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Abstract— The petroleum industry operates a wide va-
riety of chemical processes that can benefit from ad-
vanced modeling and control methods. Traditional linear
control methods can be applied to these systems, but
this often results in sub-optimal closed-loop performance.
The current work presents modeling and control of a
refinery facility simulation using second order Volterra
series models and a nonlinear model predictive control
formulation. Realistic process data were generated using
a dynamic refinery simulation model. The data set from
the crude oil separation facility simulation was used to
determine an empirical model for use with nonlinear
Model Predictive Control (MPC). Results show that a
second-order Volterra model can be used to represent the
multivariable chemical plant which exhibits both nonlinear
gains and nonlinear dynamics. It is demonstrated that the
proposed nonlinear MPC formulation tracks setpoints and
rejects disturbances better than traditional linear control
methods.

I. INTRODUCTION

Model Predictive Control (MPC) has been used ex-

tensively for control of refinery operations since MPC

can accommodate multivariable systems, actuator con-

straints, and economic objectives. The original linear

MPC method has been extended to include control of

nonlinear dynamic systems by a variety of authors [3],

[16], [5], [4], [9], [1], [14], [2]. Use of more accurate

nonlinear process models potentially results in improved

controller performance but also requires solution of a

more difficult nonlinear optimization problem. Guaran-

teed closed-loop stability of nonlinear systems using

MPC based methods generally use a terminal state

constraint [12], [17], [10] or some sort of backup control

system that monitors convergence [11]. The nonlinearity

of a refining process and multivariable interacting nature

of such systems makes this class of process attractive to

nonlinear MPC methods.

When dealing with a multivariable interactive sys-

tems, techniques such as Relative Gain Array (RGA)

and Singular Value Decomposition (SVD) are useful

to obtain a measure of the extent of the influence of

process interactions when input ui is used to control

output y j [13], [18]. Based on the open-loop gains

Corresponding author: gatzke@sc.edu, (803) 777-1159

that can be obtained linearization of the input/output

model, RGA and SVD analysis can suggest to what

extent would a certain type of interacting control be the

most efficient to track setpoints and reject disturbances.

A process linearization may be accurate near a single

operating point. However, for highly nonlinear dynamic

systems, linear analysis methods may be insufficient.

This is especially true for nonlinear dyanamic systems

with input multiplicity, where the system open-loop gain

may change sign depending on the current operating

conditions.

II. SYSTEM DESCRIPTION

A crude oil processing facility model has been devel-

oped for the purpose of modeling and nonlinear control.

This simulation model uses an atmospheric column to

fractionate the crude oil feedstock into its straight run

products. The crude column consists of a refluxed ab-

sorber with three side strippers and three cooled pump-

around circuits. The column flowchart appears in Figure

II.

Fig. 1. A dynamic HYSYS distillation plant simulation flow sheet.

The column consists of 29 trays plus a partial con-

denser. The column feed enters on stage 28, while

superheated steam is fed to the bottom stage. In addition,

the trim duty is represented by an energy stream feeding

onto stage 28. The naphtha product and the waste water
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stream are produced from the three-phase condenser.

Crude atmospheric residue is yielded from the bottom

of the tower.

Each of the three-stage side strippers yields a straight

run product. Kerosene is produced from the reboiled

KeroSS side stripper, while diesel and AGO (Atmo-

spheric Gas Oil) are produced from the steam-stripped

DieselSS and AGOSS side strippers, respectively. Using

HYSYS Dynamic Simulation [6], [7], key control loops

were implemented to increase the realism of the model

and provide simulation stability by maintaining the con-

denser level and the products flow rates. The controllers

were tuned to rapidly achieve steady state.

Each of the four product streams include three process

outputs that may be of interest: flow rate, temperature,

and composition. In order to address the nonlinearity

of the process, one may analyze the response of these

twelve outputs to changes in four different inputs. Inputs

for this simulation include the reflux flow rate from

the condenser to the column, the heat flow supplied to

the reboiler, and both the temperature and flow rate of

the feed stream into the column. The first two inputs

(reflux flow and reboiler duty) are traditionally treated

as manipulated inputs in distillation processes, whereas

the feed conditions that can not always be predicted are

considered as disturbances.

A series of varying size step changes were introduced

to the open-loop system to analyze the nonlinearity

of the simulation model. Observing the plots of the

steady state output vs. input values and the step response

information (normalized by input step size), it is obvious

that the response of the temperatures and the flow rates

of the products may be considered linear. However, sig-

nificant nonlinearity was observed in the case of molar

compositions variables. This was expected. Therefore,

the four product compositions were used as the only

control variables of interest for the purpose of this work

resulting in a 4x2 (4 outputs, 2 inputs) multivariable

modeling and control problem.

Figure 2 presents the steady state product composi-

tions deviated with respect to the original steady state

values for inputs and outputs. Observing the slopes of

the compositions in Figure 2 it is clear that the open-loop

process gains of naphtha (y1), kerosene (y2), diesel (y3),

and AGO (y4) exhibit input multiplicity with respect to

the Heat Duty. Additionally, the reflux ratio significantly

influences the maximum attainable value for the four

compositions. This means that the zero gain operating

point may potentially change location depending on the

value of the reflux ratio. The nonlinearity observations

are confirmed by the normalized output plots (Figures

3 and 4). Here, nonlinear dynamics are apparent as

the dynamic response obviously depends on the size

of the input change. Additionally, input multiplicity is

also obvious in the normalized step response plots, as

some outputs show both positive and negative steady

state values.
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Fig. 2. Steady states values showing deviations from the original
steady state values.
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Fig. 3. Normalized output response for Reflux flow step changes.

III. MODEL IDENTIFICATION

Despite the fact that significant advances have been

made with regard to the theory and practice of Model

Predictive Control as a control system design method-

ology, developing and evaluating appropriate models

still remains an important and time-consuming step in

the implementation of nonlinear MPC. For complex

chemical processes (such as distillation columns), fairly

accurate first principle models are usually difficult and/or

very time consuming to obtain. Using plant data, empir-

ical models may be determined. The models considered

for control in this work are the second order Volterra
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Fig. 4. Normalized output response for Reboiler duty step changes.

Series models of the form

y j(k +M) =
nu

∑
i=1

k+M−1

∑
l=k

(

α j,i(l)ui(l)+β j,i(l)ui(l)
2
)

+
nu,nu

∑
i = 1

ii = i+1

k+M−1

∑
l=k

γ j(l)ui(l)uii(l)

∀ j ∈ ny,∀k ∈ [1, D−M] (1)

where ny is the number of outputs, nu is the number

of inputs, M is the number of past input values used

in the model, and D is the total number of available

data points. Note that linear models are a subset of the

nonlinear models above when β j,i= 0 and γ j= 0 with

the coefficients γ j corresponding to the cross input terms

u1 ×u2, in the case of only two inputs.

The actual values for the inputs ui and the outputs y j

are obtained from the generated process data using the

dynamic refinery model. Using a vector notation and

linear algebra nomenclature, the above model can be

presented as

b j = Ax j (2)

where for each output j vector b j = (D×1) represents

the generated output values y j, vector x j = (2Mny×1)

contains the modeling coefficients, and a matrix A =

(D×2Mny) is the actual generated input data. The task

of model identification is to obtain the coefficients α j,i,

β j,i and γ j. It is reduced to finding a solution

x j = A† b j (3)

where A†is a pseudo-inverse (Moore-Penrose general-

ized inverse) of a matrix A.

One may identify linear models (β j,i = 0, γ j = 0),
simple nonlinear models (β j,i 6= 0, γ j = 0) and full

nonlinear models (β j,i 6= 0, γ j 6= 0). The modeling results

are compared with the actual generated output data by

finding a sum of squared errors throughout the available

D data points, k = 1 to k = D−M. A portion of the

data can be used to evaluate the model fit. After finding

the model coefficients using a set of data, a different set

of data can be used to validate the model. Figures 5-6

show the actual open-loop generated outputs presented

in deviation form around the steady state values. The

model data outputs obtained in the first 80 percent of

the range D (D=16,512) and the models were validated

for the remaining 20 percent. This is shown for both the

linear (Figure 5) and the nonlinear with the cross terms

(Figure 6) cases. A five minute sample period was used.

The inputs and outputs were put in deviation form and

scaled for modeling and control purposes.
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Fig. 5. Linear model with validation.
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Fig. 6. Volterra based nonlinear modeling with validation.
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The sum of squared errors (SSE) over the range

[D1,D2) ∈ D defined for each output j as

SSE
( j)
D1,D2

=
1

D2 −D1

D2

∑
i=D1

[

y j,model(i)− y j,actual(i)
]2

(4)

are summarized in Table I for M=60 (number of terms

used in the model). Note that the total number of model

coefficients for one output is Mnunt+nctMnu(nu −1)/2.

The second term includes the binary variable nctwhich

represents the inclusion or exclusion of cross terms. For

this work, nu = 2 is the number of inputs, nt is the

order of the model, and nct accounts for the presence

or absence of input cross terms. Therefore, in the linear

case (nt = 1 , nct = 0) and the total number of the model

coefficients is 120, whereas in the nonlinear case (nt = 2)

the total number of the model coefficients is 240 without

cross terms (nct = 0) and 300 with the input cross terms

(nct = 1), respectively.

Model Identification

Type of model Linear Volterra W/Cross

# model coeffs 120 240 300

y1 0.1997 0.1360 0.1114

y2 0.5743 0.3418 0.2209

y3 0.1535 0.0830 0.0326

y4 0.3996 0.2160 0.0824

Model Validation

y1 0.878 0.600 0.5038

y2 2.495 1.458 0.9559

y3 0.677 0.352 0.1456

y4 1.758 0.908 0.3481

TABLE I

SUM SQUARED ERRORS (X 10−4) FOR LINEAR AND VOLTERRA

MODELING, M = 60.

IV. CONTROLLER FORMULATION

The nonlinear MPC model with M terms, nu inputs,

ny outputs, moving horizon m, and predicting horizon p,

is formulated using the second-order Volterra series in

the following model:

y j(k)
∣

∣

k∈[1, p]
= d j +∑

nu

i=1 ∑M−1
l=0 α j,i(l)ui(k−M + l)

+∑
nu

i=1 ∑M−1
l=0 β j,i(l)ui(k−M + l)2

+∑
nu,nu

i=1,ii=i ∑M−1
l=0

γ j(l)ui(k−M + l)uii(k−M + l)

(5)

In the above equation, ui(k−M + l) is the input i at the

given sample time, yj(k) is a predicted value of output

j at time k, and the update d j is defined as:

d j = y j,m(0)− y j,p(0) (6)

where for each output j, y j,m(0) and y j,p(0) are the

measurement at the current time and the predicted value

of the output at the current time, respectively. In this

model, values for ui before time k are known and values

for times greater than k +m are fixed to u(k +m).
This formulation chooses a sequence of input moves

over the move horizon (m) that minimizes the cost func-
tion. A 2-norm is used in the MPC objective function in
this work to avoid performance issues associated with
the 1-norm formulations [15]. The 2-norm objective
function takes the form

φ =
ny

∑
j=1

p

∑
k=1

Γy, j(k)e j(k)+
nu

∑
i=1

m

∑
l=1

Γu,i(l)∆ui(l) (7)

where e(k) is the squared value of error predicted for

the kth time step into the future. The error (e) is defined

as

e j(k)|k∈[1, p] = (yp, j(k)− ysp, j(k))
2 (8)

Here, yp, j(k) is the predicted value of output j at time

k, updated based upon process model mismatch at the

current time. The term ∆ui defines changes in input i

movements,

∆ui(k)|k∈[1,m] = (ui(M + k−1)−ui(M + k))2 (9)

Γy, j(k) and Γu,i(l) are weighting factors used to define

the relative importance of each objective function term

in Equation 7. The move horizon limits changes in ui

after m steps such that

∆ui(l −1) = 0 ∀l > m (10)

In this formulation, the optimization problem to be

solved at each time step includes only hard constraints

on the actual inputs of the process:

ul
i 6 ui 6 uu

i (11)

In MPC formulations, the prediction horizon (p) can

be chosen as a large value to promote stability. Sta-

bility can also be ensured through the use of a hard

constraint which drives the terminal state error to zero.

This theoretical guarantee for nominal stability fails in

cases where an unreachable setpoint is provided, as the

optimization problem is infeasible [8].

V. CLOSED-LOOP RESULTS

Comparison between the proposed Volterra-based

Nonlinear Model Predictive Control (NMPC) formula-

tion and a traditional linear PID control was considered

for a 2x2 system of kerosene-diesel compositions. In

both cases the reflux molar flow rate and the reboiler

duty were used as the process inputs. The RGA analysis,

in addition to the obtained open-loop steady state distri-

bution and the normalized gain plots, suggested that this

combination of manipulated inputs to be used to control

the compositions of the pair kerosene-diesel be avoided.
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Indeed, a traditional PID control failed to adequately

handle the nonlinear interacting pairing of outputs (y2,

y3). This is shown in Figure 7. Note the oscillatory

nature of the closed-loop response and the very slow

settling time. No attempt was made to develop a 2x2

decoupling control system for this process, although

improved controller performance would be expected.
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Fig. 7. PI control of a nonlinear interacting pairing (kerosene-diesel).

The proposed nonlinear MPC formulation based on

Volterra modeling was implemented on the entire 4x2

system. The closed-loop results appear in Figure 8.

Taking into account the complexity and a very sensitive

nature of the process, as well as the multivariable inter-

actions, it was anticipated that it would be impossible

to control all four process outputs by manipulating the

two inputs. This is obvious, as process outputs 3 and 4

fail to track the setpoint.

0 50 100 150
−0.01

0

0.01

y
1

Volterra based NMPC (m=2 p=40) for a 4x2 system

0 50 100 150
−0.02

0

0.02

y
2

0 50 100 150
−5

0

5
x 10

−3

y
3

0 50 100 150
−2

0

2
x 10

−3

y
4

 

 
Ymeas

Yhysys

0 50 100 150
−0.1

0

0.1

in
p

u
ts

 u
1
, 

u
2

 

 
u

1

u
2

Fig. 8. Nominal nonlinear MPC closed-loop control showing setpoint
tracking. m=2, p=40, Γy= [10 10 10 10], Γ∆u= [1 1].

The MPC controller was compared to the 2x2 PI

control simulation. The nonlinear MPC results are much

better than the obtained results using traditional PI

control methods. These results for the pair kerosene-

diesel are shown in Figures 9 and 10 for disturbance

rejection and setpoint tracking, respectively. The control

system could track the setpoints and reject small distur-

bances despite the strong nonlinear dynamics that were

associated with this pair of process outputs. Note that

the PI control system required relatively small setpoint

changes in order to maintain stability and avoid input

saturation. Nonlinear MPC allows for a wider range of

operating conditions. Eventually, soft constraints based

on a prioritized list of control objectives will be devel-

oped for this nonsquare system.
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Fig. 9. Disturbance rejection for a 2x2 control, normalized Kerosene
and Diesel compositions
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Fig. 10. Closed-loop nonlinear MPC 2x2 control, normalized
Kerosene and Diesel compositions

VI. CONCLUSIONS

This work considered improved dynamic modeling

and control of nonlinear dynamic systems. The modeling
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and control methods are tested using data from a high

fidelity dynamic simulator. The results of the work

indicate that a multivariable chemical process such as

a distillation operation demonstrates a clear nonlinear

behavior and can be empirically modeled using the

second-order Volterra series models to closely match the

data obtained from the plant dynamic simulation. As

expected, the Nonlinear Model Predictive Control for-

mulation used in this work has produced better control

results comparing to those obtained with a traditional PI

control. In particular, the proposed control formulation

was able to track setpoints in those 2x2 interacting loops

in which the more traditional PI tuning method failed

or caused significant input saturation. Situations where

the inputs saturate or reach their critical values are not

desired and could potentially be very harmful to a plant

or a process, in general, affecting both safety and costs

due to the energy intensive nature of distillation oper-

ation. Additionally, the nonsquare formulation can be

used with soft penalty constraints to maintain adequate

operation when limited actuation is available.
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