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Abstract— We propose a decentralized model predictive con-
trol (MPC) design approach for possibly large-scale processes
whose structure may not be dynamically decoupled. The decou-
pling assumption only appears in the prediction models used
by the different MPC control agents. In [1] we presented a
sufficient criterion for analyzing a posteriori the asymptotic
stability of the process model in closed-loop with the set
of decentralized MPC controllers. The communication model
among neighboring MPC controllers was supposed faultless,
so that each MPC could successfully receive the information
about the states of its corresponding submodel. Here we present
a sufficient condition for ensuring closed-loop stability of the
overall closed-loop system when a certain number of packets
containing state measurements may be lost.

I. INTRODUCTION

Recently much attention has been directed towards the

study of control methodologies for large-scale systems that

can be often characterized by a set of multiple interconnected

subsystems with constraints on information flows between

them. The desirable goals of structuring a distributed in-

formation and decision framework for large scale systems

do not “mesh” with the available centralized methodologies

and procedures associated with classical and modern control

theory, thus providing impetus for a decentralized control

scheme. An important issue that arises in decentralized

control is to determine under which conditions there exists

a set of appropriate local feedback control laws that will

stabilize the entire system. The main contributions in this

research topic are given by [2]–[6].

The typical structure of such systems is composed by

several local control stations. At each station the controller

observes only local system outputs and controls only local

inputs. All the controllers contribute, however, in controlling

the overall large-scale system. Several different versions

of the problem of coordinating local controllers acting on

a spatially distributed system have been formulated and

examined in [7]–[10].

The last two decades have seen the widespread diffusion

of model predictive control (MPC) techniques, which are

now recognized as a very useful approach to deal with

control problems with several inputs and outputs and under

constraints on such variables, as it is typically the case in

the process industry. However, centralized MPC is largely

viewed as impractical, for control of large-scale systems

due to (i) the need of converging all the measurements

in one single location, where the optimization is solved,

and (ii) the computation time needed to solve the (large)

optimization problem within a sampling step. Decentralized

MPC (DMPC) is a decomposition of a single centralized

MPC problem into a set of M subproblems, and each

subproblem is assigned to a different model predictive con-

troller. The goal of the decomposition is twofold: First, each

subproblem is much smaller than the overall problem (that is,

fewer decision variables and constraints), and second, each

subproblem is coupled only to a few other subproblems.

DMPC methods have already been studied in [11], [12], and

in a number of papers cited there. Along with the benefits of

a decentralized design, inherent issues in ensuring stability

and feasibility of the system have to be faced.

In a previous paper [1], we presented a sufficient criterion

for analyzing a posteriori the asymptotic stability of the

process model in closed-loop with the set of decentralized

MPC controllers. When information is propagated from

sensors to controllers through wireless networks, data packet

dropout can be a potential source of instability and poor

performance of the overall system. The goal of this paper is

to extend the results of [1] to the case where communication

between neighbors is not guaranteed at every sampling time.

II. PROBLEM SETUP

We recall the MPC problem setup of [1].

A. Centralized MPC

Consider the standard MPC problem based on the linear

discrete-time prediction model

x(t + 1) = Ax(t) + Bu(t), (1)

where x(t) ∈ R
n is the state vector and u(t) ∈ R

m is the

vector of command variables at time step t, and the following

finite-time optimal control problem

V (x(t)) = min
U

x⊤

NPxN +

N−1
∑

k=0

x⊤

k Qxk + u⊤

k Ruk (2a)

s.t. xk+1 = Axk + Buk, k = 0, . . . , N − 1
(2b)

x0 = x(t) (2c)

umin ≤ uk ≤ umax, k = 0, . . . , Nu − 1
(2d)

uk = 0, k = Nu, . . . , N − 1 (2e)

where N is the prediction horizon, Nu ≤ N is the input

horizon, and umin < 0 < umax ∈ R
m define saturation

constraints on input variables, and “≤” denotes component-

wise inequalities.

Problem (2) can be recast as a Quadratic Programming

(QP) problem (see e.g. [13], [14]), whose solution

U∗(x(t)) � [u∗⊤

0 (x(t)) . . . u∗⊤

N−1(x(t))]⊤ ∈ R
Nm
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is a sequence of optimal control inputs. In (2) we assume

that Q = Q⊤ ≥ 0, R = R⊤ > 0 are square weight matrices

defining the performance index, and that the terminal weight

P = P⊤ ≥ 0 is a square matrix satisfies the Lyapunov

equation

A⊤PA − P = −Q (3)

so that the cost (2a) is equal to
∑∞

k=0 x⊤

k Qxk +u⊤

k Ruk. The

existence of matrix P is ensured by the following assumption

Assumption 1: Matrix A is strictly Hurwitz.

Another restriction taken in this paper is that problem (2)

only tackles input constraints (2d), which makes problem (2)

feasible for any value of the state vector x(t) ∈ R
n

At each sampling time t, problem (2) is solved for

the given measured (or estimated) current state x(t). Only

the first optimal move u∗
0(x(t)) of the optimal sequence

U∗(x(t)) is applied to the process,

u(t) = u∗

0(x(t)), (4)

the remaining optimal moves are discarded and the optimiza-

tion is repeated at time t + 1.

Theorem 1 ( [15]): Under Assumption 1, system (1) in

closed-loop with the MPC algorithm (2), (4) is asymptoti-

cally stable.

B. Decentralized MPC

Let the system to be controlled be described again by

the process model (1). Matrices A, B will have a certain

number of negligible components corresponding to partially

dynamically decoupled subsystems, or even be block diag-

onal in case of total dynamical decoupling (this is the case

for instance of independent moving agents each one having

its own dynamics, as in [6], [7]).

Let M be the number of decentralized control actions

that we want to design, for example M = m in case each

individual actuator is governed by its own controller. For all

i = 1, . . . , M , we define

xi = W⊤

i x =





xi1

...

xini



 , ui = Z⊤

i u =





ui1

...

uimi





where xi ∈ R
ni as the vector collecting a subset Ixi ⊆

{1, . . . , n} of the state components, Wi ∈ R
n×ni collects the

ni columns of the identity matrix of order n corresponding

to the indices in Ixi, and, similarly, ui is the vector of input

signals tackled by the i-th controller, where Z i ∈ R
m×mi

collects mi columns of the identity matrix of order m

corresponding to the set of indices Iui ⊆ {1, . . . , m}. Note

that W⊤

i Wi = Ini
, Z⊤

i Zi = Imi
, ∀i = 1, . . . , M .

An approximation of (1) is obtained by getting M new

prediction models of reduced order

xi(t + 1) = Aix
i(t) + Biu

i(t) (5)

where matrices Ai = W⊤
i AWi ∈ R

ni×ni and Bi =
W⊤

i BZi ∈ R
mi×mi are submatrices of the original A and B

matrices, respectively, describing in a possibly approximate

way the evolution of the states of subsystem #i.

Assumption 2: Matrix Ai is strictly Hurwitz, for all i =
1, . . . , M .

Note that each model (5) has in general a smaller size

than the original process model (1). The choice of the

dimensions ni, mi and of matrices Wi, Zi are a tuning knob

of the decentralized procedure and should be inspired by the

inspection of zero or negligible entries in A, B (or in other

words, by physical insight on the process dynamics) and by

taking into account the requirement stated in Assumption 2.

We design a controller for each set of moves u i ∈ R
mi

according to the prediction model (5) and based on feedback

on xi, for all i = 1, . . . , M . Note that in general different

states xi, xj and different ui, uj may share common compo-

nents. For the sake on simplicity of notation, since now on

we will assume that M = m and that I
#
ui = i, i = 1, . . . , m,

i.e., that each controller #i only controls the ith input signal.

In general Ixi ∩ Ixj �= ∅, meaning that controller #i may

partially share the same feedback information with controller

#j, and Iui ∩ Iuj �= ∅, meaning that controller #i may take

into account the effect of control actions that are actually

decided by another controller #j, i �= j, i, j = 1, . . . , M .

For all i = 1, . . . , M consider the following infinite-time

constrained optimal control problem

Vi(x(t)) = min
ui

0

∞
∑

k=0

xi⊤
k W⊤

i QWix
i
k + ui⊤

k Z⊤

i RZiu
i
k =

= min
ui

0

xi⊤
1 Pix

i
1 + xi⊤(t)W⊤

i QWix
i(t)+

ui⊤
0 Z⊤

i RZiu
i
0 (6a)

s.t. xi
1 = Aix

i(t) + Biu
i
0, (6b)

xi
0 = W⊤

i x(t) = xi(t) (6c)

umin ≤ ui
0 ≤ umax, (6d)

ui
k = 0, ∀k ≥ 1 (6e)

where Pi = P⊤
i ≥ 0 is the solution of the Lyapunov equation

A⊤

i PiAi − Pi = −W⊤

i QWi, (7)

that exists by virtue of Assumption 2. Problem (6) cor-

responds to a finite horizon problem with control horizon

Nu = 1.

At time t, each controller MPC #i measures (or estimates)

the state xi(t) (usually corresponding to local and neighbor-

ing states), solves problem (6), and obtains the optimizer

u∗i
0 = [u∗i1

0 , . . . , u∗ii
0 , . . . , u∗imi

0 ]⊤ ∈ R
mi . In the simplified

case M = m and I
#
ui = i, only the i-th sample of u∗i

0

ui(t) = u∗ii
0 (8)

will determine the i-th component ui(t) of the input vector

actually implemented to the process at time t.

The collection of the optimal inputs of all the M MPC

controllers u(t) = [u∗11
0 . . . u∗ii

0 . . . u∗mm
0 ]⊤ is the actual

input commanded to process (1). The optimizations (6) are

repeated at time t + 1, based on the new states xi(t + 1) =
W⊤

i x(t+1), according to the usual receding horizon control

paradigm.

3578



III. PACKET DROP

As mentioned in Section I, one of the issues raised in

networked control systems is the unreliability of communi-

cation channels, which may result in data packet dropout.

The non-triviality of this issue comes from the fact that

if a set of measures for subsystem i is lost, this would

not only affect the trajectory of subsystem i because of

the improper control action ui, but due to the dynamical

coupling, also the trajectories of subsystems j ∈ J , where

J = {j | i ∈ Ixj ∪ Iuj}, and thus the performance of the

overall system. In the following subsection, we will derive a

sufficient condition for ensuring closed-loop stability of the

overall system with the DMPC controllers in the case where

packets containing measurements are lost for at most one

time step. Next, we generalize this result to arbitrary, yet

finite durations of data packet dropouts.

A. Single Packet Dropout

We recall here briefly the main theorem contained in [1].

Theorem 2: If one of the following conditions is satisfied

for all x ∈ R
n

(i) x⊤

(

M
∑

i=1

WiW
⊤

i QWiW
⊤

i

)

x −
M
∑

i=1

∆Si(x) ≥ 0 (9)

(ii) x⊤

(

M
∑

i=1

WiW
⊤

i QWiW
⊤

i

)

x − αx⊤x −
M
∑

i=1

∆Si(x)+

M
∑

i=1

u∗i⊤
0 (x)Z⊤

i RZiu
∗i
0 (x) ≥ 0 (10)

for some scalar α > 0, then the decentralized MPC scheme

defined in (6)–(8) in closed loop with (1) is globally asymp-

totically stable.

Condition (9) or condition (10) ensure closed-loop stability in

the case where no packet loss occurs. Consider now the case

where a single packet of measurements for controller i is lost

at a generic instant t. This means that given x(t−1), u(t−1),
the next measurement of the state of subsystem i is available

at time t + 1. At time t, the optimization problem (6a)-(6d)

can not be solved since constraint (6c) can not be directly

fulfilled. Constraints (6b)-(6c) need to be replaced by the

following equation, using an estimate x̃i(t) of the state xi(t),
so that
{

x̃i
1(t) = A2

i W
⊤

i x(t − 1) + AiBiu
∗i
0 (t − 1) + Biu

i
0(t)

x̃i(t) = AiW
⊤

i x(t − 1) + Biu
∗i
0 (t − 1)

(11)

where x̃i(t) is the state at time t + 1 estimated at time

t from the available information. The computation of the

input vector u∗i
0 (t) made by the i-th controller is based

on the estimate x̃i(t). The value function Vi at time

t is obtained by using (11) into (6a), is V i(x̃
i(t)) =

(AiW
⊤

i x(t − 1) + Biu
∗i
0 (t − 1))⊤(W⊤

i QWi)(AiW
⊤

i x(t −
1) + Biu

∗i
0 (t− 1)) + (Ai(AiW

⊤
i x(t− 1) + Biu

∗i
0 (t− 1)) +

Biu
∗i
0 (t))⊤Pi(Ai(AiW

⊤

i x(t−1)+Biu
∗i
0 (t−1)+Biu

∗i
0 (t))+

u∗i⊤
0 (t)Z⊤

i RZiu
∗i
0 (t). As the input ui

0(t) = 0 satisfies the

constraints umin ≤ ui
t ≤ umax, the quantity Vi(x̃(t)) −

Vi(x(t−1)) satisfies Vi(x̃
i(t))−Vi(x(t−1)) ≤ (AiW

⊤

i x(t−
1)+ Biu

∗i
0 (t− 1))⊤(W⊤

i QWi)(AiW
⊤

i x(t− 1)+ Biu
∗i
0 (t−

1))+(AiW
⊤
i x(t−1)+Biu

∗i
0 (t−1))⊤A⊤

i PiAi(AiW
⊤
i x(t−

1) + Biu
∗i
0 (t− 1))− (W⊤

i x(t − 1))⊤(W⊤

i QWi)(W
⊤

i x(t−
1))− (AiW

⊤

i x(t−1)+Biu
∗i
0 (t−1))⊤Pi(AiW

⊤

i x(t−1)+
Biu

∗i
0 (t − 1)) − u∗i⊤

0 (t − 1)Z⊤
i RZiu

∗i
0 (t − 1).

By recalling (7) we obtain that

Vi(x̃
i(t)) − Vi(x(t − 1)) ≤ −(W⊤

i x(t − 1))⊤(W⊤

i QWi)

(W⊤

i x(t − 1)) − u∗i⊤
0 (t − 1)Z⊤

i RZiu
∗i
0 (t − 1). (12)

Inequality (12) implies that even if a packet loss occurs

at time t for a generic subsystem i, the value function V i of

problem (6a) does not increase from time t − 1 to time t.

State information for the i-th controller resumes at time

t+1 by hypothesis. By rewriting x(t+1) = Ax(t)+Bu(t) =
A2x(t − 1) + ABu(t − 1) + BZiu

∗i
0 (t) + B∆ui(t) =

A(Wi(AiW
⊤
i x(t − 1) + Biu

∗i
0 (t − 1)) + ∆Yi(x(t − 1))) +

BZiu
∗i
0 (t) + B∆ui(t)), where

∆Yi(x(t − 1)) = WiW
⊤

i (AWiW
⊤

i ∆xi(t − 1)+

BZiZ
⊤

i ∆ui(t − 1)) + ∆Aix(t − 1) + ∆Biu(t − 1)
(13a)

∆ui(t) � u(t) − Ziu
∗i
0 (t) (13b)

∆xi(t) � (I − WiW
⊤

i )x(t) (13c)

∆Ai � (A − WiW
⊤

i AWiW
⊤

i ) (13d)

∆Bi � (B − WiW
⊤

i BZiZ
⊤

i ), (13e)

it is easy to show that Vi(x(t + 1)) ≤ (x(t +
1))⊤WiPiW

⊤
i (x(t + 1)) = (x̃i(t))⊤A⊤

i PiAi(x̃
i(t)) +

∆Si(x(t − 1)) = (x̃i(t))⊤Pi(x̃
i(t)) −

(x̃i(t))⊤W⊤

i QWi(x̃
i(t)) + ∆Si(x(t − 1)) and that

Vi(x(t + 1)) − Vi(x̃
i(t)) ≤ −(x̃i(t))⊤W⊤

i QWi(x̃
i(t))−

u∗i
0 (t)⊤Z⊤

i RZiu
∗i
0 (t) + ∆Si(x(t − 1)).

(14)

As the input ui
0(t) = 0 satisfies the constraints

umin ≤ ui
t ≤ umax, using (12) and (14) we fi-

nally obtain Vi(x(t + 1)) ≤ Vi(x(t − 1)) − (W⊤

i x(t −
1))⊤(W⊤

i QWi +A⊤

i W⊤

i QWiAi)(W
⊤

i x(t− 1))−u∗i⊤
0 (t−

1)(Z⊤

i RZi + B⊤

i W⊤

i QWiBi)u
∗i
0 (t − 1) − ((AiW

⊤

i x(t −
1))⊤W⊤

i QWiBi)u
∗i
0 (t − 1) + ∆Si(x(t − 1)), where

∆Si(x(t − 1)) = 2(A(Wi(AiW
⊤

i x(t − 1)+

Biu
∗i
0 (t − 1))))⊤W⊤

i PiWiA(∆Yi(x(t − 1)))+

(A(∆Yi(x(t − 1))))⊤W⊤

i PiWiA(∆Yi(x(t − 1))).
(15a)

We are now ready to state the following theorem:

Theorem 3: If condition (9) or (10) holds, and condition

x⊤(

M
∑

i=1

WiW
⊤

i QWiW
⊤

i +

M
∑

i=1

WiA
⊤

i W⊤

i QWi·

AiW
⊤

i )x + x⊤(
M
∑

i=1

WiA
⊤

i W⊤

i QWiBiu
∗i
0 (x))−

M
∑

i=1

∆Si(x) ≥ 0 (16)
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is satisfied ∀x ∈ R
n, then the DMPC scheme with single

packet dropout defined in (6a), (11) in closed loop with (1)

is globally asymptotically stable.

Proof: Define the function

V (x(tk)) �

M
∑

i=1

Vi(x(tk)), (17)

where tk belongs to the subset T ⊆ N of time instants

where no packet loss occurs. V (x(tk)) satisfies the following

properties

(i) V (x(tk)) ≥ 0, (18a)

(ii) V (x(tk+1)) ≤ V (x(tk)) − Ztk
, (18b)

where

Ztk
=















V (x(tk)) − V (x(tk − 1)) no packet loss

at time tk − 1

V (x(tk)) − V (x(tk − 2)) single packet loss

at time tk − 1
(19)

It follows from (9) or (10) and (16) that Zk ≥ 0 and

hence V (x(tk)) is non-increasing. Since V (x(tk)) ≥ 0,

∀tk ≥ 0, it follows that there exists limtk→∞ V (x(tk+1)) =
limtk→∞ V (x(tk)). Hence, let T1 ⊆ T be the subset of

time instants tk such that Ztk
= V (x(tk)) − V (x(tk − 1)),

and let tk1
∈ T1. Let T2 ⊆ T be the subset of time

instants such that Ztk
= V (x(tk)) − V (x(tk − 2)),

and let tk2
∈ T2. As we are interested in asymptotic

convergence, we consider the most general case in

which both T1 and T2 are unbounded. By (9), it follows

that limtk1
→∞ u∗i

0 (x(tk1
))Z⊤

i RZiu
∗i⊤

0 (x(tk1
)) = 0,

and by positive definiteness of Z⊤
i RZi, that

limtk1
→∞ u∗i

0 (x(tk1
)) = 0, and hence that

limtk1
→∞ u∗ii

0 (x(tk1
)) = 0, ∀i = 1, . . . , M , which in

turn implies limtk1
→∞ u(tk1

) = 0. Moreover, it also

follows that limtk2
→∞ x(tk2

)⊤(
∑M

i=1 WiW
⊤

i QWiW
⊤

i +

WiA
⊤

i W⊤

i QWiAiW
⊤

i )x(tk2
) +

∑M

i=1 u∗i⊤

0 (x(tk2
))(Z⊤

i RZi+B⊤

i W⊤

i QWiBi)u
∗i
0 (x(tk2

))+

x⊤(tk2
)
∑M

i=1(WiA
⊤

i W⊤

i QWiBi)u
∗i
0 (x(tk2

)) −
∑M

i=1 ∆Si(x(tk2
)) = 0. Because of (16), it

follows that limtk2
→∞ u∗i

0 (x(tk2
))(Z⊤

i RZi +

B⊤

i W⊤

i QWiBi)u
∗i⊤

0 (x(tk2
)) = 0, and by positive

definiteness of Z⊤
i RZi + B⊤

i W⊤
i QWiBi, that

limtk2
→∞ u∗i

0 (x(tk2
)) = 0, and hence that

limtk2
→∞ u∗ii

0 (x(tk2
)) = 0, ∀i = 1, . . . , M , which in

turn implies limtk2
→∞ u(tk2

) = 0. Since T = T1 ∪ T2, and

by Assumption 1 the open-loop process (1) is linear and

asymptotically stable, and therefore input-to-state stable, it

also follows that limtk→∞ x(tk) = 0. It remains to show

that x(tk̄) → 0, where tk̄ ∈ N\T , that is the subset of time

instants where a packet loss occurs. If N\T is bounded,

clearly limt→∞ x(t) = 0 follows. Otherwise, consider

x(tk̄) = Aixi(tk̄ − 1) + Biu
∗i
0 (tk̄ − 1) + ∆Ai∆xi(tk̄ − 1)+

∆Bi∆u∗i
0 (tk̄ − 1) = AiW

⊤

i x(tk̄ − 1) + Biu
∗i
0 (tk̄ − 1) +

∆Ai(I−WiW
⊤

i )x(tk̄−1)+∆Bi(u(tk̄−1)−Ziu
∗i
0 (tk̄−1)).

Since tk̄ − 1 is a time instant when no packet loss occurs,

it follows that limt
k̄
→∞ x(tk̄ − 1) = 0, and hence

limt
k̄
→∞ x(tk̄) = 0. �

B. Multiple Packet Dropout

The conclusions of the previous section can be extended

to the case of multiple packet losses. In this scenario, the

malfunctioning of the network persists for a certain number

N of time instants, t ∈ Ts � [t, . . . , t + N − 1], N ≥ 2.

During the time interval Ts each subsystem i affected by

the malfunctioning of the communication channel works

in open- loop, computing its optimal vectors of moves

u∗i
0 (t), . . . , u∗i

0 (t+N−1) using an estimate x̃i(t), . . . , x̃i(t+
N − 1) of its own states and of the states of the neighbors,

based on the following linear prediction model

x̃i(t + 1) = Aix̃
i(t) + Biu

∗i
0 (t), t ∈ Ts, (20a)

where u∗i
0 (t) is a function of x̃(t) computed as in (6a)-

(6d). We want to derive a condition for ensuring global

asymptotical stability of the DMPC scheme in closed-loop

with (1) in the presence of multiple packet dropouts. The

non-triviality of this issue comes from the fact that the

set of moves u∗i(t), t ∈ Ts, applied by agent i to the

overall system, are computed on the basis of the information

retrieved by the neighbors’ states, and in this case of the

prediction of the neighbors’ states and moves. A bad choice

of matrices Wi, Zi would lead to a bad set of moves, and

hence this would affect the performance and possibly the

stability of the entire system.

Since, by Assumption 2, subsystem i is Lyapunov stable,

we obtain that Vi(x̃
i(t+N −k)) ≤ Vi(x̃

i(t+N −k−1))−
(x̃i(t+N −k−1))⊤W⊤

i QWi(x̃
i(t+N −k−1))− (u∗i

0 (t+
N −k−1))⊤Z⊤

i RZi(u
∗i
0 (t+N −k−1)) ∀k = 1, .., N −1.

As the inputs u∗i
0 (t) = 0, .., u∗i

0 (t + N − 1) = 0 satisfy the

constraints umin ≤ ui
t ≤ umax, the quantity Vi(x̃

i(t + N −
1)) − Vi(x̃

i(t)) satisfies the following inequality

Vi(x̃
i(t + N − 1)) ≤ Vi(x̃

i(t))−
∑N−2

k=0 (x̃i(t + k))⊤W⊤

i QWi(x̃
i(t + k)).

(21)

Using the arguments of the previous section we can derive

the following two inequalities. The first inequality describes

the relation between the cost function Vi at time t, when the

first set of measures is lost, and time t− 1 when the last set

of measures is successfully achieved by agent i.

Vi(x̃
i(t)) ≤ Vi(xi(t − 1)) − (W⊤

i x(t − 1))⊤(W⊤

i QWi)
(W⊤

i x(t − 1)) − u∗i⊤
0 (t − 1)Z⊤

i RZiu
∗i
0 (t − 1).

(22)

The second inequality describes the relation between the cost

function Vi at time t + N , when the first set of measures is

finally achieved again, and time t+N −1 when the final set

of measures is lost, that is

Vi(x(t + N)) ≤ Vi(x̃
i(t + N − 1)) − (x̃i(t + N − 1))⊤

(W⊤

i QWi)(x̃
i(t + N − 1)) − u∗i⊤

0 (t + N − 1)
Z⊤

i RZiu
∗i
0 (t + N − 1) + ∆SN

i (x(t − 1))
(23)

Where, x(t + N) = AN+1x(t − 1) + ANBu(t − 1) +
∑N−1

j=0 Aj(BZiu
∗i
0 (t+N −1−j)+B∆ui(t+N −1−j)) =
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AN (Wi(AiW
⊤

i x(t− 1)+Biu
∗i
0 (t− 1))+∆Yi(x(t− 1)))+

∑N−1

j=0 Aj(BZiu
∗i
0 (t+N − 1− j)+B∆ui(t+N − 1− j)).

As the inputs u∗i
0 (t) = 0, .., u∗i

0 (t + N − 1) = 0 satisfy

the constraints umin ≤ ui
t ≤ umax, using (23), (21)

and (22) we finally obtain Vi(x(t + N)) ≤ Vi(x(t −
1)) − (W⊤

i x(t − 1))⊤(W⊤

i QWi + (AN⊤

i W⊤

i QWiA
N
i ) +

∑N−2

k=0 (Ak⊤
i W⊤

i QWiA
k
i ))(W⊤

i x(t − 1)) − u∗i
0 (t −

1)⊤(Z⊤

i RZi + (AN−1
i Bi)

⊤W⊤

i QWiA
N−1
i Bi)u

∗i
0 (t −

1) − (AN
i W⊤

i x(t − 1))⊤(W⊤

i QWiA
N−1
i Bi +

∑N−2

k=0 A⊤k
i W⊤

i QWiA
k
i Bi)u

∗i
0 (t − 1) + ∆SN

i (x(t − 1)),
where

∆SN
i (x(t − 1)) = 2(A(Wi(AiW

⊤

i x(t − 1) + Biu
∗i
0 (t − 1))))⊤

W⊤

i PiWiA
N (∆Yi(x(t − 1))) + (AN (∆Yi(x(t − 1))))⊤

W⊤

i PiWiA
N (∆Yi(x(t − 1))). (24a)

We are now ready to state the following theorem

Theorem 4: If condition (9) or (10) holds, and condition

x⊤(

M
∑

i=1

WiW
⊤

i QWiW
⊤

i +

M
∑

i=1

WiA
N⊤

i W⊤

i QWi

AN
i W⊤

i +

M
∑

i=1

(

N−2
∑

k=0

WiA
k⊤
i W⊤

i QWiA
k
i W⊤

i ))x+

x⊤

M
∑

i=1

(WiA
⊤N
i W⊤

i QWiA
N−1
i Bi+

N−2
∑

k=0

WiA
⊤k
i W⊤

i QWiA
k
i Biu

∗i
0 (x)) −

M
∑

i=1

∆Si(x) ≥ 0

(25)

is satisfied ∀x ∈ R
n, then the decentralized MPC scheme

with N packets dropout defined in (6a), (20a) in closed loop

with (1) is globally asymptotically stable.

Proof: Define the function

V (x(tk)) �

M
∑

i=1

Vi(x(tk)), (26)

where tk belongs to the subset T ⊆ N of time instants where

no packet loss occurs. V (x(tk)) has the following properties

(i) V (x(tk)) ≥ 0, (27a)

(ii) V (x(tk+1)) ≤ V (x(tk)) − Ztk
(27b)

where

Ztk
=

{

V (x(tk)) − V (x(tk − 1)), no packet loss

V (x(tk)) − V (x(tk − N − 1)), N packet losses.

(28)

It follows from (9) or (10) and (16) that Zk ≥ 0 and

hence V (x(tk)) is non-increasing. Since V (x(tk)) ≥ 0,

∀tk ≥ 0, it follows that there exists limtk→∞ V (x(tk+1)) =
limtk→∞ V (x(tk)). Hence, let T1 ⊆ T be the subset of

time instants such that Ztk
= V (x(tk)) − V (x(tk − 1)),

and let tk1
∈ T1. and Let T2 ⊆ T be the subset of time

instants such that Ztk
= V (x(tk)) − V (x(tk − N − 1)),

and let tk2
∈ T2. As we are interested in asymptotic

convergence, we consider the most general case in

which both T1 and T2 are unbounded. By (9), it follows

that limtk1
→∞ u∗i⊤

0 (x(tk1
))Z⊤

i RZiu
∗i
0 (x(tk1

)) = 0.

and by positive definiteness of Z⊤

i RZi, that

limtk1
→∞ u∗i⊤

0 (x(tk1
)) = 0, and hence that

limtk1
→∞ u∗ii⊤

0 (x(tk1
)) = 0, ∀i = 1, .., M , which in

turn implies limtk1
→∞ u(tk1

) = 0. Hence, because of (25),

it also follows that limtk2
→∞ x⊤(tk2

)(WiW
⊤

i QWiW
⊤

i +

WiA
N⊤

i W⊤

i QWiA
N
i W⊤

i +
∑N−2

k=0 WiA
k⊤
i W⊤

i QWiA
k
i W⊤

i )x(tk2
) +

u∗i
0 (x(tk2

))⊤(Z⊤

i RZi+
(AN−1

i Bi)
⊤W⊤

i QWiA
N−1
i Bi)u

∗i
0 (x(tk2

)) +
x⊤(tk2

)(WiA
N⊤

i W⊤

i QWiA
N−1
i Bi +

∑N−2

k=0 (WiA
k
i )⊤W⊤

i QWiA
k
i Bi)u

∗i
0 (x(tk2

)) −
∆SN

i (x(tk2
)) = 0. Because of (16), it follows

that limtk2
→∞

∑M

i=1 u∗i⊤
0 (x(tk2

))(Z⊤

i RZi +

(AN−1
i Bi)

⊤W⊤

i QWiA
N−1
i Bi)u

∗i
0 (x(tk2

) = 0, and by posi-

tive definiteness of Z⊤

i RZi+(AN−1
i Bi)

⊤W⊤

i QWiA
N−1
i Bi,

that limtk2
→∞ u∗i

0 (x(tk2
)) = 0, and hence that

limtk2
→∞ u∗ii

0 (x(tk2
)) = 0, ∀i = 1, . . . , M , which in

turn implies limtk2
→∞ u(tk2

) = 0. Since T = T1 ∪ T2, and

by Assumption 1 the open-loop process (1) is linear and

asymptotically stable, and therefore input-to-state stable, it

also follows that limtk→∞ x(tk) = 0. It remains to show

that x(tk̄) → 0, where tk̄ ∈ N\T , that is the subset of time

instants where a packet loss occurs. If N\T is bounded,

clearly limt→∞ x(t) = 0 follows. Otherwise, consider

x(tk̄) = A
N+1

i xi(tk̄ − N − 1) + A
N
i Biu

∗i
0 (tk̄ − N − 1)+

∆A
N+1

i ∆x
i(tk̄ − N − 1) + ∆A

N
i ∆Bi∆u

∗i
0 (tk̄ − N − 1)+

N−1
∑

j=0

A
j
iBiu

∗i
0 (tk̄ − j − 1) +

N−1
∑

j=0

∆A
j
i∆Bi∆u

∗i
0 (tk̄ − j − 1)

= A
N+1

i W
⊤

i x(tk̄ − N − 1) + A
N
i Biu

∗i
0 (x(tk̄ − N − 1))+,

∆A
N+1

i (I − WiW
⊤

i )x(tk̄ − N − 1)+

∆A
N
i ∆Bi∆u

∗i
0 (x(tk̄ − N − 1)) +

N−1
∑

j=0

A
j
iBiu

∗i
0 (tk̄ − j − 1)+

N−1
∑

j=0

∆A
j

i∆Bi∆u
∗i
0 (tk̄ − j − 1)

(29a)

Since tk̄ − N − 1 is a time instant when no packet loss

has occurred, it follows that limt
k̄
→∞ x(tk̄ − N − 1) = 0

and so limt
k̄
→∞ u(x(tk̄ −N − 1)) = 0. Since all the inputs

u(tk̄−j−1), j = 0, .., N−1, are function of u(x(tk̄−N−1))
it follows that limt

k̄
→∞ u(x(tk̄−j−1)) = 0, ∀j = 0, .., N−1

and hence limt
k̄
→∞ x(tk̄) = 0 �
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IV. NUMERICAL RESULTS

We consider the system examined in [1] composed by the

linear system















x(t + 1) =

[

0.9429 -0.02798 -0.2611
0.02224 0.9798 -0.02135
0.2616 0.01452 0.943

]

x(t)+

+

[

.009384 .005471 -.00072
-.001563 .00931 -.00055
-.002088 -.00147 .005401

]

u(t)

(30)

in closed-loop with an asymptotically stabilizing decentral-

ized MPC controller (see [1, Section IV] for the details).

Suppose that subsystem 1 loses 5 consecutive packets con-

taining the measures of [x1(t), x3(t)], t = 5, .., 9. Condition

(25) leads to the following condition

x⊤

[

19.0912 -0.6564 -22.2504
-0.7286 4.2577 0
6.8592 0 21.5841

]

x ≥ 0 (31)

that is verified since the eigenvalues of the matrix associ-

ated with the quadratic form (44) are 20.3478 + 12.2847i,

20.3478 − 12.2847i, 4.2375. Figure 1 shows the state tra-

jectories, starting from the initial state x0 = [−10 1 9]⊤. It

shows that even if subsystem 1 is the only one subject to

packet losses, the trajectories of the other two subsystems

are affected too through the dynamical coupling. In Figure 1

it is also reported the case when the number of packet lost

by subsystem 1 is 10. In this case, condition (25) leads to

the following condition

x⊤

[

25.0519 -0.6564 -17.5529
-0.7286 4.2577 0
-9.8879 0 32.6992

]

x ≥ 0 (32)

that is verified since the eigenvalues of the matrix associated

with the quadratic form (32) are 42.5980, 15.1856, 4.2252.

V. CONCLUSIONS

In this paper we have proposed a decentralized MPC

scheme for large-scale systems where information is gath-

ered through wireless (sensor) networks subject to possible

dropouts of multiple packets. We proposed a sufficient sta-

bility criteria for testing asymptotic stability of the overall

closed-loop system in the case where communication be-

tween neighbors is not guaranteed at every sampling time.

In this paper we assumed the the open-loop process is

asymptotically stable. Extensions of this approach to open-

loop unstable systems by using Riccati terminal weights are

currently under investigation.
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