of a state

i and the Q-factors of the same state is given by

J∗(i) = min
u∈ C

Q(i, u).

To compute the Q-factor iteratively, the Bellman optimal-

ity equation can be written for the Q-factor as

Q(i, u) =

2n

−1∑

j=0

pij(u)

[
g(i, u, j) + α min

u′∈ C
Q(j, u′)

]
. (4)

Using the Q-factor, one can rewrite the value iteration

algorithm [7] in a meaningful form. Estimation of the Q-

factor becomes the objective of the value iteration algorithm.

Q-factor can be expressed as the expected value of a random

variable Ψ(i, u). Equation (3) can be rewritten as

Q(i, u) = E

[
g(i, u, j) + α min

u′∈ C
Q(j, u′)

]
= E

[
Ψ(i, u)

]
.

If the samples of Ψ(i, u) are generated using a system

simulator, then one can estimate its expected value. Let

Ψk(i, u) =

∑k

i=1 ψi

k

denote the empirical average of Ψ(i, u) using k samples,

where ψi is the ith sample of the random variable Ψ(i, u).
Upon a new observation of Ψ(i, u), the value of Ψk(i, u)
can be updated by

Ψk+1(i, u) = Ψk(i, u)−
Ψk(i, u)

k + 1
+
ψk+1

k + 1
.

If αk+1 = 1
k+1 , then

Ψk+1(i, u) = Ψk(i, u)
(
1− αk+1

)
+ αk+1ψk+1.

Hence, given a new system observation, the Q-factor is

iteratively updated for the specific state-control pair (i, u)
according to the following rule:

Q(k+1)(i, u)←− (1− α)Q(k)(i, u)+

α

[
g(i, u, j) + α min

u′∈ C
Q(k)(j, u′)

]
.

(5)

The revised value iteration algorithm in which the Q-

factors are updated according to (5) is called the Q-learning

algorithm [10]. The Q-learning algorithm is summarized as

Algorithm 1. Since the updating rule of (5) is invariant

with regard to the transition probabilities of the system, the

Q-learning procedure is a model-free algorithm. In the Q-

learning algorithm, the value of the Q-factor for a state-

control pair (i, u) is updated whenever a transition from state

i to state j occurs in the system simulator, given the control

u is selected randomly among all the possible controls. The

term v(i, u) denotes the number of times the state-control

pair (i, u) is visited. We define the step-size αk equal to

C/k, where C is a positive constant in the interval (0, 1) and

k is v(i, u), whenever the state-control pair (i, u) occurs.

In the Q-learning algorithm, the system simulator gener-

ates trajectories of state-control pairs; hence some Q-factors

may be updated more often than others. An appropriate step-

size αk is needed to guarantee the convergence of the Q-

learning algorithm to the optimal control strategy despite the

asynchronous updating of the Q-factors [10]. Several step-

sizes are proposed with the general form C
a+k

, where C and

a can be any positive constants [10]. As a general rule, the

step-size should be small, and diminish to zero at a suitable

rate [11]. Here, we assumed a simple form for the step-size

inspired mainly by the argument that the ensemble average

can be estimated using the time average of the sample data.

Once the RL control policy is found by the Q-learning

algorithm, it can be applied to the controlled system to affect

the steady-state distribution of the network. In algorithm (1),

the complexity of each iteration is O(1) with respect to n.

Hence, Q-learning runs in constant complexity with respect

to the number of genes in the network.

If all the state-control pairs (i, u) are visited infinitely

often, then for each state-control pair the estimated ex-

pected value, Ψk(i, u), converges to its ensemble average

E
[
Ψ(i, u)

]
with probability one. Hence, we expect that an

approximate stationary policy computed by the Q-learning

algorithm converges to the optimal stationary policy. The

convergence of the approximate stationary policy to the

optimal stationary policy is proved in [11], and the numerical

results in [7] illustrate this fact for a special case. The

learning duration of the Q-learning algorithm should increase

as the number of genes in the network increases in order to

obtain an approximate stationary policy close to the optimal

stationary policy. Therefore, the Q-learning algorithm, as any

other learning algorithm, may not be suitable for very large

networks.

1396

Algorithm 1 Q-learning algorithm

Q(i, u)← 0 for all i ∈ S, u ∈ C
v(i, u)← 0 for all i ∈ S, u ∈ C
Setting 0 < C < 1
Setting kmax

Selecting an arbitrary initial state i.
for k = 0 to kmax do

Control selection: Selecting control u ∈ C randomly,

given the current state is i.
Extracting information from system’s simulator:

According to the transition in the system simulator, the

successor state j as well as the earned cost-per-stage

g(i, u, j) are determined in a transition from state i to

state j under control u. Hence, the following updates

are performed:

v(i, u)← v(i, u) + 1
α← C

v(i,u) .

Updating Q(i, u) : The value of Q(i, u) is updated

according to (5).

Q(i, u)← (1−α)Q(i, u)+α

[
g(i, u, j) + α min

u′∈ C
Q(j, u′)

]

Setting i← j
end for

Finding the suboptimal policy: Choose the suboptimal

policy for all i ∈ S

µ(i) = arg min
u∈ C

Q(i, u)

D. Mean First-Passage Time Control Policy

The state space of a PBN can be partitioned into subsets

of “desirable” and “undesirable” states. Without loss of gen-

erality, one can assume that P , the Markov chain transition

probability matrix, can be accordingly partitioned as follows:

P =

(
PD,D PD,U

PU,D PU,U

)
,

where D and U are the subsets of desirable and undesirable

states, respectively.

The mean first-passage time vectors are computed by

solving the following linear system of equations [12]:

KU = e+ PD,D ·KU , (6)

KD = e+ PU ,U ·KD, (7)

where e is a column vector of ones with appropriate length,

KU is a vector containing the mean first-passage times from

each state in D to U , and KD is a vector containing the mean

first-passage times from each state in U to D. The proposed

algorithm finds the MFPT control policy µg based on mean

first-passage times for each control gene g.

When the network consists of n genes, there are 2n states

and µg is a vector of size 2n. The value of µg(x) represents

the stationary control policy of state x. Having µg(x) = 0
signifies that whenever the PBN reaches state x, no control

is applied and the system continues its progression based

on the transition probabilities of state x. Having µg(x) = 1
means whenever the PBN reaches state x, the control should

be applied. The system then continues its progression based

on the transition probabilities of state x̃, which is the flipped

state of x when control is applied to gene g. Algorithm 2

summarizes the proposed procedure. The complexity of the

MFPT algorithm, which consists of two matrix inversions,

is O(23n).

Algorithm 2 MFPT algorithm

Partition the state-space into undesirable U and desirable

D subsets.

Compute KU and KD.

Select the control gene g .

for All states x in U do

x̃← flip control gene g in x.

if KD(x) > KD(x̃) then

µg(x) = 1;

else

µg(x) = 0;

end if

end for

for All states x in D do

x̃← flip control gene g in x.

if KU(x̃) > KU(x) then

µg(x) = 1;

else

µg(x) = 0;

end if

end for

When time-course data are available, the MFPT algorithm

can be implemented by directly estimating the mean first-

passage times. The estimated mean first-passage times are

used to construct the matrices of the mean first-passage

times, KU and KD . The MFPT algorithm can then be

applied to the estimated matrices KU and KD to devise a

model-free MFPT control policy. Similar to the Q-learning

algorithm, the model-free MFPT algorithm runs in constant

time complexity with respect to the number of genes in the

network.

An advantage to the model-free approach is that the

estimated matrices KU and KD can be updated whenever

new time-course data become available. The possibility of

updating the estimated mean first-passage times enables the

MFPT algorithm to adapt its control policy to the status of

gene interactions. Similar to the Q-learning algorithm, the

learning duration of the MFPT algorithm should increase as

the number of genes in the network increases in order to

obtain an approximate stationary policy close to the optimal

stationary policy.

III. RESULTS AND DISCUSSION

In this section, we first apply the RL and MFTP policies

to control a network relating to metastasis in melanoma and

compare the performance of the two methods to that of the

1397

optimal control. We also study the average performance of

these RL and MFTP policies for random PBNs.

In the first study, we consider a ten-gene network con-

sisting of WNT5A, Pirin, S100P, RET1, MMP3, PHOC,

MART1, HADHB, Synuclein, and STC2. The above order of

genes is used in the binary representation of the gene-activity

profile, with WNT5A as the most significant bit and STC2

as the least significant bit. The abundance of mRNA for the

gene WNT5A has been found to be highly discriminating

between cells with properties typically associated with high

versus low metastatic competence [13]. This motivates us

to select WNT5A as the target gene. Hence, the state-

space is partitioned to desirable states with down-regulated

WNT5A and undesirable states with up-regulated WNT5A.

A modification of the algorithm described in [14] is used

to infer ten Boolean networks that constitute the context-

sensitive PBN. Interactions among genes of one of these

Boolean networks is shown in Fig. ??.

Fig. 1. This is the regulatory graph of one Boolean network that
corresponds to WNT5A experiment.

Control of the PBN resembles a therapeutical situation in

which the goal of the control is to reduce the likelihood of

reaching undesirable states. In order to define the context-

sensitive PBN, the switching probability, the perturbation

probability, and probability of selecting each constituent

Boolean network are assumed to be known. In the case of

time-course data, these probabilities can be inferred [9].

We postulate an appropriate cost-per-stage function. The

undesirable states are assigned higher cost compared to the

desirable states. For fair comparison of the two algorithms,

the cost of control is considered negligible compared to the

cost of undesirable states. In practice, the assigned values

have to capture the benefits and costs of the intervention

and the relative preference of the states. They have to be

set in consultation with physicians relying on their clinical

judgement.

Having the down-regulation of WNT5A as the objective,

we apply the RL and MFPT control policies described in

Algorithms 1 and 2 to the inferred context-sensitive PBN.

Here, we only consider a single control. Pirin has been

chosen as the control gene [7]. If the control is high, u = 1,

then the state of gene Pirin is reversed; if u = 0, then the

state of Pirin remains unchanged.

We define ∆P to be the percentage change in the ag-

gregated probability of the states with WNT5A= 1 before

and after the intervention. As a performance measure, ∆P opt,

∆P RL, and ∆PMFPT indicate the percentages of reduction in

the total probability of the undesirable states in the steady

state when the optimal, RL, and MFPT control policies are

applied, respectively.

We generate time-course data for 106 time-steps from

the existing model. We apply RL and MFPT policies after

each 10k time-steps, for k = 3, . . . , 6. Hence, ∆P RL and

∆PMFPT are functions of the learning duration. On the other

hand, ∆P opt is computed from the original PBN by directly

solving the dynamic programming problem. Fig. 2 shows

∆P opt − ∆P RL and ∆P opt − ∆PMFPT as a function of the

logarithm of the learning duration. After 103 time-course

data points, ∆P opt −∆PMFPT is 0.114 while ∆P opt −∆P RL

is 0.166. In particular, for lower numbers of observations,

which corresponds better to feasible experimental conditions,

the approximation by the MFPT algorithm outperforms the

RL-based algorithm. On the other hand, after 106 time-course

data points, ∆P opt −∆PMFPT is 0.003 while ∆P opt −∆P RL

is 0.002. As the size of the training data increases, the

performance of the RL-based algorithm overtakes the one

for the MFPT algorithm.

3 4 5 6
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

log(learning duration)

D
if
fe

re
n

c
e

 b
e

tw
e

e
n

 t
h

e
 s

h
if
ts

∆ P
opt

−∆ P
MFPT

∆ P
opt

−∆ P
RL

Fig. 2. ∆P
opt

− ∆P
RL and ∆P

opt
− ∆P

MFPT as a function of the log of
the learning duration.

As we mentioned earlier, in Q-learning the value of the

Q-factor for a state-control pair (i, u) is updated given the

control u is selected randomly among all the possible con-

trols. To this end, in the RL-based algorithm, the two possible

values of control, u ∈ {0, 1}, should be applied to the model

with equal probability. In contrast, the MFPT algorithm

does not require any application of the control for obtaining

the MFPT control policy. This is another advantage of the

MFPT method over the RL method when the application of

the external control may induce undesirable side-effects in

biological systems.

We also study the performance of these two methods for

random PBNs. We generate 1000 random PBNs. For each

1398

PBN, time course data is generated as we explained earlier

for 102 to 105 observations. The average of ∆P opt −∆P RL

and ∆P opt−∆PMFPT is shown in Fig.3. The study on random

PBNs confirms our observation in the melanoma case study.

2 2.5 3 3.5 4 4.5 5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

log(learning duration)

d
if
fe

re
n
c
e
 b

e
tw

e
e
n
 t
h
e
 s

h
if
ts

 (
ra

n
d
o
m

 n
e
tw

o
rk

s
)

∆ P
opt

−∆ P
MFPT

∆ P
opt

−∆ P
RL

Fig. 3. Simulation studies for random PBNs: ∆P
opt

−∆P
RL and ∆P

opt
−

∆P
MFPT as a function of the log of the learning duration.

IV. CONCLUSION

In this work, we compared the performance and the com-

plexity of the reinforcement-learning and mean first-passage

time methods using both a melanoma-related network and

randomly generated networks. These two methods have been

suggested earlier but never compared. We employed both

methods in a model-free fashion. These model-free interven-

tion methods have low complexity, are robust to modeling

errors, and are adaptive to changes in the underlying bio-

logical system. We showed that the MFPT control policy

outperforms the RL control policy for smaller numbers of

training data. As the size of the training data increases, the

RL-based algorithm performs better. The current definition

of the MFPT algorithm does not take into account the cost of

control. Therefore, the presented comparison is valid when

the cost of control is negligible compared to the cost of

undesirable states. Further study is being pursued to analyze

the effect of the cost of control on the performance of both

algorithms.

REFERENCES

[1] I. Shmulevich, E. R. Dougherty, and W. Zhang, “Gene perturbation
and intervention in probabilistic boolean networks,” Bioinformatics,
vol. 18, no. 10, pp. 1319–1331, 2002.

[2] I. Shmulevich, E. R. Dougherty, S. Kim, and W. Zhang, “Probabilistic
boolean networks: a rule-based uncertainty model for gene regulatory
networks,” Bioinformatics, vol. 18, no. 2, pp. 261–274, 2002.

[3] A. Datta, A. Choudhary, M. Bittner, and E. R. Dougherty, “External
control in markovian genetic regulatory networks,” Machine Learning,
vol. 52, no. 1/2, pp. 169–191, 2003.

[4] A. Datta, R. Pal, and E. R. Dougherty, “Intervention in probabilistic
gene regulatory networks,” Current Bioinformatics, vol. 1, no. 2, pp.
167–184, 2006.

[5] R. Pal, A. Datta, and E. R. Dougherty, “Optimal infinite-horizon
control for probabilistic boolean networks,” IEEE Trans. on Signal

Processing, vol. 54, no. 6, pp. 2375–2387, 2006.

[6] D. P. Bertsekas, Dynamic Programming and Optimal Control, Athena
Scientific, Belmont, MA, 2001.

[7] B. Faryabi, A. Datta, and E. Dougherty, “On approximate stochastic
control in genetic regulatory networks,” IET Systems Biology, vol. 1,
no. 6, pp. 361–368, 2007.

[8] G. Vahedi, B. Faryabi, J.F. Chamberland, A. Datta, and E.R.
Dougherty, “Intervention in gene regulatory networks via a stationary
mean-first-passage-time control policy,” submitted to IEEE Transac-

tions on Biomedical Engineering, 2007.
[9] S. Marshall, L. Yu, Y. Xiao, and E. R. Dougherty, “Inference of

a probabilistic Boolean network from a single observed temporal
sequence,” EURASIP Journal on Bioinformatics and Systems Biology,
vol. 2007, pp. 32454–32569, 2007.

[10] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynammic Programming,
Athena Scientific, Belmont, MA, 1996.

[11] J. N. Tsitsiklis, “Asynchronous stochastic approximation and q-
learning,” Machine Learning, vol. 16, no. 3, pp. 185–202, 1994.

[12] T. Dayar and N. Akar, “Computing moments of first passage times
to a subset of states in markov chains,” SIAM J. Matrix Anal. Appl.,
vol. 27, no. 2, pp. 396–412, 2005.

[13] M. Bittner, P. Meltzer, and et. al, “Molecular classification of
cutaneous malignant melanoma by gene expression profiling,” Nature,
vol. 406, no. 6795, pp. 536–450, 2000.

[14] R. Pal, I. Ivanov, A. Datta, M. Bittner, and E. R. Dougherty,
“Generating boolean networks with a prescribed attractor structure,”
Bioinformatics, vol. 21, no. 21, pp. 4021–4025, 2005.

1399

