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Abstract— This paper focuses on the management of
mobile sensor agents for the search and tracking of multiple
objects of interest. In the case where such objects are in
greater numbers than available agents, search and tracking
are two competing demands since a sensor agent can perform
either the tracking mission or the search mission, but not
both at the same time. A sensor agent has to decide on
whether to continue searching or stop and track once it finds
an object of interest. Based on a novel dynamic awareness
model and assuming static objects, a decision-making and
control strategy is developed to guarantee the full coverage
of a domain of interest, and, equivalently, the detection of all
objects of interest in the domain with probability one. The
strategy also guarantees the tracking of each object’s “state”
for a minimum guaranteed amount of time τc. Centralized
and decentralized implementations are described. Numerical
simulations are provided to demonstrate the performance of
the strategies.

I. INTRODUCTION

This paper focuses on the management of mobile sen-

sor agents for the search and tracking of multiple objects

of interest, whose number is unknown beforehand, over a

given domain. There are two basic tasks in such a problem.

The first task is the search task, where the goal is to detect

each object of interest and fix its position in space and

time for dynamic objects. The second task is the tracking

task, where the goal is to observe each found object for a

desired critical minimum amount of time, after which the

desired amount of information about the object has been

collected. In the case where such objects are possibly in

greater numbers than available sensor agents, search and

tracking are two competing demands. This is because a

sensor agent can perform either the tracking mission or

the search mission, but not both at the same time (search

requires mobility and tracking requires neighboring the

object). Hence, a sensor agent has to decide whether to

continue searching or switch to object tracking once it

finds an object of interest. In this work, we define search

and tracking metrics that are used for this decision making

process.

Inspired by work on particle filtering, in [1] the authors

develop a sensor based approach for object tracking. The

control goal is to minimize the error in tracking the

objects’ positions. In [2], a distributed sequential auction

scheme is presented for a multi-robot search and destroy
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operation. Local communications between neighbors are

allowed and the shared information is used to make the

decision. The control goal is to allocate an agent to an

object and complete the mission in minimum time. In

[3], the control goal is to maximize the total number of

observed objects and the amount of observation time of

each.

In this paper, we introduce a novel “awareness-based”

formulation that is naturally susceptible to analytic tools

from systems and control theory. This model describes

how “aware” the agent fleet is of events over a given

domain. This formulation can be applied to a wide variety

of problems, including large-scale and complex domains,

that may be disconnected (surveillance over adversarial

pockets in a region), or hybrid discrete and continuous

(surveillance over urban environments and inside build-

ings, where roads and hallways are the continuous part of

the domain, and buildings and rooms are discrete nodes).

A predecessor to this awareness-based formulation is

the effective coverage control formulation [4], [5], [6].

In effective coverage control, the goal is to survey a

given domain such that each point in the domain is sat-

isfactorily sampled using a network of dynamic, limited-

range, sensor-equipped agents. In [4], [5], [6], coverage

control strategies (that also included flocking and collision

avoidance) were developed. In the effective coverage

formulation, information to be observed or monitored is

assumed static in nature.

The awareness formulation discussed in this paper

allows for the analysis of the more general setting where

information and events are dynamic in nature. Under

appropriate assumptions, in this paper, centralized and de-

centralized control strategies are proposed that guarantee

the detection of all objects in the domain. Each object is

also guaranteed to be tracked, and a lower bound on the

amount of tracking time is provided for both centralized

and decentralized implementations.

The paper is organized as follows. In Section II,

we present a novel dynamic model for the notion of

“awareness” over a domain, a limited-range sensor model

is discussed, and search and tracking metrics are defined.

In Section III, we develop centralized and decentralized

decision-making strategies. This paper is concluded with

a summary of the paper in Section IV.

II. PROBLEM FORMULATION

A. Setup and Sensor Model

In the search task, all objects of interest in a search

domain are required to be found. In the tracking task, each
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found object has to be tracked for an amount of time equal

to τc, which is the critical minimum information collection

time that is needed to characterize the state of an object.

Characteristics of interest for immobile objects may be

geometric shape, classification and categorization, and/or

nature of electromagnetic emissions. For mobile objects,

this may also included position and velocity information

to predict the motion of the object while it is not being

tracked. This paper focuses on the static object case and

future research will focus on mobile objects of interest.

Let D be a domain in which objects are to be found

and tracked. Let No ≥ 0 be the number of these objects.

Both No and the locations of the objects in D are unknown

beforehand. Let Na be the number of autonomous sensor

agents. At time t, let the set A = S(t) ∪ T (t) =
{1, . . . , Na}, which is the set of indices of all the agents

in the sensor fleet, and where the set S(t) contains indices

of agents carrying out the search mission, and where the

set T (t) contains indices of agents carrying out an object

tracking mission. In this paper, we will assume that agents

can either be searching or tracking at any instant time t,
but not both simultaneously, and therefore the sets S(t)
and T (t) are disjoint for all t. Initially, we assume that all

agents are in S(t). When a search agent detects an object

and decides to track its state, this search agent turns into

a tracking agent and, hence, there is one fewer agent in

the set S(t) and one more agent in the set T (t).
Assuming some search versus tracking decision mak-

ing strategy that guarantees coverage of the entire domain

and that avoids the assignment of multiple agents for the

tracking of a single object, for the case when No ≤ Na,

after a certain amount of time, each object will be guar-

anteed to be detected and its state permanently tracked by

some agent. However, for the worst case scenario where

No > Na and with a poor choice of decision making

strategy, one may end up with S(t) = ∅ while there may

still exist unfound objects. For example, a strategy where

once an object is found it is tracked for all time from that

point forward would likely lead to some objects never

being detected when there are more objects than agents.

In this paper, we investigate strategies that guarantee that

each object will be found and tracked, especially for the

worst case scenario, while simultaneously providing a

lower bound for the amount of tracking time.

Let the position of the static object Oj , j ∈
{1, 2, . . . , No}, be pj , which is not known beforehand.

Each agent Ai satisfies the following kinematic equation

q̇i = ui,

where ui ∈ R
2 is the velocity of agent Ai. This is a

simplified model and the results may be extended to agents

with second order nonlinear dynamics evolving on more

complex configuration manifolds.

In this work, the word “sensor” refers to the sensor

used for the search process. The specific sensor used for

tracking the state of an object is not of primary interest

in this work. A key feature of the proposed approach
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Fig. 1. Instantaneous coverage function Ai with qi = 0, Mi = 1 and
ri = 2.

is that the sensor may have a limited range. Existing

research in the literature on cooperative sensor coverage

control for the redeployment problem usually assumes

that the sensors have an infinite range. This is especially

true for work within the stochastic framework (see, for

example, [7]) that assumes Gaussian distributions with

infinite sensor ranges. This assumption is not required

here. This is very important in applications where D is

large-scale (i.e., too large to be covered by a single set of

static sensor agents).

Without loss of generality, here we assume a sensor

model that is a fourth order polynomial function of s =
‖qi − q̃‖ within the sensor range and zero otherwise:

Ai(s) =

{
Mi

r4
i

(
s2 − r2

i

)2
if s ≤ ri

0 if s > ri

. (1)

The function Ai : D × Q → R
+, where R

+ = {a ∈ R :
a ≥ 0}, is the instantaneous sensor coverage function.

It is a positive semi-definite function that describes the

quality of the measurement made at a point q̃ ∈ D.

Note that each sensor has a limited domain Wi(t) =
{q̃ ∈ D : ‖qi(t) − q̃‖ ≤ ri} with range ri, peak sensing

capacity Mi exactly at the sensor location qi, and a sens-

ing capability that degrades with range. We assume that

Wi(t) has a rigid boundary. The instantaneous coverage

function in equation (1) is shown in Figure 1. This sensor

model is a simplified planar radar sensor model similar to

that used in [8]. Other sensor models may be considered.

For example, in [9] the authors consider a vision based

sensor model that is also similar to the one which com-

bines vision and ultrasonic sensing used in [10]. For a

vision-based sensor model applied to a three-dimensional

configuration space scenario with 9 viewpoints, see [11].

Such a sensor (which has directionality) may easily be

applied in this work.

B. Awareness Model

We first define an individual agent’s state of awareness,

which is a distribution xi(q̃, t) R
2 × R → R. Below,

xi(q̃, t) ≤ 0 implies that xi is negative for every q̃ ∈ D.

The state of awareness xi(q̃, t) is defined to be a measure

of how “aware” the agent is of events occurring at a

specific location q̃ at time t. Fixing a point q̃ ∈ D, the

state of awareness of an agent Ai is assumed to satisfy
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the following differential equation

ẋi(q̃, t) = − (Ai(‖q̃ − qi‖) − α)xi(q̃, t),

xi(q̃, 0) = xi0 = −1, (2)

where i ∈ A(t). The constant parameter 0 < α < Ai

models an “awareness loss” bath.

Note that under the awareness dynamics (2), the max-

imum value attainable by xi is 0 if the initial awareness

level is negative. If xi(q̃, t) < 0 then the agent has a

less than desired awareness level. The desired awareness

level is the equilibrium state xi(q̃, t) = 0. If xi(q̃, t) > 0
then the agent has an excessive awareness level. The ini-

tial “awareness” distribution xi0(q̃) is assumed negative,

reflecting the fact that at the outset of the surveillance

mission the fleet has poor awareness levels. To reflect

the difficulty of object detection one simply sets a more

negative value for xi0(q̃).
The easier the detection process is, the larger the

negative value of xi0(q̃) can be set. The distribution

xi0(q̃) may also be nonuniform to reflect regions where

objects may be able to camouflage themselves better than

in other regions of D (e.g., dense forests versus open

fields).

The state of awareness of the set of search agents S(t)
in surveying q̃ then satisfies the differential equation

ẋ(q̃, t) = −








∑

i∈S(t)

Ai(‖q̃ − qi‖)



 − α



x(q̃, t),

x(q̃, 0) = x0 = −1, (3)

where
∑

i∈S(t) Ai(‖q̃ − qi‖) is the total instantaneous

coverage achieved by all the agents in the set S(t) at

time t. If one wishes to consider the state of awareness

achieved by a set K ⊂ S, then one can use equation (3) but

summing only over elements in K. Note that xi ≤ x. That

is, the overall awareness of the sensors in a centralized

system is better than that of the individual sensors in a

decentralized system.

One can define the decentralized awareness error as-

sociated with search agent Ai to be

ei
Wi

(t) =

∫

Wi(t)

x
2
i (q̃, t)dq̃. (4)

This is a decentralized awareness metric associated with

agent Ai that reflects the quality of the state of awareness

within Wi(t) achieved by agent Ai alone. This metric will

be used to develop the control law for the decentralized

search and tracking problem. Moreover, define the cen-

tralized awareness metric associated with the entire search

fleet S(t) by

eWi
(t) =

∫

Wi(t)

x
2(q̃, t)dq̃. (5)

This is a centralized awareness metric associated with

agent Ai that reflects the quality of the state of awareness

within Wi(t) achieved by all vehicles in S. This metric

will be used to develop the control law for the centralized

search and tracking problem.

C. Search and Tracking Metrics under Condition of No

Information Loss

For the purpose of this section and the remainder of

the paper, we make the following assumption.

Assumption II.1. There is no information loss where

sensors do not exist. That is, assume that α = 0.

This assumption indicates that the awareness states

have no inherent/direct time dependence, and are only

influenced by the actions of sensing and tracking platforms

and target locations in the mission domain D.

The cost associated with a decision not to carry out

further searching, J1(t), is chosen to be proportional to

the size of the un-searched domain. Here, we assume a

uniform probability distribution for the locations of objects

in D, hence, J1(t) is proportional to the probability of

finding another object beyond time t. The cost associated

with a decision not to track found objects, J2(t), is chosen

to be proportional to the time spent not tracking the state

of a found object.

We define the search cost function to be

J1(t) =
e(t)

emax
, (6)

where

e(t) =

∫

D

x
2(q̃, t)dq̃, (7)

is the global error over the entire mission domain achieved

by the whole vehicle fleet. Under Assumption II.1 and

considering a uniform probability distribution for the

locations of the objects in D, the maximum actual error

is given by

emax = e(0) = Area of D

because xi0 = −1. According to this definition, we have

0 ≤ J1(t) ≤ 1. Initially, J1(0) = 1 describes the fact

that we know with probability 1 that there exists at least

one object which has not been detected. This comes from

the assumption that No > 0. If No happens to be zero,

assuming that there exists at least one object of interest

over the domain will guarantee verifying that there is

none. Under Assumption II.1, when J1(ts) = 0 for some

time ts > 0, the entire domain has been satisfactorily

covered and we know that there are no objects yet to

be found. At this point, the search process is said to be

completed.

For the tracking metric J2(t), let N̄o(t) ≤ No be the

number of objects found by the sensor fleet up to time t.
Define the tracking cost function J2(t) to be

J2(t) =

∫ t

0

N̄o(t)∑

j=1

gj(t)dτ, (8)

where

gj(t) =

{
1 if pj(t) /∈ Wi(t) for all i ∈ A
0 if pj(t) ∈ Wi(t) for some i ∈ A.

If a search agent detects an object Oj a function gj(t) is

assigned to the object (unless it has already been assigned

one if detected in the past). A value of 0 is assigned to
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gj as long as some agent tracks Oj , and the tracking cost

associated with Oj is zero. In this case, Oj will be labeled

as “assigned”. Once the search agent decides not to track

Oj , Oj is now labeled “unassigned”, and gj(t) switches

its value to 1, implying that a cost is now associated with

not tracking the found object Oj . According to Equation

(8), this cost is equal to the amount of time during which

a found object is not tracked.

A remark on the case with some information loss. If we

relax Assumption II.1, the parameter α in the awareness

model reflects loss of spatial information over time. It

essentially sets a periodicity to how often the entire area

must be re-surveyed. On the other hand, gj reflects loss of

information associated with a specific object over time. It

is important to realize this distinction between the domain-

awareness loss nature of α (and, hence, J1) and the

specific-object awareness loss nature of gj (and, hence,

J2). The case of α 6= 0, will be addressed in future work.

•

III. SEARCH VERSUS TRACKING DECISION-MAKING

Under Assumption II.1, we will consider a

search/tracking decision making strategy that guarantees,

in both its centralized and decentralized implementations,

finding all objects in D and tracking each object for some

time with a lower bound on tracking time.

A. Centralized Strategy

Since we assume that No > Na, whenever an agent

detects an object, it has to decide whether to track it or

to continue searching. If it does decide to track, it has to

decide on how much time it can afford to track before it

continues the search process. Before deriving one possible

way to determine the amount of tracking time, let us first

consider a search strategy. The goal in the search strategy

is to attain an awareness level of ‖x(q̃, t)‖ ≤ ǫ for all

q̃ ∈ D and all t ≥ ts for some ts > 0.

For the search process, we use a control law that

drives the state of lack of awareness to a neighborhood

of zero within the sensory domain. Let us first consider

the following condition, whose utility will become obvious

shortly.

Condition C1. x(q̃, t) = 0, ∀q̃ ∈ Wi(t), i ∈ A.

Lemma III.1. If for some t ≥ 0, Condition C1 holds,

then eWi
(t) = 0, i ∈ A. Conversely, if eWi

(t) = 0 for

some time t ≥ 0, then Condition C1 holds.

Proof. The proof follows directly from the definitions of

eWi
(t) and x(q̃, t). �

Consider the following centralized search control law

u
∗
i (t) =

{
ūi(t) if Condition C1 doesn′t hold for Ai ∈ Si

¯̄ui(t) if Condition C1 holds for Ai ∈ Si
(9)

where

ūi(t) = k̄i

∫

Wi(t)

x
2(q̃, t)

(∫ t

0

∂Ai(q̃,qi(σ))

∂q̃
dσ

)

︸ ︷︷ ︸

memory term

dq̃ (10)

is the nominal control law,

¯̄ui(t) = −¯̄ki(qi(t) − q̃
∗
i )

is the perturbation control law, k̄i > 0 and ¯̄ki > 0
are controller gains, and q̃

∗
i ∈ D is chosen such that

‖x(q̃, t)‖ > ǫ. An agent Ai employs the control law ūi(t)
to move in the direction that improves the local (since

integration is performed over the sensor domain Wi(t))
awareness level. If Condition C1 holds, then the linear

feedback controller ¯̄ui(t) is used to drive the agent out of

the local minimum of eWi
to some point q̃∗

i ∈ D such that

‖x(q̃∗
i , t)‖ > ǫ if such a point exist. If such q̃

∗
i does not

exist, then the search mission has been completed. The

control law u
∗
i (t) guarantees coverage of the entire do-

main D with J1(t) converging to a small neighborhood of

zero (as will be proven below). The convergence of J1(t)
to a small neighborhood of zero implies that all agents

have been found and the search process is complete. The

tracking strategy discussed below will guarantee that all

objects will be tracked for a minimum of τc amount of

time. The search control law (9) and the tracking strategy,

together, will guarantee the detection of all objects of

interest and their tracking for at least τc amount of time.

Let Dǫ(t) := {q̃ ∈ D : ‖x(q̃, t)‖ > ǫ}, which is an

open set of all points q̃ for which x(q̃, t) is smaller than

a preset value −ǫ. Let Dǫ(t) be the closure of Dǫ(t). Let

Dǫ,i(t) be the set of points in Dǫ(t) that minimize the

distance between the position vector of agent Ai, qi, and

the set Dǫ(t):

Dǫ,i(t)

=
{

q̃
∗ ∈ Dǫ(t) : q̃∗ = argmin

q̃∈Dǫ(t)
‖q̃ − qi(t)‖

}

.

If Dǫ,i(t) is empty, this means that the distribution

‖x(q̃, t)‖ < ǫ everywhere over the domain and the search

mission is complete. Note that the choice of the point q̃
∗
i

is based on centralized awareness information, which is

appropriate in the setting of this section since the control

law is centralized. The choice of q̃
∗
i will be modified for

the decentralized implementation.

A remark on the computational advantages of the

proposed search approach over possible alternative ap-

proaches. The search approach proposed herein requires

computations at the order of O(n̄2 + 2) at each time

step, where n̄ is the number of cells in the discretized

sensory domain Wi. While alternative approaches, such

as Voronoi-partitioning and stochastic-based SLAM meth-

ods, are computationally more burdensome. See [5] for

more details.

Other Remarks.

• Note that ūi relies on the properties of the sensor

coverage function Ai. Hence, the coverage control

law relies on the given sensor model to guide the
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vehicle during the coverage mission.

• In the expression for ūi(t), the time integral term

under the spatial integration is an integration of

historical data that translates into the reliance on past

search history for decision making. Note that the

memory term is multiplied by x
2(q̃, t) before being

integrated over the sensory domain at the current

time t. This indicates that historical data as well

as up-to-date awareness levels within the vehicle’s

sensor domain are compounded to decide on motion

direction and speed. •

If a search agent finds object(s) within its sensory

range, then it will track the object(s) for a T time period

from the time of detection, where

T =
τc

J1(td)
, (11)

td being the time of object detection, and where τc > 0
is the desired critical minimum amount of tracking time.

This is the amount of time that is needed to characterize

the state of an object. The larger the value of J1(td) is

(i.e., the less aware the agent is of the domain), the less

time the agent will spend tracking the state of the object.

As the degree of awareness increases at detection time, the

more time the agent spends tracking the object. Note that

J1(td) can not be zero unless the mission is completed,

at which point there is no need to compute T .

Hence, once an agent detects an object and decides to

track this particular object, it becomes a tracking agent and

will not carry out any searching for a period of T seconds.

Note that while the agent is tracking, other agents may be

searching. In the centralized implementation, the amount

of centralized system awareness x(q̃, t) is available to

all vehicles. So is the value of J1(td). We assume that

each object will only be tracked once by only one vehicle

during the mission. After a time period of T , the tracking

agent will switch back to become a search agent and leave

its tracking position to find new objects. At this point in

time, the object will be labeled “assigned” and will not

be tracked by any other agent if found.

We will now prove that the centralized search and

tracking control strategy guarantees the detection of all

objects of interest and their tracking for at least a desired

amount of time equal to τc. Let us first consider the

following lemma (see [12] for a detailed exposition),

which will be used shortly.

Lemma III.2. For any function F : R
2×R → R we have

d

dt

∫

Wi(t)

F (q̃, t)dq̃

=

∫

Wi(t)

[

(grad
q̃
F (q̃, t)) · ui +

∂F (q̃, t)

∂t

]

dq̃,

where ui is the velocity of agent Ai and grad
q̃

is the

gradient operator with respect to q̃.

Proof. This is a direct consequence of Equation (3.3) in

[12], where we note that ui is the velocity of any vector

of the rigid domain Wi. �

Theorem III.1. Under Assumption II.1, the centralized

search and tracking control strategy given by equations (9)

and (11) will guarantee that J1 converges asymptotically

to zero, which is equivalent to guaranteeing that all objects

be found. The minimum amount of time spent tracking

any object is given by τc.

Proof. Consider the function V̄i = eWi
(t). From Lemma

III.1, V̄i = 0 if and only if Condition C1 holds. According

to lemma III.2

˙̄Vi = ėW,i(t) =
d

dt

∫

Wi(t)

x
2(q̃, t)dq̃ (12)

=

∫

Wi(t)

grad(x2(q̃, t)) · ūidq̃ +

∫

Wi(t)

∂(x2(q̃, t))

∂t
dq̃.

First consider the spatial gradient term in (12):
∫

Wi(t)

grad(x2(q̃, t)) · ūidq̃ =

∫

Wi(t)

∂(x2(q̃, t))

∂q̃
· ūidq̃

= 2

∫

Wi(t)

x(q̃, t)
∂(x(q̃, t))

∂q̃
· ūidq̃.

We will derive the expression for
∂(x(q̃,t))

∂q̃
. From Equation

(3) and assuming α = 0, we have

x(q̃, t) = e−
R

t

0

P

i∈S(t) Ai(q̃,qi(σ))dσ
x0.

Hence,

∂(x(q̃, t))

∂q̃
= −

∑

i∈S(t)

x(q̃, t)

∫ t

0

∂(Ai(q̃,qi(σ)))

∂q̃
dσ.

Therefore, we have
∫

Wi(t)

grad(x2(q̃, t)) · ūidq̃ = −2
∑

i∈S(t)

∫

Wi(t)

x
2(q̃, t)

·

(∫ t

0

∂(Ai(q̃,qi(σ)))

∂q̃
dσ

)

· ūidq̃.

Substitute ūi(t) in Equation (10) into the above equation,

we obtain∫

Wi(t)

grad(x2(q̃, t)) · ūidq̃ = −k̄i

∑

i∈S(t)

[ ∫

Wi(t)

x
2(q̃, t)

·

(∫ t

0

∂(Ai(q̃,qi(σ)))

∂q̃
dσ

)

dq̃

]2

≤ 0.

Next, let us consider the integral of the time derivation

term in Equation (12). According to Equation (3) and

assuming no information loss, that is, α = 0,
∫

Wi(t)

∂(x2(q̃, t))

∂t
dq̃

= −2

∫

Wi(t)

x
2(q̃, t)

∑

i∈S(t)

Ai(‖q̃ − qi‖
2)dq̃ ≤ 0.

Therefore, ˙̄Vi ≤ 0. One can check that equality holds if

and only if Condition C1 holds.

If Condition C1 holds, the perturbation control law

is applied that moves the sensor vehicle to some point

q̃
∗
i with ‖x(q̃∗

i , t)‖ > ǫ. If no such point exists, then

the mission is completed since ‖x(q̃, t)‖ < ǫ everywhere

inside D.

If q̃
∗
i exists, by continuity of x(q̃, t) as a function of

both of its arguments (which results from the fact that
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Fig. 2. Centralized Implementation: fleet motion in the plane.

x satisfies smooth dynamics whose solution are unique,

well-defined, and continuous), then in some neighborhood

of q̃
∗
i , ‖x‖ will be greater than ǫ. Under the perturbation

control law, we will have ‖qi − q̃
∗
i ‖ < ri and, hence,

Condition C1 will not hold. At this point in time, the

control is switched back to the nominal control law. This

procedure is repeated until whenever Condition C1 holds

and there does not exist q̃
∗
i according to the criteria given

above. The non-existence of such a q̃
∗
i guarantees that

eWi
(t) is sufficiently close to zero (since ‖x‖ is smaller

than ǫ everywhere). Hence, by definition, J1 will be

guaranteed to be within a small neighborhood of zero.

The minimum tracking time comes from the fact that

once an object is found, it will be tracked for at least

τc/J1(td), td being the detection time. J1(td) assumes a

maximum value of 1 if td = 0. In the extreme scenario

where an object is found at t = 0, the value of T is exactly

τc. If an agent is found at a time other than t = 0, J1(td)
has to be less than 1 and, hence, T is greater than τc. �

Remark. For the case when No is known before hand

and No ≤ Na, under the centralized search, and assuming

that if some agent finds a target it will track this target

for all future time, each object will be guaranteed to be

detected and its state permanently tracked by some agent.

Proof of complete coverage of the domain, and, hence,

detection of each object, follows directly from the proof

of Theorem III.1. Since No ≤ Na and each object can

only be tracked by one agent, assigning a unique agent to

a single object whenever an object is detected is feasible

(i.e., we have enough resources to do so) and every object

will be permanently tracked. •
A simulation result is provided in Figures 2, where

No = 6 and Na = 4 for some choice of controller gains

and coverage sensor parameters. The domain D is square

in shape and discretized into n cells, where q̃ ∈ R
2

represents the centroid of each cell. Hence, xi(q̃, t) can

be written as a vector of dimension 2n. Table I shows the

tracking time of each object, which is guaranteed to be at

least τc = 5 seconds.

Object 1 Object 2 Object 3 Object 4 Object 5 Object 6

T, (s) 8.0583 50.2437 7.5215 5.2552 10.3786 6.6144

TABLE I

TRACKING TIME T FOR EACH OBJECT.

B. Decentralized Strategy

We now assume that the sensor fleet is completely

decentralized. That is, each agent is aware of coverage

achieved by itself alone. Each object it finds will be

assumed to be found for the first time. This represents

a scenario where communications between agents is not

possible (for example, due to security reasons, the sensor

agents have to remain “silent” otherwise they themselves

may be detected by adversary agents).

We need the following condition and lemma, whose

proof is similar to that of Lemma III.1.

Condition C2. xi(q̃, t) = 0, ∀q̃ ∈ Wi(t).

Lemma III.3. If for some t ≥ 0, Condition C2 holds,

then ei
Wi

(t) = 0, i ∈ A. Conversely, if ei
Wi

(t) = 0 for

some time t ≥ 0, then Condition C2 holds for agent Ai.

In the decentralized formulation, we employ the search

control strategy

u
∗
di(t)

=

{
ūdi(t) if Condition C2 doesn′t hold for Ai ∈ Si

¯̄udi(t) if Condition C2 holds for Ai ∈ Si
(13)

where

ūdi(t) = k̄i

∫

W(qi(t))

(∫ t

0

∂Ai(‖q̃ − qi‖)

∂qi

dt

)

x
2
i (q̃, t)dq̃,

and ¯̄udi(t) is the same feedback controller as that used

in the centralized strategy, except that q̃
∗
i is chosen based

on coverage information available to agent Ai only. This

choice is made as follows.

Let Di
ǫ(t) := {q̃ ∈ D : ‖xi(q̃, t)‖ > ǫ}, which is

an open set of all points q̃ for which xi(q̃, t) is

smaller than a preset value −ǫ. Let D
i

ǫ(t) be the

closure of Di
ǫ(t). Let D

i

ǫ,i(t) be the set of points

in D
i

ǫ(t) that minimize the distance between the

position vector of agent Ai, qi, and the set D
i

ǫ,i(t) =
{

q̃
∗ ∈ D

i

ǫ(t) : q̃∗ = argmin
q̃∈D

i

ǫ(t)
‖q̃ − qi(t)‖

}

. As

done for the centralized case, we will assume that there

will exist at most one point in D
i

ǫ,i(t). If D
i

ǫ,i(t) is

empty, this means that ‖xi(q̃, t)‖ < ǫ everywhere over

the domain and that the search mission is complete. Note

that the choice of the point q̃
∗
i is based on awareness

information available only to the vehicle Ai, which is

appropriate in the setting of this section since the control

law is decentralized.

In the decentralized case, when a search agent Ai

detects object(s) within its sensory range, it tracks the

objects for a time period of T , defined by

T =
τc

J1i(td)
(14)

where td is the time at detection, τc > 0 is given, and

J1i(t) =
ei
D

(t)

ei
D,max

, (15)

and where

ei
D(t) =

∫

D

x
2
i (q̃, t)dq̃ (16)

3174



Object 1 Object 2 Object 3 Object 4 Object 5 Object 6

Agent 1 7.0090 5.8723 5.1221 5.3971 6.1709 5.6022

Agent 2 5.5974 7.0428 5.1835 5.0000 5.6022 6.1474

Agent 3 8.7574 7.9469 5.1609 5.6027 5.3634 5.1281

Agent 4 5.7563 5.1835 7.0981 6.3030 5.9109 6.5911

TABLE II

TRACKING TIME OF EACH OBJECT BY EACH AGENT.

is the global error over the entire mission domain achieved

by the vehicle Ai only, with ei
D,max = ei

D
(0) is the

area of D if the initial state xi(q̃, t) = −1 as we had

assumed from the outset. Moreover, we define the cost of

not tracking an object found by agent Ai by

J2i(t) =

∫ t

0

N̄i
o (t)

∑

j=1

gj(pj(t))dτ, (17)

where N̄ i
o(t) is the number of agents found by agent Ai

up to time t. We assume that each object will only be

tracked once by each vehicle during the mission.

Theorem III.2. Under Assumption II.1, the decentralized

search and tracking strategy given by equations (13) and

(14) will guarantee that J1 converges asymptotically to

zero, which is equivalent to guaranteeing that all agents

be found. The minimum amount of time spent tracking

any object is given by τc.

The proof of this theorem is similar to the proof

provided for the centralized case. The only important

aspect of the proof that needs highlighting is that, along

the same lines as the proof for the centralized case, J1i

is guaranteed to converge to zero for all i ∈ Ai. It is

not immediately clear that the global cost J1 will also

converge to zero as the Theorem III.2 states. However,

note that ei
D

(t) ≥ e(t) because the more vehicles and

sensors available to us, at least the same or higher overall

global coverage is achieved by the system. Since J1 and

J1i (for all i ∈ Ai) are both initialized to be 1, then

J1i(t) ≥ J1(t), for all time t, because ei
D

(t) ≥ e(t). If

J1i(t) is guaranteed to converge to zero under the control

law (13), then so does J1(t).
Remark. For the case when No ≤ Na, under the de-

centralized search and assuming permanent tracking after

target detection, the entire domain will be guaranteed

to be searched, and each object detected and its state

permanently tracked by some agent. •
A simulation result is provided in Figures 3, where the

domain D is square in shape. Table II shows the tracking

time of each object by each vehicle, which is guaranteed

to be at least τc = 5 seconds.

IV. CONCLUSION

Based on a novel dynamic awareness model, a

decision-making and control strategy was developed to

guarantee the detection of all objects of interest in a

domain. The strategy also guarantees the tracking of
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Fig. 3. Decentralized Implementation: fleet motion in the plane.

each object of a minimum guaranteed amount of time

τc. These properties are guaranteed under both central-

ized and decentralized implementations of the strategy.

Numerical simulations demonstrated the operation of the

two strategies. Future research will focus on locating and

tracking dynamic objects. In the dynamic objects case, the

novel awareness formulation developed above will prove

particularly useful.
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