
Application of Dynamic Optimization-Based Parameter Estimation to a

Diabetes Mellitus Patient Model

A. A. Rivera-Montalvo, A. T. Stamps and E. P. Gatzke

Abstract— This work presents a method for modeling
the effect of insulin infusion and meal disturbances in
a patient with diabetes mellitus. The model used was
presented by Bergman and later modified by Lynch and
Bequette. This modified Bergman model is a simple set of
four differential equations which account for blood glucose,
blood insulin, free insulin and subcutaneous glucose con-
centration profiles in the body of a person with diabetes
mellitus. Using subcutaneous blood sugar measurements
and data for the response to insulin of a patient, it is
possible to develop an accurate dynamic model, leading
to the possibility of applying model-predictive control to
help regulate the blood glucose levels of a patient. The
initial parameters for the modified Bergman model were
recovered from simulated data by performing dynamic
optimizations using MAPLE, MATLAB

R© and IPOPT. In
the future, this procedure could be tested using real data
for a patient.

I. INTRODUCTION

Diabetes mellitus is a metabolic disease characterized

by irregular glucose metabolism. Patients with diabetes

mellitus usually develop serious long-term effects, which

increase their risk of developing serious cardiovascular,

renal, and neural complications [1], [2]. This work

focuses on a diabetes model presented by Bergman [3],

[4], [5], in which the dynamic concentration profiles of

glucose and insulin are modeled.

The dynamic model considered here includes four

states: G(t), X (t), I (t), and GSC (t). Equation 1

describes the change in glucose concentration, dG
dt

[mg/dL/min], with respect to the current glucose con-

centration, G(t) [mg/dL], the plasma insulin concen-

tration, X(t) [mU/L], the basal glucose value for a

healthy human subject, Gb [mg/dL], and the rate of

exogenous glucose (the glucose intake from meals and

other sources) D(t) [mg/L/min].

dG

dt
= −P1G−X

(

G+Gb

)

+D(t) (1)

Equation 2 in the model describes the change in

the plasma insulin concentration, dX
dt

[mU/L/min], with

respect to the current plasma insulin concentration X (t)
and the free plasma insulin concentration above basal

value, I (t) [mU/L].

Corresponding author: gatzke@sc.edu, (803) 777-1159

dX

dt
= −P2X +P3I (2)

Equation 3 in the model describes the change in the

free plasma insulin concentration above basal value, dI
dt

[mU/L/min], with respect to the free plasma insulin

concentration above basal value I (t) [mU/L], the basal

value of free plasma insulin, Ib (in [mU/L], the typi-

cal free insulin level for controlled diabetic patients),

the insulin distribution volume VI [L], the fractional

insulin dissappearance rate, n, and the rate of exogenous

(administered) insulin, U (t) [mU/min]. Fisher et al [6]

modified this equation of the Bergman model, adding an

insulin infusion term and omitting an insulin secretion

term:

dI

dt
= −n(I + Ib)+

U (t)

VI
(3)

Lynch and Bequette [7] showed an additional vari-

ation to the Bergman model, using changes in subcu-

taneous glucose measurements
dGSC

dt
[mg/dL/min] and

relating them to the subcutaneous glucose measure-

ments Gsc (t) [mg/dL], the rate of tissue utilization Rut

[mg/dL/min], and the blood glucose concentration G(t).
This model also assumes a first order lag θ of 5 min.

dGSC

dt
=

(G−Gsc)

θ
−Rut (4)

All constants in this Bergman model are known, but

parameters P1, P2, P3, VI and n might vary in every

patient. Using dynamic patient data, it is possible to

extract the values of these parameters using parameter

estimation. Parameter estimation begins with a set of

initial parameter values. The model is evaluated at these

values, then the error between the model values and the

actual data is calculated. After this step, other parameter

values near the original are evaluated. If the calculated

error is less than the error of the last parameter set

evaluated, that new parameter set becomes the next

point, essentially moving through the iterative process

toward a group of parameters that results in a minimum

of error. When optimizing, it is important to select the

initial parameter values carefully. When working with

an oscillatory or otherwise non-linear system, it might

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

WeC04.3

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 1382

2

be possible to find a point where the error is a minima

for that region (e.g. a local minima), but not a global

minima as desired. In other cases, the estimation routine

may diverge completely.

The modified Berman model was used to generate

simulated data. Next, the simulated data was used with

the estimation routine to find the original parameter

values specified. Using dynamic optimization methods,

one may use data to extract the parameters in the model

that best fit the data, giving some insight into how

the real system behaves. Using this method, given a

set of data from a patient, it is possible to understand

the metabolism of a patient by finding these values. It

is important to fit this data to the model so advanced

control of the glucose metabolism can be performed.

II. NUMERICAL METHODS

Given the need to work with a dynamic process

model, the optimal parameter estimation problem be-

comes more difficult to formulate and solve. For a tra-

ditional numerical optimization problem using a steady-

state model, the optimization is usually formulated as

min
x,p

ϕ (x, p)

s.t. f (x, p) = 0

g(x, p) ≤ 0 (5)

xL ≤ x ≤ xU

pL ≤ p ≤ pU

The objective function ϕ depends on the system states x

and the design parameters p. It typically corresponds to

system costs or lost profit. The behavior of the process

is enforced by the equality constraints f (x, p) obtained

from the process model. Furthermore, it is common to

add additional path constraints for performance reasons

or safety/equipment protection reasons. The states x and

design parameters p are generally expected to lie within

allowable ranges
[

xL, xU
]

and
[

pL, pU
]

, respectively.

Generally, these problems fall in a class of optimizations

known as constrained Nonlinear Programming problems

(NLPs) [8], [9]. Under certain conditions, these prob-

lems satisfy more restrictive categories such as convex

NLPs, Quadratic Programs (QPs), or Linear Programs

(LPs). Regardless of the exact classification, a number of

well-established methods exist for solving these design

problems.

However, when the dynamic modeling equations must

be used, the problem becomes considerably more diffi-

cult. There are several classes of dynamic models and

a variety of ways to represent them mathematically, but

for the purpose of this work it is assumed that the system

can be described as a set of linearly-implicit DAEs

M
dx

dt
= f (t, x, p) (6)

whose dynamic behavior depends on the design vari-

ables p. The linearly-implicit differential algebraic

(DAE) form also includes the so-called mass matrix M

that is assumed to have constant coefficients. When M

has full rank, the equations comprise a set of ordinary

differential equations (ODEs); a singular matrix denotes

a DAE system. Making the corresponding substitution

into the optimal design problem (5) yields the following

Dynamic Optimization problem:

min
x,p

ϕ (x(t), p)

s.t. M dx
dt
− f (t, x(t), p) = 0 ∀t ∈

[

t0, t f

]

g(x(t), p) ≤ 0 ∀t ∈
[

t0, t f

]

(7)

xL ≤ x(t) ≤ xU ∀t ∈
[

t0, t f

]

pL ≤ p ≤ pU

The primary difference in this optimization problem

(7) is that the finite number of equality and inequality

constraints present in problem (5) must now be satisfied

at an infinite number of points in the continuous interval
[

t0, t f

]

. This cannot be solved directly, but different

approaches have been developed to approximate this

class of problems with finite-dimensional representations

that can be solved. These approaches include variational

methods, sequential or control variable parameteriza-

tion methods, multiple shooting and quasi-sequential

methods, and simultaneous or direct transcription meth-

ods.

A. Simultaneous Dynamic Optimization

Taking into consideration each methods strengths and

flaws, a simultaneous approach was selected for this

work for a variety of reasons. Unlike many of the

other methods, the simultaneous approach applies a

discretization method in the time domain to the state

variables, which converts the continuous DAE equations

into a large set of coupled algebraic constraint equa-

tions. Collocation on finite elements is the preferred

discretization as it has a number of desirable stability

and convergence properties. The collocation method has

been used successfully for engineering applications for

quite some time [10] and is most commonly used as

a technique for solving two-point boundary value prob-

lems with the basic formulation covered in numerous

locations including [11], [12], [13]. However, it can

be used effectively for initial value problems as well,

particularly when the collocation points are chosen to

be the Radau quadrature points. The basic procedure is

described here.

A polynomial approximation for each unknown state

is constructed on k intervals (finite elements) using the

1383

3

trial function x̂k defined below:

x̂k (t) =
NC

∑
i=0

xk,i ℓi (t) (8)

where xk,i are the unknown state values at NC + 1

points in the finite element and ℓi (t) is the Lagrange

interpolating polynomial corresponding to the point ti in

the interval as given by

ℓi (t) = ∏
j 6=i

(

t − t j

)

(

ti − t j

) (9)

which has the useful property that

ℓi (t j) = δi j (10)

where δi j is the Kronecker delta function. The derivative

of the trial function is found by differentiating the basis

polynomials:

dx̂k

dt
=

NC

∑
i=0

xk,i ℓ̇i (t) (11)

When evaluating the derivative at the points t j within

the collocation element, which include the NC Radau

quadrature points and also the left endpoint, it can be

shown that the value is a weighted linear combination

of the unknown state values xk, j scaled by the inverse

length of the interval ∆tk as shown in Equation 12.

dx̂k

dt

∣

∣

∣

∣

t=tk, j

=
1

∆tk

NC

∑
i=0

c j,i xk,i (12)

Using this trial formulation, it is then straightforward

to apply collocation to a system of DAEs described by

Equation 6. The result is a large set of coupled nonlinear

algebraic equations in the form

M
NC

∑
i=0

c j,i xk,i −∆tk f
(

tk, j, xk, j, p
)

= 0

j = 1 . . . NC, k = 1 . . . NE (13)

This results in a set of N ×NC ×NE equations in

N × (NC +1)×NE unknowns where N is the number

of states and NE is the number of elements, so an

additional N ×NE equations are required to obtain a

unique solution. Given the nature of DAE systems, the

state variables are expected to be continuous at interval

boundaries
xk,0 = xk−1,NC (14)

and it is assumed that the initial conditions are known at

least as a function of the initial time t0,0 and parameters

p:
x0,0 = xIC

(

t0,0, p
)

(15)

Thus, the DAE governing equations are converted to

a very large set of algebraic equations. By replacing

the continuous constraints in (7) with the collocations

equations 13, 14, and 15, evaluating path constraints at

the collocation points, and including the state values xk, j

directly in the optimization formulation, the dynamic

optimization problem is converted to a standard NLP

of the form given by (5). In this work, three-point

collocation was selected, resulting in piecewise cubic

trial solutions. Traditionally, Radau quadrature includes

the left endpoint of the interval as a quadrature point. In

this work, it is useful to invert the ordering and include

the right endpoint instead. In general, the locations

for the n− 1 free collocation points in n-point Radau

collocation can be found as the roots to the polynomial

RP(t) =
Pn−1 (t)+Pn (t)

1+ t
(16)

where Pn (t) is the nth Legendre polynomial. This poly-

nomial returns points on the interval [−1, 1] and assumes

that the left endpoint (-1) is the included point. These

points can be inverted and then scaled to the more

useful interval [0, 1] for use in collocation. Ultimately,

this procedure produces a numerically stable system

of equations and exhibits favorable properties for the

solution of stiff ODEs or DAEs [14]. Moreover, with ap-

propriate assumptions, it can be shown that the necessary

conditions for optimality of the reformulated problem

approach those for the original problem generated using

variational methods as the number of collocation points

increases [15]. Thus, one can be confident that the

optimal solution obtained by the simultaneous method is

near to the solution of the original dynamic optimization

problem.

B. Selection of Optimization Algorithm

As stated previously, the collocation-based simulta-

neous dynamic optimization approach results in an NLP

with N ×NE × (NC +1) equality constraints. Clearly,

the problem size grows quickly and requires solution

methods specifically designed for large-scale optimiza-

tion. Therefore, the IPOPT package [16], [17] was

chosen as the candidate solver due to its successful

use in other dynamic programming applications with

as many as 105 − 106 variables [18], [19]. Its solving

capabilities were crucial to the feasibility and utility

of this approach. Specifically, IPOPT is an interior-

point implementation of the Sequential Quadratic Pro-

gramming (SQP) approach to solving constrained NLPs.

It utilizes exact second derivative information (when

available) to compute Newton-like search directions and

explores these directions using a filter line search to

ensure convergence of the algorithm. The FORTRAN

77 version of IPOPT solves general constrained NLPs

1384

4

of the form

min
x

ϕ (x)

s.t. c(x) = 0 (17)

xL ≤ x ≤ xU

Since general nonlinear inequalities are not handled

directly, it is the user’s responsibility to incorporate slack

variables s manually as shown in Eq. 18:

g(x) ≤ 0 ⇒ g(x)+ s = 0 s.t. s ≥ 0 (18)

C. Implementation

The task of formulating the optimization problem

itself would be challenging, time-consuming, and error-

prone due to its large size. IPOPT generally requires

five user-provided functions: an objective function, the

gradient of the objective function, the constraint func-

tions, the gradient of the constraints, and the Hessian

of the Lagrangian. For detailed models, calculating the

necessary partial derivatives is cumbersome. Moreover,

the collocation procedure is intricate and repetitive.

Thus, the utility of this method is dependent on the ease

with which the problems can be formulated; the greater

the extent that the process can be automated, the more

useful this optimization approach becomes.

Consequently, a multi-stage procedure was developed

including pre-processing that is accomplished using the

symbolic capabilities of the MAPLE [20] to generate

first and second derivatives using the GRADIENT and

JACOBIAN commands in the codegen package. In

particular, the gradients of the functions needed are

with respect to both the state variables and the de-

sign parameters, as well as the state, parameter, and

mixed Hessians. After these procedures have been cre-

ated, the corresponding MATLAB
R© function code can

be generated automatically by utilities in MAPLE’s

CodeGeneration package. Once the MATLAB
R©

functions are created, the user develops a script that pop-

ulates a structure with the problem information: function

names, number of states, number of constraints, number

of time steps, size of time step, initial parameters, initial

condition guesses, state/parameter bounds, etc. Once the

structure is fully populated, a function is executed that

calls a DAE solution algorithm to perform a forward

simulation to determine consistent initial conditions for

all state variables in the optimization. An appropriate

number of slack variables are created and initialized.

Finally, the IPOPT wrapper is called to solve the op-

timization problem. All function evaluations needed by

IPOPT are performed by callbacks to MATLAB
R© where

the functions named in the problem structure are used

to generate the correct objective and constraint functions

based. Assuming successful termination of IPOPT, the

0 20 40 60 80 100

0.5

1

1.5

2

Time

P
o
p
u
la

ti
o
n

Fig. 1. The prey (solid) and predator (dashed) data used in the
parameter regression problem.

optimal state and parameter values are returned to the

user along with the final objective value and option-

ally a significant amount of information related to the

solution of the optimization problem. Solving different

optimization problems is now reduced primarily to a

matter of changing values within the specialized problem

structure. For this work, it is assumed that the opti-

mization problem depends on the system states x and

the model parameters p. Generally, a user will need to

supply information about three different functions: the

objective function, the dynamic constraint (Right-Hand

Side (RHS), see Eq. 6) function, and the optional path

constraint function.

III. RESULTS AND DISCUSSION

A. An Illustrative Example

Consider a simple parameter regression problem us-

ing the well-known Lotka-Volterra predator-prey model

[21], [22]. The populations of the prey x and predators y

are governed by the following set of nonlinear ordinary

differential equations:

ẋ = α x−β xy (19)

ẏ = δ xy− γ y

Synthetic data was created by numerically integrating

these equations with the following parameter values:

α = β = δ = γ = 0.5. The initial conditions were se-

lected to be x(0) = y(0) = 0.5. The model was sampled

at 0.5 unit intervals to a time of 100 units creating a

data record with 201 points as shown in Figure 1.

For simplicity, it was assumed that the initial condi-

tions x(0) and y(0) and parameters α and γ were known

exactly, leaving two unknown parameters β and δ to be

determined through parameter estimation. Two different

optimization studies were conducted to obtain the values

of β and δ . The first used a traditional nonlinear

least squares approach. The second optimization study

utilized the simultaneous optimization strategy described

above to minimize the same Sum-Squared Error (SSE)

objective function given by Eq. 20. However, since

1385

5

δ

β

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

3

δ

β

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

3

Fig. 2. Regions of convergence for the predator-prey problem using
standard nonlinear least squares regression (left) and simultaneous
dynamic optimization to minimize SSE (right). Dark areas indicate
starting points that converge to the global solution.

the dynamic equations are discretized in time and the

state variables included within the optimization problem

itself, it is possible to include bounds on the state

variables within the optimization problem itself. It was

hypothesized that placing bounds on the states to tightly

enclose the data would provide extra information to

the optimization algorithm, increasing the likelihood of

converging to the optimal solution.

During each iteration k of the optimization, the dy-

namic solver DASSL [23] was used to compute the state

profiles x̂ and ŷ based on the given parameter values

[βk, δk]. The objective function was then computed ac-

cording to Eq. 20.

ϕ (β , δ) =
200

∑
i=0

[

(x̂i − xi)
2 +(ŷi − yi)

2
]

(20)

Based on initial parameter guesses [β0, δ0], the gradient-

based nonlinear program (NLP) solver IPOPT [17] was

used to minimize Eq. 20. Bounds of [0.001, 10] were

specified for both parameters. Since the exact parameter

values were known — {0.5, 0.5} — it was desired to de-

termine the region of initial parameter space that would

lead to the global solution when using this optimization

strategy. Initial values for each parameter were selected

in the range [0.1, 3] in increments of 0.05, resulting

in a total of 3481 optimization cases. The regions of

convergence for this method are presented in Figure 2.

Regions of parameter space that produced profiles that

exceeded the range of the data would be automatically

excluded from the possible solutions.

As seen in the figure, the initial points that tend

to converge predominantly lie in two disjoint regions.

In all, 1634 cases converged to the global solution or

about 46.9% of the total number for the first study.

Also, cases in which either of the two parameters were

initialized to a value lower than the true value were

unlikely to converge to the correct answer. Using the

simultaneous approach, the global solution was found

for 3277 of 3481 cases, about 94.1%. Not only is this

a vast improvement, but it should also be noted that

when using the simultaneous approach the cases that did

not converge to the global did not fail by converging

to a local minimum; the NLP algorithm terminated

with an error condition after exceeding a maximum

number of iterations. Many more of the trials converge

to the global solution, and that convergence is more

uniformly distributed throughout the entire region that

was considered. Hence, not only does the simultaneous

approach offer a greater chance of success than tradi-

tional methods, it also has a more useful failure mode.

Termination due to exceeding the maximum number

of iterations is an automatic flag to the user that the

results should not be considered optimal. However, the

user may have difficulty recognizing the problem if the

algorithm converges to a local minimum instead of the

global minimum. This is especially applicable when

regressing experimental data as the “true” values of the

parameters — and thus the global objective value — are

unknown.

B. Diabetic Patient Example

Using MATLAB
R©, various different random patient

parameter values were used to generate data. In all cases,

the program was able to obtain the parameters given to

it from fitting the Bergman model to the generated data.

All data was recorded with initial values of zero, and

in the time range between 0 and 1300 min, with time

intervals of 1 min. Figure 3 shows that both the original

data and the model data are very similar, so difference

between them is not visually noticeable.

The peaks at 200, 450 and 700 min correspond

approximately to three meals. An afternoon snack was

inserted at time 550 min. The smaller peaks are insulin

levels. The patient is assumed to have administered some

insulin after the meal, causing the glucose concentration

to rapidly drop. This procedure was repeated for twenty

different parameter sets. Table I shows the parameter

values used for generating data and the fitting error after

the optimization. Some parameter sets did not reach an

optimal solution in the number of maximum iterations

specified (although the error was being minimized with

each iteration), and thus were not included in the table.

IV. CONCLUSIONS

The program converged easily by placing bounds on

the states near the maximum and minimum values found

in the data. In the future, it could be advantageous to

find certain time-varying bounds that follow the data,

acting as a convergence band, so to speak, so the model

could potentially converge with even greater ease.

Using the diabetic patient model, the method was

able to find the original parameters robustly and ac-

curately. The vast difference between the parameter

sets in Table I may suggest the ability to describe the

1386

6

0 200 400 600 800 1000 1200 1400
0

200

400

600

800

1000

G
lu

c
o

s
e

 d
is

tu
rb

a
n

c
e

 [
m

g
/d

L
/m

in
]

Time (min)

0 200 400 600 800 1000 1200 1400
0

10

20

30

40

50

In
s
u

lin
 d

is
tu

rb
a

n
c
e

 [
m

U
/m

in
]

Time (min)

0 200 400 600 800 1000 1200 1400
50

100

150

200

Time (min)S
u

b
c
u

ta
n

e
o

u
s
 g

lu
c
o

s
e

 c
o

n
c
.

[m
g

/d
L

]

G
sc,data

G
sc,opt

Fig. 3. Glucose intake rate D(t)[mg/L/min] (top), insulin distur-
bance U (t)[mU/min] (middle) and simulated subcutaneous glucose
concentration measurements [mg/dL] (bottom) vs time (min). This data
was generated using the Bergman model, with P1 = 2.8735× 10−2,
P2 = 2.8344 × 10−2, P3 = 5.035 × 10−5, n = 5

54
, Gb = 81mg/dL,

V I = 12L, Ib = 15mU/L, Rut = 0, θ = 5min.

TABLE I

VARIOUS CONVERGING PARAMETER SETS AND THEIR RESPECTIVE

FITTING ERRORS.

P1 ×102 P2 ×102 P3 ×105 error×1010

2.8735 2.8344 5.035 4.2109

3.8596 0.6305 9.7059 2.0811

3.8287 1.9415 8.0028 1.4373

0.5675 1.6870 9.1574 3.0970

3.1688 3.8380 6.5574 1.9462

0.1428 3.3965 9.3399 24.3243

2.7149 3.0310 7.4313 2.0359

1.5689 2.6219 1.7119 4.1128

2.8242 0.1273 2.7692 1.5977

0.1847 0.3885 8.2346 6.1748

2.7793 1.2684 9.5022 3.2828

glucose metabolism of a wide variety of patients using

this method. However, because the data was computer-

generated, it is still unknown whether this can be done

with real patient data. In order to follow up on this

method, it would be useful to use actual patient data and

attempt to fit it to this model. In addition, any diseases or

conditions that are described by a mathematical model

could also be subjected to the procedure presented, in

order to find parameters that best describe the patient,

leading toward model-predictive control as a possible

treatment option.

REFERENCES

[1] D. M. Nathan, “Long-Term Complications of Diabetes Mellitus,”
The New England Journal of Medicine, vol. 328, no. 23, pp.
1676–1685, 1993.

[2] R. J. Rubin, W. M. Altman, and D. N. Mendelson, “Health Care
Expenditures for People with Diabetes Mellitus, 1992,” Journal

of Clinical Endocrinology and Metabolism, vol. 74, no. 4, pp.
809A–809F, 1994.

[3] R. Bergman, D. Finegood, and M. Ader, “Assessment of insulin
secretion in vivo,” Endocrine Rev., vol. 6, pp. 45–86, 1985.

[4] R. Bergman, Y. Ider, C. Bowden, and C. Cobelliar, “Quantitative
estimation of insulin sensitivity,” Am. J. Physiol., vol. 236, pp.
667–677, 1979.

[5] R. N. Bergman, L. S. Philips, and C. Cobelli, “"physiological
evaluation of factors controlling glucose tolerance in man",”
J.Clin.Invest, vol. 68, pp. 1456–1467, 1981.

[6] M. E. Fisher, “A semi-closed loop algorithm for the control
of blood-glucose levels in diabetes.” IEEE.Trans.Biomed.Eng,
vol. 38, pp. 57–61, 1991.

[7] S. Lynch and B. W. Bequette, “Model predictive control of blood
glucose in type i diabetics using subcutaneous glucose measure-
ments,” Proceeding of the American Controls Conference, no.
4039-4043, 2002.

[8] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear

Programming. Wiley, 1992.
[9] C. A. Floudas, “Global Optimization in Design and Control of

Chemical Process Systems,” J. Proc. Cont., vol. 10, no. 125-134,
2000.

[10] J. C. Slater, “Electronic Energy Bands in Metals,” Phys. Rev.,
vol. 45, pp. 794–801, 1934.

[11] L. Lapidus and G. F. Pinder, Numerical Solution of Partial

Differential Equations in Science and Engineering. New York:
John Wiley & Sons, 1982.

[12] M. E. Davis, Numerical Methods and Modeling for Chemical

Engineers. New York: John Wiley & Sons, 1984.
[13] R. G. Rice and D. D. Do, Applied Mathematics and Modeling

for Chemical Engineers. New York: John Wiley & Sons, 1995.
[14] S. Kameswaran and L. T. Biegler, “Simultaneous Dynamic

Optimization Strategies: Recent Advances and Challenges,” In

Preparation, vol. http://tinyurl.com/2m43s3, 2007.
[15] ——, “Convergence Rates for Direct Transcription of Optimal

Control Problems Using Collocation at Radau Points,” In Press,
vol. http://tinyurl.com/2npr89, 2007.

[16] A. Wächter, “An Interior Point Algorithm for Large-Scale Non-
linear Optimization with Applications in Process Engineering,”
Ph.D. dissertation, Carnegie Mellon University, January 2002.

[17] A. Wächter and L. T. Biegler, “On the Implementation of
an Interior-Point Filter Line-Search Algorithm for Large-Scale
Nonlinear Programming,” Mathematical Programming, vol. 106,
no. 1, pp. 25–57, 2006.

[18] T. Jockenhövel, L. T. Biegler, and A. Wächter, “Dynamic Opti-
mization of the Tennessee Eastman Process Using the OptCon-
trolCentre,” Comput. Chem. Eng., vol. 27, pp. 1513–1531, 2003.

[19] C. D. Laird, L. T. Biegler, B. G. van Bloemen Waanders,
and R. A. Bartlett, “Contamination Source Determination for
Water Networks,” Journal of Water Resources Planning and

Management, vol. 131, no. 2, pp. 125–134, 2005.
[20] Maplesoft, Maple Reference Guide. Springer Verlag, 2000.
[21] A. J. Lotka, Elements of Physical Biology. Baltimore: Williams

& Wilkins Co., 1925.
[22] V. Volterra, “Variazioni e Fluttuazioni del Numero D’Individui

in Specie Animali Conviventi,” Mem. R. Accad. Naz. dei Lincei,
vol. VI, no. 2, 1926.

[23] L. R. Petzold, “A Description of DASSL: A Differential /
Algebraic System Solver,” Sandia National Laboratories, Tech.
Rep. SAND82-8637, September 1982. [Online]. Available:
www.netlib.org/ode/ddassl.f

1387

