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Abstract— The work in this paper addresses the stability of a
discretized version of the well-known phase-coupled oscillator
model from the physics community. The main contribution is a
pair of stability proofs for a system of N phase-coupled agents.
The first proof establishes asymptotic stability to the balanced
set for a range K∆T , where K is a coupling gain and ∆T is
the time discretization. In the second proof, a reference vector
in the unit ball is introduced and asymptotic stability of the
phase centroid to the reference vector is guaranteed, again for
a range of K∆T . These results are of particular interest to
researchers looking to apply phase coupling to systems in which
continuous communication is not possible. Possible applications
of this work include cooperative target tracking and modeling
of neurological processes and of biological aggregations.

I. INTRODUCTION

First introduced in the physics community by Kuramoto

and later studied by Crawford, Strogatz, and many others,

phase-coupled oscillator models were developed to explore

how loosely coupled distributed systems are able to achieve

synchrony or anti-synchrony. Recently, phase coupling has

been adopted by control theorists seeking a solid platform

on which to build distributed algorithms. Some examples

include stabilization of collective motion [1], [2] and coor-

dinated target tracking [3], [4].

In the classical model of phase-coupled oscillators, the

rate of each oscillator is equal to a natural frequency minus

a scaled mean of sines of the angle differences between

the local state and all others’ states. Synchrony is said

to be achieved when all oscillators cycle in unison and

is only possible when the coupling strength is sufficiently

large. Smaller coupling gains result in an incoherent state.

If the sign of the coupling gain is switched, and the gain is

sufficiently large, the oscillators will end up in a balanced

(i.e. anti-synchronized) state in which the phase centroid is

at the origin. Please refer to [5], [6], [7], [8], [9], [10] and

references therein for further details.

For engineering purposes, the objective is usually to drive

the agents to a desired group state, and thus the incoherent

state is less desirable. By choosing all natural frequencies at

zero, the incoherent state can be avoided entirely. The sign

of the coupling gain then determines whether the equilibrium

state will be balanced (Fig. 1a) or aligned (Fig. 1b). With zero

natural frequencies, each “oscillator” no longer oscillates, so

we simply refer to the individuals as phase-coupled agents.

The phase-coupled agent model has been employed quite

often in the multi-agent systems literature. Much of this
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Fig. 1. Example headings are plotted on the unit circle as dark dots for (a)
balanced, (b) aligned, and (c) reference matched group states with N = 4.
The large red circle denotes the phase centroid. In (c), the reference vector
is denoted by a green “x” located at [0.75,−0.25]. The work in this paper
establishes stability to both balanced and reference matched sets.

literature has used this model as a steering controller for

a group of unicycle-type vehicles. Early work here was

done by Justh and Krishnaprasad [11], [1] and connections

to the Kuramoto model were established in [2], [12]. In

each of these works, the vehicles’ headings will stabilize

to a state in either the aligned set or the balanced set,

depending on the sign of the control gain. Related work

in this area has focused on splay state stabilization [12],

[13], interconnection topology [14], [15], [16], and trajectory

tracking [17], [18].

In order to apply the ideas of phase-coupled oscillator

models to the problem of cooperative target tracking, a ref-

erence vector was introduced in [3], [19]. While the standard

model of phase coupling can only result in balanced or

aligned group states, the reference-augmented model drives

the phase centroid to the reference vector, which can be

anywhere in the unit ball, see Fig. 1c. For target tracking

with a group of unit-speed unicycles, the phase centroid

corresponds to the velocity of the spatial centroid. Thus,

stability of the phase centroid to the reference vector enables

the spatial centroid to track a target using steering inputs

alone. Extensions of cooperative target tracking have been

made to three dimensions [4].

One main drawback of applying the classical phase-

coupled agent model to engineered systems is that the

inter-vehicle communication takes place in continuous time.

In other words, each agent needs to receive the state of

every other agent at every time instant. Clearly, this com-

munication scheme is infeasible in practice because the

required bandwidth is infinite. In order to address this

drawback, researchers have recently proposed a discrete

time reformulation of the phase-coupled agent model [20].

This reformulation permits inter-vehicle communication to

occur every ∆T seconds, as opposed to continually. In [20],

linearization and Monte Carlo simulations were used to show
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that the discretized model preserves many of the interesting

properties of the classical model for a certain range of system

parameters.

The work in this paper focuses on the stability of phase

coupling in discrete time and has two main contributions.

The first is a proof showing that a system of N phase-

coupled agents is asymptotically stable to the balanced set for

a conservative range of parameters. The second is a related

proof showing asymptotic stability of the phase centroid to

an arbitrary reference vector in the unit ball. While sufficient

only, these analytical results are the first to prove stability

to these sets, as previous results used simulation and local

linearization techniques.

The presentation is organized as follows. The discrete

time phase-coupled agent model is presented in Section II.

Stability to the balanced and aligned sets is established in

Sections III and IV, respectively. Simulation results demon-

strating the theory are available in Section V, and concluding

remarks are in Section VI. Proofs of lemmas can be found

in the Appendix.

II. PHASE COUPLING IN DISCRETE TIME

The classical continuous time model of phase-coupled

oscillators studied by Kuramoto and others is:

θ̇i(t) = ωi(t) −
K

N

N∑

j=1

sin(θj(t) − θi(t)). (1)

Here θi and ωi are the phase and natural frequency of the ith

oscillator, and N is the number of agents. The gain parameter

K models how tightly the group is coupled. To arrive at

the discrete time phase-coupled agent model from [20], set

ωi = 0 for all individuals (to avoid undesirable incoherent

states), and apply a zero order hold:

θi(h+ 1) = θi(h) −
K∆T

N

N∑

j=1

sin(θj(h) − θi(h)). (2)

Here h is a time index and ∆T is the discretization period,

which has been used as a strict deadline on communica-

tion [21], [22].

A useful parameter in the study of phase-coupled oscillator

models is the phase centroid,

x̄(h) =
1

N

N∑

i=1

xi(h) = ρ̄(h)∠θ̄(h). (3)

where

xi(h) =

[
cos θi(h)
sin θi(h)

]
. (4)

The magnitude of the phase centroid, ρ̄(h) = ‖x̄(h)‖, is

called the order parameter. Kuramoto showed [5] that the

phase centroid can be used to express (2) in mean field

coupling form,

θi(h+ 1) = θi(h) −K∆T ρ̄(h) sin(θ̄(h) − θi(h)). (5)

The equilibria of (2) and (5), for non-zero K , occur

whenever

1

N

N∑

i=1

sin(θj − θi) = 0. (6)

States, θ, for which (6) holds can be partitioned into aligned,

balanced, and unstable sets, defined respectively as

A = {θ ∈ T
N | ρ̄ = 1} (7)

B = {θ ∈ T
N | ρ̄ = 0} (8)

U = {θ ∈ T
N \ A ∪ B | sin(θj − θi) = 0 ∀ij}. (9)

In the unstable set, all headings are parallel, but the state is

neither aligned nor balanced.

As observed in previous work, the stability of the discrete

time phase-coupled oscillator model to either aligned or

balanced sets is related to K∆T . Conjecture 1 of [20]

suggested without proof that the N oscillator system (2),

(5) is asymptotically stable to the aligned set for −2 <
K∆T < 0 and to a balanced set for 0 < K∆T < 2.

Local linearization and Monte Carlo simulations for N = 7
were used to support this conjecture. Aligned set asymptotic

stability for −2 < K∆T < 0 was later proved in [21], [22]

by showing that the order parameter increases on each step.

III. BALANCED SET STABILITY

In this section, almost global asymptotic stability of N
phase-coupled agents to the balanced set is proven for 0 <
K∆T < 1. The main theorem is built upon two lemmas

which will be presented before the theorem. Throughout

this section, Fig. 2 may be used to give some graphical

significance to the approach. Proofs of the lemmas can be

found in the Appendix. Also, the following assumption will

hold for the remainder of this section.

Assumption 1: Assume without loss of generality that the

state θ(h) has been rotated so that θ̄(h) = 0. Note then that

x̄(h) = [ρ̄(h), 0]T , (10)

and θ(h) ∈ A ∪ U =⇒ θi ∈ {0, π}, i = 1, . . . , N . Also,

note that x̄(h+ 1) will not typically lie on the x-axis.

Lemma 1: Denote by Br(c) the open ball of radius r
centered at the point c. If there exists a nonempty I ⊆
{1, . . . , N} such that

xi(h+ 1) ∈ Bρ̄(h) (xi(h) − x̄(h)) for i ∈ I, (11)

and

xi(h+ 1) = xi(h) otherwise, (12)

then

x̄(h+ 1) ∈ Bρ̄(h) (0) . (13)

Lemma 1 will be used to show that the phase centroid at

h + 1 will be closer to the origin than at h (13), provided

that individual state changes satisfy (11).

Lemma 2: Starting from any point xi(h) =
[cos(θi(h)), sin(θi(h))]]

T on the unit circle, the

heading update (2), (5) results in a new point
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Fig. 2. This figure shows the general setup of the work in this paper.
The unit circle is shown in green (gray). The phase centroid is drawn at
x̄ = [0.5, 0] and is marked with a red “o”, the dot is xi, and the diamond
is located at xi − x̄. The square denoted x

∗ is the farthest point xi could
move around the unit circle before leaving the shaded ball, Bρ̄(xi − x̄).

xi(h + 1) = [cos (θi(h+ 1)) , sin (θi(h+ 1))]]T on

the unit circle that satisfies

xi(h+ 1) ∈ Bρ̄(h) (xi(h) − x̄(h)) , (14)

provided 0 < K∆T < 1, ρ̄(h) > 0, and θi(h) 6= kπ, k ∈ Z.

Referring to Fig. 2, Lemma 2 establishes that phase coupling

will move an agent from xi(h) to some point on the bold

portion of the green unit circle.

The following theorem is a main result of this paper.

Theorem 1: ForN ≥ 2, the discrete time system (2), (5) is

asymptotically stable to the balanced set for 0 < K∆T < 1
from all initial conditions θ(0) ∈ T

N\U ∪ A.

Proof: Take as a candidate Lyapunov function

V (h) = ρ̄(h), (15)

which is non-negative and equals zero for all θ ∈ B. We will

show that for θ(h) /∈ B, V (h) is monotonically decreasing

in h by showing that x̄(h+ 1) ∈ Bρ̄(0).
First, assume that the state θ(h) /∈ U ∪ A, and define J

as

J = {j ∈ 1, . . . , N | θj(h) 6= kπ, k ∈ Z} . (16)

Either the state is balanced, θ(h) ∈ B, or the index

set is nonempty, |J | > 0. If i ∈ J , xi(h + 1) ∈
Bρ̄(h) (xi(h) − x̄(h)), from Lemma 2, and otherwise xi(h+
1) = xi(h) because sin(θ̄(h) − θi(h)) = 0 in (5). Lemma 1

can then be used to conclude that x̄(h+ 1) ∈ Bρ̄(h) (0), so

V (h+ 1) < V (h).
Now, assume that the state θ(h) ∈ U ∪ A. These points

are invariant, but we will show by linearization that they are

unstable. Without loss of generality, from Assumption 1 and

the definitions of U and A, reorder the state so that

θi =

{
0 for i = 1, . . . , η

π for i = η + 1, . . . , N,
(17)

and also note that η > N/2 > 0 because ρ̄(h) lies on the

positive x-axis (θ(h) /∈ B). The linearized state transition

matrix has η eigenvalues at 1 + K∆T ρ̄(h)/N , which are

unstable for ρ̄(h) > 0 and K∆T > 0, as is the case here.

Thus, because η > 0, θ is unstable for all θ ∈ U ∪A. Note,

therefore, that the state will never reach U ∪ A because all

points in this union are unstable and θ(0) /∈ U ∪A.

Thus, V (h+1) < V (h) provided V (h) 6= 0, in which case

the state is already balanced. LaSalle’s invariance principle

for discrete time systems can be used to conclude that the

state will converge asymptotically to the largest invariant set,

which here is the balanced set alone.

Note that Theorem 1 establishes a sufficient condition

only. If K∆T is larger than 1, Lemma 2 fails to hold. From

the simulation study in [20], the Lyapunov function used

here appears to work for K∆T up to two. Ongoing work is

aimed at formalizing this result.

IV. REFERENCE SET STABILITY

In this section, we modify the phase-coupled agent model

to include a reference vector. The objective is to drive the

phase centroid to this reference. The inclusion of a reference

vector has been studied in continuous time for the application

of coordinated target tracking using a group of N planar

or 3D unicycles. The main contribution presented in this

section is a proof that the reference-augmented system is

asymptotically stable in discrete time, for a range of K∆T .

Let the reference vector be xref = ρref∠θref ∈ B1(0),
and consider the reference-augmented phase-coupled agent

system,

θi(h+ 1) = θi(h) −
K∆T

N

N∑

j=1

sin(θj(h) − θi(h))

+K∆Tρref sin(θref − θi(h)). (18)

As with the standard phase-coupled oscillator model, the

reference-augmented model can be written in mean field

coupling form,

θi(h+ 1) = θi(h) −K∆T ρ̃(h) sin(θ̃(h) − θi(h)), (19)

where ρ̃(h) and θ̃(h) are the magnitude and phase of centroid

error, x̃(h) = x̄(h)−xref . One main difference between (19)

and (5) is that the ρ̃ ≤ 1 + ρref ≤ 2 whereas ρ̄ ≤ 1. The

following assumption will be made throughout the remainder

of this section.

Assumption 2: Assume without loss of generality that the

state, θ(h), has been rotated so that θ̃(h) = 0. Note θ̃(h +
1) 6= 0 in general.
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Let the reference set R and reference-augmented unstable

set Ũ be defined as

R = {θ ∈ T
N | x̄ = xref} (20)

Ũ = {θ ∈ T
N | sin(θ̃ − θi) = 0 ∀i, θ /∈ R}. (21)

The following theorem establishes asymptotic stability to

state in which the phase centroid matches the reference

vector.

Theorem 2 (Reference Set Stability): The discrete time

reference-augmented phase-coupled system (18), (19) is

asymptotically stable to the reference set for 0 < K∆T <
2/(2 + ρref ), provided θ(0) /∈ Ũ and N ≥ 2.

Proof: The proof is similar to the one presented for

Theorem 1 with the main difference being that ρ̃(h) replaces

ρ̄(h) and θ̃(h) replaces θ̄(h). Due to space limitations, only

differences from the proof of Theorem 1 will be described

here.

Lemma 1 remains unchanged other than the notation

change. Lemma 2 requires a slight modification to account

for the new range of K∆T , however the result will remain

unchanged. Specifically, for 0 < K∆T < 2/(2+ρref), (35)

becomes

ψi(h) <
2ρ̃(h)

2 + ρref

sin (θi(h)) . (22)

Using the triangle inequality, ρ̃(h) = ‖x̃(h)‖ ≤ 2 + ρref , so

ψi(h) < 2 sin(ψ∗

i /2), (23)

as in (37), and the conclusion remains ψi(h) < ψ∗

i .

The only change required to the text of Theorem 1 is

that Ũ replaces A ∪ U . All states θ ∈ Ũ are unstable.

Then, as before, LaSalle’s invariance principle can be used

to conclude asymptotic stability to R.

Note that if the reference vector is unknown, 0 < K∆T <
2/3 is always sufficient. Also, if the reference vector is at

the origin, the result of Theorem 1 is recovered.

V. SIMULATION RESULTS

In this section, simulations are presented to support and

demonstrate the technical results of this paper. Two sim-

ulation scenarios will be presented. The first demonstrates

balanced set stability for various values for K∆T in a seven

agent system. The second scenario examines stability to a

reference vector for a group of ten agents.

A. Balanced Set Stability

Theorem 1 guarantees that the balanced set is stable for

values of K∆T between zero and one for N ≥ 2. However,

other work [20] suggests but does not prove that the same

Lyapunov candidate (15) will hold for K∆T up to two. No

known necessary conditions on K∆T exist. Here, we take

∆T = 1 and consider K ∈ {0.75, 1.75, 3.5}. The theory

presented here guarantees only that K = 0.75 will be stable.

Note that negative values of K∆T , down to −2, will drive

the system to an aligned state [21]. The simulation results

are presented in Fig. 3.

From the figure, it is apparent that the balanced set is

approached for both K∆T = 0.75 and K∆T = 1.75. For
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Fig. 3. A simulation of phase-coupling in discrete time (2),(5) is shown
for N = 7. The upper plot shows the general trend of heading vs. time for
K = 0.75 and ∆T = 1. The middle plot shows the Lyapunov candidate
(15), which, when zero, indicates that the state is balanced. The bottom plot
shows the same simulation as the top plot, but plotted on a unit circle phase
diagram. The initial state is marked by circles, the final state marked with
dark dots, and the centroid path is the red trace from the red diamond to
the large red circle. The same randomly selected initial condition was used
for each value of K .

the case of K∆T = 3.5, the Lyapunov candidate is clearly

invalid, yet a balanced state may eventually be approached.

B. Reference Set Stability

Theorem 2 guarantees that the phase centroid will ap-

proach any reference vector in the unit ball for 0 < K∆T <
2/3. Here, we test this theorem in simulation, and see what

happens as K∆T becomes larger. The reference vector is

xref = [.75,−.25]′, ∆T = 1, and K ∈ {0.5, 2.0, 3.0}. The

simulation results are shown in Fig. 4.

As expected, the system is stable for K∆T = 0.5. For

K∆T = 2.0, the system is not only stable, but also converges

faster. With K∆T at 3.0, the Lyapunov candidate is no

longer valid, but the reference set may have been approached

if the system was allowed to run longer.
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Fig. 4. A simulation of phase coupling in discrete time with a reference
(18) is shown for ∆T = 1 and N = 10. The upper plot shows the general
trend of heading vs. time for K = 0.5. The middle plot shows ρ̃ (the
Lyapunov candidate), which, when zero, indicates that the phase centroid
equals the reference. The bottom plot shows the initial state as circles and
the final state as dark dots. The centroid started at the red diamond and
ended at the large red circle, which is on top of the reference, marked as a
green “x”.

VI. CONCLUSION

The theory developed in this paper guarantees asymptotic

stability of phase-coupled agents in discrete time to the

balanced set for K∆T between zero and one. Further,

asymptotic stability of the phase centroid to an arbitrary

vector in the unit ball was guaranteed for K∆T up to

2/3. While sufficient only, these analytical results are the

first to prove stability to these sets, as previous results used

simulation and linearization techniques.

In preparation is a paper applying the reference set stability

developed here to the problem of target tracking. Previous

work used the continuous time model which has the problem

of being physically unrealizable. The theory developed in the

present paper will allow control gains to be selected so that

target tracking can be guaranteed with discrete time com-

munications. The resulting controller will be demonstrated

on the University of Washington’s fin-actuated autonomous

underwater multi-vehicle testbed.

In addition, future work will branch out in several direc-

tions. First, it will be interesting to see how large K∆T can

be pushed while still guaranteeing stability. We suspect that

as K∆T increases, the system behavior will become more

chaotic, and the region of attraction about B and R will

decrease in size. However, it may be possible to guarantee

non-asymptotic stability because the state cannot escape the

N -torus.

Another direction for future work is to examine limited

communication topologies. In typical distributed systems,

each agent can only communicate with a subset of the group.

Work has been done here with the continuous time model,

and it will be interesting to see how these results carry over

to the discretized model.

Finally, time delay is a consideration in many engineered

distributed systems. Time delay has been studied in the con-

text of the continuous time model [23], [24] and preliminary

simulation results [20] indicate that the discrete time phase-

coupled agent model is robust to delay, but this result needs

to be formalized.

APPENDIX

Proof: [Lemma 1] To begin, add and subtract x̄(h) from

the definition of x̄(h+ 1):

x̄(h+ 1) = x̄(h) +
1

N

N∑

i=1

(xi(h+ 1) − xi(h)) (24)

= x̄(h) +
1

N

∑

i=I

(xi(h+ 1) − xi(h)) . (25)

Then, from (11),

xi(h+ 1) − xi(h) ∈ Bρ̄ (−x̄(h)) for i ∈ I. (26)

Using this result, (25) can be rewritten as

x̄(h+ 1) = x̄(h) +
1

N

∑

i=I

pi, (27)

where pi ∈ Bρ̄ (−x̄(h)). Now, note that

1

N

∑

i=I

pi =
γ

|I|

∑

i=I

pi = γp̄ (28)

with γ = |I|/N ∈ (0, 1]. Further, γpi ∈ Bρ̄(h) (−x̄(h)),
which guarantees

γp̄ ∈ Bρ̄(h) (−x̄(h)) , (29)

because the mean of a set of points must lie within the (open)

convex hull of those points. Returning now to (27) and using

(28),

x̄(h+ 1) = x̄(h) + γp̄ (30)

which, when combined with (29) reveals

x̄(h+ 1) ∈ Bρ̄(h) (x̄(h) − x̄(h)) = Bρ̄(h) (0) . (31)

Proof: [Lemma 2] Assume by symmetry that θi(h) ∈
(0, π) and note that θi(h + 1) ∈ (θi(h), π). The magnitude
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of the phase centroid, ρ̄(h), must lie in the open interval

between zero and one because ρ̄(h) > 0 from the lemma

statement, and ρ̄(h) = 1 implies θi(h) = 2kπ, which

contradicts the lemma statement.

A circle of radius ρ̄(h) ∈ (0, 1) centered at xi(h) − x̄(h)
intersects the unit circle exactly twice, for θi(h) 6= 0. One

of these points must lie at xi(h) and the other at a point

x∗

i (h) = 1∠θ∗i (h) such that θ∗i (h) ∈ (θi(h), π), see Fig. 2.

Define ψ∗

i (h) = θ∗i (h)−θi(h) ∈ (0, π − θi(h)) and note that
[
cos (θi(h) + α)
sin (θi(h) + α)

]
∈ Bρ̄(h) (−x̄(h)) (32)

holds for all α ∈ (0, ψ∗

i (h)). In what follows, we show that

ψi(h) = θi(h + 1) − θi(h) < ψi(h)
∗, thereby guaranteeing

that xi(h+1) ∈ Bρ̄(h)(xi(h)−x̄(h). In other words, xi(h+1)
will lie on the bold portion of the green unit circle shown in

Fig. 2.

Applying the law of sines to the triangle highlighted in

Fig. 2,

ρ̄(h) sin (θi(h)) = ‖xi(h) − x̄(h)‖ sin(ψ∗

i (h)/2). (33)

Recalling (5) with θ̄ = 0 from Assumption 1,

ψi(h) = K∆T ρ̄(h) sin (θi(h)) (34)

< ρ̄(h) sin (θi(h)) , (35)

for 0 < K∆T < 1. Using (33) with (35),

ψ(h) < ‖xi(h) − x̄(h)‖ sin(ψ∗

i (h)/2) (36)

≤ 2 sin(ψ∗

i (h)/2) (37)

< ψ∗

i (h), (38)

because ‖xi(h) − x̄(h)‖ ≤ 2 by the triangle inequality and

because sin(x/2) ≤ x/2 for x > 0.
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R. Spigler, “The Kuramoto model: A simple paradigm for synchro-
nization phenomena,” Reviews of Modern Physics, vol. 77, no. 1, pp.
137–185, 2005.

[7] S. H. Strogatz, “From Kuramoto to Crawford: exploring the onset of
synchronization in populations of coupled oscillators,” Physica D, vol.
143, no. 1-4, pp. 1–20, 2000.

[8] A. T. Winfree, “Biological rhythms and behavior of populations of
coupled oscillators,” J. Theor. Biol., vol. 16, no. 1, p. 15, 1967.

[9] S. Strogatz, Sync: The Emerging Science of Spontaneous Order.
Hyperion Press, 2003.

[10] N. Chopra and M. W. Spong, “On exponential synchronization of
Kuramoto oscillators,” IEEE Transactions on Automatic Control, 2006,
under review.

[11] E. W. Justh and P. S. Krishnaprasad, “Steering laws and
continuum models for planar formations,” in IEEE 42rd Conf.

on Decision and Control, Hawaii-USA, 2003. [Online]. Available:
http://www.isr.umd.edu/ justh/

[12] N. E. Leonard, D. Paley, and R. Sepulchre, “Oscillator models and
collective motion: Splay state stabilization of self-propelled particles,”
in Proc. 44th IEEE Conf. Dec. Contr., Seville, Spain, Dec. 2005.

[13] R. Sepulchre, D. Paley, and N. E. Leonard, “Stabilization of planar
collective motion, part I: All-to-all communication,” in IEEE Trans-

actions on Automatic Control, 2005, 2005.
[14] A. Jadbabaie, N. Motee, and M. Barahona, “On the stability of the

kuramoto model of coupled nonlinear oscillators,” in Proceedings of

the 2006 American Control Conference, 2004, pp. 988–1001.
[15] R. Sepulchre, D. Paley, and N. E. Leonard, “Stabilization of planar

collective motion with limited communication,” IEEE Trans. on Au-

tomatic Control, 2006.
[16] J. Jeanne, N. E. Leonard, and D. Paley, “Collective motion of ring-

coupled planar particles,” in Proc. 44th IEEE Conf. Decision and

Control and European Control Conference, 2005.
[17] D. Paley, N. E. Leonard, and R. Sepulchre, “Collective motion:

bistability and trajectory tracking,” Decision and Control, 2004. CDC.

43rd IEEE Conference on, vol. 2, 2004.
[18] R. Sepulchre, D. Paley, and N. E. Leonard, “Stabilization of planar

collective motion, part I: All-to-all communication,” IEEE Transac-

tions on Automatic Control, 2006.
[19] D. J. Klein, “Controlled collective motion for mulitvehicle trajectory

tracking,” Master’s thesis, University of Washington, 2005.
[20] B. I. Triplett, D. J. Klein, and K. A. Morgansen, “Discrete time

Kuramoto models with delay,” in Networked Embedded Sensing and

Control, ser. Lecture Notes in Control and Information Sciences, P. J.
Antsaklis and P. Tabuada, Eds. University of Notre Dame, USA:
Springer, Oct. 2005, pp. 9–23.

[21] D. J. Klein, P. Lee, K. A. Morgansen, and T. Javidi, “Integration
of communication and control using discrete time kuramoto models
for multivehicle coordination over broadcast networks,” in IEEE

Conference on Decision and Control, December 2007.
[22] ——, “Integration of communication and control using discrete time

Kuramoto models for multivehicle coordination over broadcast net-
works,” submitted, IEEE J. Sel. Areas Comm.

[23] M. K. S. Yeung and S. H. Strogatz, “Time Delay in the Kuramoto
Model of Coupled Oscillators,” Physical Review Letters, vol. 82, no. 3,
pp. 648–651, 1999.

[24] S. Kim, S. H. Park, and C. S. Ryu, “Multistability in coupled oscillator
systems with time delay,” Phys. Rev. Lett., vol. 79, no. 15, pp. 2911–
2914, 1997.

2290


