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Abstract— This paper studies the discrete-time linear
quadratic regulation problem for switched linear systems
(DLQRS) based on dynamic programming approach. The
unique contribution of this paper is the analytical character-
izations of both the value function and the optimal control
strategies for the DLQRS problem. Based on the particular
structures of these analytical expressions, an efficient algo-
rithm suitable for solving an arbitrary DLQRS problem is
proposed. The algorithm is also tested through simulations on a
number of second-order DLQRS problems. Simulation results
indicate that the proposed algorithm can solve the second-order
DLQRS problems with very low computational complexity.
The theoretical analysis in this paper dramatically simplifies
the computation, making an NP hard problem numerically
tractable.

I. INTRODUCTION

In this paper, we study the optimal discrete-time quadratic

regulation problem for switched linear systems (hereby re-

ferred to as the DLQRS problem). The goal is to develop a

computationally appealing algorithm to construct an optimal

control law that minimizes the given quadratic cost function.

The problem is of fundamental importance in both theory and

practice and has challenged researchers for many years. To

the authors’ knowledge, few constructive method for finding

both the optimal switching strategy and the optimal control

input has appeared in the literature. The bottleneck is mostly

on the determination of the optimal switching strategy. Many

methods have been proposed to tackle this problem, most of

which are in a divide-and-conquer manner. Algorithms for

optimizing the switching instants with fixed mode sequence

have been derived for general switched systems in [1] and for

autonomous switched systems in [2]. Although an algorithm

for updating the switching sequence is discussed in [2],

finding the best switching sequence is still an NP-hard

problem, even for switched linear systems.

This paper studies the DLQRS problem from the dynamic

programming (DP) perspective. The last few years have seen

increasing interest in using DP to solve various optimal

control problems of switched systems. In [3], DP is used

to derive a search algorithm to find the optimal switching

instants for fixed switching sequences. In [4], iterative al-

gorithms are proposed to approximate the true value func-

tions with guaranteed accuracy. These general algorithms are

also used to study switched systems in [5], [6]. Compared
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with previous studies, the contributions of this paper are

the following. First, we characterize analytically the value

function and the optimal control strategy for general DLQRS

problems. More specifically, we show that the value function

at each time step of any DLQRS problem is a pointwise

minimum of a finite number of quadratic functions, and that

the optimal state-feedback gain is of a Kalman-type form

with a state-dependent positive semi-definite matrix. Sec-

ondly, we prove that under certain conditions of subsystems,

the value function converges exponentially fast as the control

horizon increases. Finally, based on the particular structure of

the value function and its convergence property, an efficient

algorithm is proposed to solve general DLQRS problems.

The algorithm has also been implemented for second-order

DLQRS problem and tested through simulations. Simulation

results indicate that the proposed algorithm can compute

the optimal switching strategy and the optimal control input

simultaneously with very low computational complexity for

second-order DLQRS problems. It is worth mentioning that

in [4], Lincoln et al. proposed a similar structure of the value

function when they apply their general theory of relaxed

dynamic programming to switched linear systems. However,

the approach adopted in this paper is different and was

developed independently of the one used in [4]. Moreover,

in this paper, the value functions and the optimal control

strategies are derived more explicitly, which provide more

insights about the underlying problems.

This paper is organized as follows. In Section II, the

DLQRS problem is formulated. The value function of the

DLQRS problem is derived in a simple analytical form in

Section III. An algorithm is developed in Section (IV) to

compute the value function in an efficient way. Numeri-

cal simulations are performed in Section V to verify the

algorithm. Finally, some concluding remarks are given in

Section VI.

II. PROBLEM FORMULATION

Consider the discrete-time switched linear system defined

as:

x(t+ 1) = Av(t)x(t) +Bv(t)u(t), t = 0, . . . , N − 1, (1)

where x(t) ∈ R
n is the continuous state, v(t) ∈ M ,

{1, . . . ,M} is the discrete control or switching strategy, and

u(t) ∈ R
p is the continuous control. For each i ∈ M, Ai

and Bi are constant matrices of appropriate dimension, and
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the pair (Ai, Bi) is called a subsystem of (1). This switched

linear system is time invariant in the sense that the set of

available subsystems {(Ai, Bi)}
M
i=1 is independent of time

t. We assume that there is no internal forced switchings, i.e.,

the system can stay at or switch to any mode at any time

instant. In this paper, the terminal cost function ψ(x) and

the running cost function L(x, u, v) are assumed to be in

the following quadratic forms:

ψ(x) = xTQfx, L(x, u, v) = xTQvx+ uTRvu,

where Qf = QT
f � 0 is the terminal state weight, and Qv =

QT
v � 0 and Rv = RT

v ≻ 0 are the running weights for

the state and the control for subsystem v ∈ M, respectively.

The overall objective function to be minimized over the time

horizon [0, N ] can thus be defined as

J(u, v) = ψ(x(N)) +

N−1
∑

j=0

L(x(j), u(j), v(j))). (2)

The goal of this paper is to solve the following discrete-time

LQR problem for the switched linear system (1) (referred to

as DLQRS problem hereby).

Problem 1 (DLQRS problem): Find the u and v that min-

imize J(u, v) subject to the dynamic equation (1).

III. THE VALUE FUNCTION OF THE DLQRS PROBLEM

Following the idea of dynamic programming, for each time

t ∈ {0, 1, . . . , N}, we define the value function Vt,N : R
n →

R as:

Vt,N (z)= min
v(j)∈M,u(j),

t≤j≤N−1

{

ψ(x(N)+
N−1
∑

j=t

L(x(j), u(j), v(j))
∣

∣

∣

subject to eq. (1) with x(t) = z
}

. (3)

The Vt,N (z) so defined is the minimum cost-to-go starting

from state z at time t. The minimum cost for the DLQRS

problem with a given initial condition x(0) = x0 is simply

V0,N (x0). Due to the time-invariant nature of the switched

system (1), its value function depends only on the number

of remaining time steps, i.e.,

Vt,N (z) = Vt+m,N+m(z),

for all z ∈ R
n and all integers m ≥ −N . In the rest of this

paper, when no ambiguity arises, we will denote by Vk(z)
the value function at the time t = N − k when there are k

time steps left.

In the special case when M = 1, the switched system con-

sists of only one subsystem, say, (A,B). Thus, the DLQRS

problem degenerates into the classical LQR problem. Denote

by Q and R the state and control weighting matrices in this

degenerate case. Then, according to the LQR theory, the

value function defined in (3) is of the following quadratic

form:

Vk(z) = zTPkz, k = 0, . . . , N, (4)

where {Pk}
N
k=0 is a sequence of positive semi-definite ma-

trices satisfying the Difference Riccati Equation (DRE)

Pk+1 = Q+ATPkA

−ATPkB(R+BTPkB)−1BTPkA, (5)

with initial condition P0 = Qf . Some important facts about

the matrices Pk’s are summarized in the following lemma.

Lemma 1 ( [7], [8]): Let A be the set of all positive

semi-definite (p.s.d.) matrices, then

1) If Pk ∈ A, then Pk+1 ∈ A.

2) If (A,B) is stabilizable, then the sequence

{||Pk||2}
∞
k=0 is uniformly bounded.

3) Let C be the matrix such that Q = CTC. If

(A,B) is stabilizable and (A,C) is detectable, then

limk→∞ Pk = P ∗, where P ∗ is the unique stabilizing

solution to the Algebraic Riccati Equation (ARE)

P = Q+ATPA−ATPB(R+BTPB)−1BTPA.

In general, when M ≥ 2, the value function Vk(z) is no

longer of a simple quadratic form as in (4). To derive the

value function for the general switched linear system (1),

define the Riccati mapping ρi : A → A for each subsystem

i ∈ M:

ρi(P ) =Qi +AT
i PAi

−AT
i PBi(Ri +BT

i PBi)
−1BT

i PAi. (6)

Let H0 = {Qf} be a set consisting of only one matrix Qf .

Define the set Hk for k ≥ 0 iteratively as

Hk+1 = ρM(Hk) , {P ∈ A : P = ρi(Pk),

for some i ∈ M and Pk ∈ Hk}. (7)

In other words, each matrix in ρM(Hk) is obtained by taking

the Riccati mapping for some matrix in Hk through some

subsystem i. Denote by Nk the number of distinct matrices

in Hk and let Nk = {1, . . . , Nk}. Then it can be easily seen

that N0 = 1 and Nk ≤Mk for any k ≥ 0.

Theorem 1: The value function for the LQRS problem at

time N − k, i.e., with k time steps left, is

Vk(z) = min
j∈Nk

zTP
(j)
k z, (8)

where P
(j)
k is the jth matrix in Hk. Furthermore, for k ≥ 0,

the optimal mode (discrete control) and continuous control

at time N − (k+1) and state z are v∗(N − (k+1)) = i∗(z)

and u∗(N − (k + 1)) = −K
j∗(z),i∗(z)
k+1 z, respectively, where

i∗(z) and j∗(z) are defined as

(j∗(z), i∗(z)) = arg min
(j∈Nk,i∈M)

zT ρi(P
(j)
k )z, (9)

and K
j,i
k+1 is the Kalman gain for subsystem i with matrix

P
(j)
k , i.e.,

K
j,i
k+1 , (Ri +BT

i P
(j)
k Bi)

−1BT
i P

(j)
k Ai. (10)

.

Proof: The theorem can be easily proved through

induction. It is obvious that for k = 0 the value function is
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Vk(z) = zTQfz, satisfying (8). Now suppose equation (8)

holds for a general integer k, i.e., Vk(z) = minj∈Nk
zTP

(j)
k z,

we shall show that it is also true for k+ 1. By the principle

of dynamic programming and noting that Vk(·) represents

the value function at time N − k, the value function at time

N − (k + 1) can be recursively computed as

Vk+1(z) = min
i∈M,u

[

zTQiz + uTRiu+ Vk(Aiz +Biu))
]

= min
i∈M,u

[

zTQiz + uTRiu

+ min
j∈Nk

(

(Aiz +Biu)
TP

(j)
k (Aiz +Biu)

)]

= min
i∈M,j∈Nk,u

[

zTQiz + uTRiu

+ (Aiz +Biu)
TP

(j)
k (Aiz +Biu)

]

= min
i∈M,j∈Nk,u

[

zT (Qi +AT
i P

(j)
k Ai)z

+ uT (Ri +BT
i P

(j)
k Bi)u+ 2zTAT

i P
(j)
k Biu

]

, min
i∈M,j∈Nk,u

f(i, j, u). (11)

With symmetric matrix P
(j)
k , it can be easily computed that

∂f(i, j, u)

∂u
= 2(Ri +BT

i P
(j)
k Bi)u+ 2BT

i P
(j)
k Aiz.

Since u is unconstrained, its optimal value u∗ must satisfy
∂f(i,j,u∗)

∂u
= 0, i.e.,

u∗ = −(Ri +BT
i P

(j)
k Bi)

−1BT
i P

(j)
k Aiz = −Kj,i

k+1z,

where K
j,i
k+1 is the matrix defined in (10). Substitute u∗ into

(11), we obtain

Vk+1(z) = min
i∈M,j∈Nk

f(i, j, u∗)

= min
i∈M,j∈Nk

[

zT
(

Qi +AT
i P

(j)
k Ai −AT

i P
(j)
k BiK

j,i
k+1

)

z
]

= min
i∈M,j∈Nk

zT ρi(P
(j)
k )z.

Let i∗(z) and j∗(z) be the indices that minimize

zT ρi(P
(j)
k )z, i.e., they are defined according to (9). Then

the optimal continuous control and discrete control at time

N−(k+1) and state z are u∗(N−(k+1)) = −K
j∗(z),i∗(z)
k+1 z

and v∗(N − (k + 1)) = i∗(z), respectively. Furthermore,

observing that {ρi(P
(j)
k ) : i ∈ M, j ∈ Nk} = ρM(Hk) =

Hk+1. Thus

Vk+1(z) = min
j∈Nk+1

zTP
(j)
k+1z,

where P
(j)
k+1 is the jth element in Hk+1.

According to Theorem 1, comparing to the classical LQR

problem, the value function of the DLQRS problem is no

longer a single quadratic function; it actually becomes a

pointwise minimum of a finite number of quadratic functions.

In addition, at each time step, instead of having a single

Kalman gain for the entire space, the optimal state feedback

gain becomes state dependent. Furthermore, the minimizer

(j∗(z), i∗(z)) of equation (9) is homogeneous, indicating

that at each time step all the points along the same radial

direction have the same optimal mode and optimal feedback

gain.

IV. COMPUTATION OF THE VALUE FUNCTION

According to Theorem 1, the value function Vk(·) is

completely characterized by the set Hk, which can be

obtained iteratively by (7). Since the size of the set Hk

grows exponentially fast in general, it becomes unfeasible

to compute Hk when k gets large. However, in terms of

computing the value function, we only need to keep the

matrices in Hk that give rise to the minimum of (8) for

at least one z ∈ R
n. Such matrices are called effective with

respect to Hk. More precisely, a matrix P ∈ Hk is called

effective if there exists a z ∈ R
n such that Vk(z) = zTPz.

According to our simulation results in Section V, the number

of effective matrices in Hk grows at a much slower rate than

Nk as k increases. Therefore, the computation of the value

function and in turn the optimal control strategy may become

feasible if the set of effective matrices can be obtained

efficiently. To find the set of effective matrices, the following

definitions are introduced.

Definition 1 (Equivalent Sets of p.s.d. Matrices): Let H
and Ĥ be two sets of p.s.d. matrices. The set H is called

equivalent to Ĥ, denoted by H ∼ Ĥ, if ∀z ∈ R
n,

minP∈H z
TPz = minP̂∈Ĥ

zT P̂ z.

Therefore, any equivalent sets of p.s.d. matrices will define

the same value function of the DLQRS problem. To ease the

computation, we are more interested in finding the smallest

equivalent set of Hk.

Definition 2 ((Minimum) Equivalent Subset (MES)): Let

H and Ĥ be two sets of symmetric p.s.d. matrices. Ĥ is

called an equivalent subset of H, if Ĥ ⊆ H and Ĥ ∼ H.

Furthermore, Ĥ is called a minimum equivalent subset

(MES) of H if it is the equivalent subset of H with the

fewest elements.

Note that the MES of H many not be unique. Denote by

Γ[H] one of the MESs of H. It is also worth mentioning

that due to its special structure, the value function is homo-

geneous of degree 2, namely,

Vk(λz) = λ2Vk(z),∀z ∈ R
n, and ∀λ ∈ R

1. (12)

Therefore, it suffices to consider only the points on the

unit sphere in checking the conditions of the above two

definitions.

Lemma 2: Ĥ is an equivalent subset of H if and only if

1) Ĥ ⊆ H
2) ∀P ∈ H and ∀z ∈ R

n, there exists a P̂ ∈ Ĥ and such

that zT P̂ z ≤ zTPz.

Proof: (a) (sufficiency): We only need to prove

minP∈H z
TPz = minP̂∈Ĥ

zT P̂ z, ∀z ∈ R
n. Obviously

minP∈H z
TPz ≤ minP̂∈Ĥ

zT P̂ z, ∀z ∈ R
n because Ĥ ⊆

H. On the other hand, by condition 2), for each z ∈ R
n

and P ∈ H, there exist a P̂ such that zT P̂ z ≤ zTPz.

Thus, minP̂∈Ĥ
zT P̂ z ≤ minP∈H z

TPz. (b) (necessity):

straightforward by a standard contradiction argument.
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Remark 1: Lemma 2 can be used as an alternative defini-

tion of the equivalent subset. Although the original definition

is conceptually simpler, the conditions given in this lemma

provide a more explicit characterization of the equivalent

subset, which finds more beneficial in our subsequent dis-

cussions.

For each k ≤ N , let Ĥk be an equivalent subset of Hk and

N̂k be the number of distinct elements in Ĥk. Define N̂k ,

{1, . . . , N̂k}. The following corollary follows immediately

from Definition 2.

Corollary 1: The value function of the DLQRS problem

at time N − k is

Vk(z) = min
j∈N̂k

zT P̂
(j)
k z,

where P̂
(j)
k is the jth element in Ĥk. Furthermore, the

optimal mode at time N − (k+1) and state z is v(N − (k+
1))∗ = i∗(z) and the optimal control at time N−(k+1) and

state z is u(N − (k + 1))∗ = −K̂
j∗(z),i∗(z)
k+1 z, where i∗(z)

and j∗(z) are defined as

(j∗(z), i∗(z)) = arg min
(j∈N̂k,i∈M)

zT ρi(P̂
(j)
k )z,

and K̂
j,i
k+1 is the Kalman gain defined in (10) with P

(j)
k

replaced by P̂
(j)
k .

Corollary 1 says that to compute the value function Vk(z)
and the corresponding optimal control strategies, we only

need to compute a version of the equivalent subsets of Hk. In

particular, Γ(Hk), namely, an MES of Hk, will be sufficient.

As mentioned early in this section, Γ(Hk) is usually much

smaller than Hk. If for a particular application, the size of

Γ(Hk) grows reasonably slowly, the DLQRS problem can

be solved numerically using Corollary 1. However, a direct

computation of Γ(Hk) based on Hk could be very difficult

because its complexity usually depends on Nk (the number of

matrices in Hk), which grows exponentially fast in general.

Fortunately, this difficulty can be overcome by the following

lemma.

Lemma 3 (Computation of MES): Let the sequece of sets

{H∗
k}

N
k=0 be generated by

H∗
0 = H0, and H∗

k+1 = Γ(ρM(H∗
k)) for k ≤ N − 1. (13)

Then every H∗
k is an MES of Hk, i.e., H∗

k = Γ(Hk).

Proof: Obviously H∗
0 = Γ(H0) as H0 contains only

one element Qf . Now assume H∗
k = Γ(Hk) for some k <

N . We need to prove that H∗
k+1 = Γ(Hk+1) , Γ(ρM(Hk)).

Clearly, H∗
k+1 ⊆ Γ(Hk+1) as H∗

k+1 ⊆ Hk+1. To prove the

other direction, it suffices to show that H∗
k+1 is an equivalent

subset of Hk+1. First, H∗
k+1 ⊆ Γ(Hk+1) ⊆ Hk+1 guarantees

condition (i) of Lemma 2. To prove the other condition, take

an arbitrary P ∈ Hk+1 and an arbitrary z ∈ R
n. Then P =

ρi(P
(j)
k ) for some i ∈ M and P

(j)
k ∈ Hk. Hence,

zTPz = zT ρi(P
(j)
k )z

=min
u

[

zTQiz + uTRiu+ (Aiz +Biu)
TP

(j)
k (Aiz +Biu)

]

≥min
u

[

zTQiz + uTRiu+ (Aiz +Biu)
T P̂

(j)
k (Aiz +Biu)

]

(for some P̂
(j)
k ∈ H∗

k)

=xT ρi(P̂
(j)
k )x ≥ zTP ∗z. (for some P ∗ ∈ H∗

k+1)

Thus it follows that H∗
k is an MES of Hk.

According to Lemma 2, Γ(Hk) can be obtained only

based on ρM(H∗
k−1) without referring to the original set Hk.

Denoted by N∗
k the size of H∗

k. The set ρM(H∗
k−1) contains

only M · N∗
k−1 matrices which is usually much smaller

than Nk = Mk. Therefore, Lemma 2 has dramatically

simplified the computation of Γ(Hk). However, it is still

possible for N∗
k to grow out of hand when the time horizon

N is large. The following theorem allows us to terminate the

computation with guaranteed accuracy at some early stage

for large time horizon N .

Theorem 2: If Qf ≻ 0, and for all i ∈ M, (Ai, Bi) is

stabilizable and Qi ≻ 0, then Vk(z) converges exponentially

fast for each z ∈ R
n as k → ∞. Furthermore, the

convergence is uniform on the unit sphere in R
n.

Remark 2: Note that the conditions in this theorem are

not so stringent since a randomly selected p.s.d. matrix is

almost surely nonsingular. The proof of this theorem is quite

involved and is out of the scope of this conference paper.

Interested readers are referred to [9] for a complete proof.

The exponential convergence result is crucial for the

efficient computation of the value function. For a reasonable

tolerance on the accuracy, say 10−3, the value function

usually converges in only a few steps (usually less than 10) as

observed in our simulations in Section V. This dramatically

simplifies the computations of the value functions, especially

for the case with large time horizon N . In practice the

convergence is usually tested only on a finite set of sampling

points on the unit sphere. These sampling points should be

chosen dense enough to capture the behaviors of all the value

functions on the entire unit sphere. The existence of such

sampling points is guaranteed by the following corollary of

Theorem 2.

Corollary 2: Under the same conditions as in Theorem 2,

the sequence of value functions {Vk(z)}∞k=0 is equicontinu-

ous on the unit sphere.

Proof: Denote by Bu the unit sphere in R
n. Obvi-

ously, each value function Vk(z) is continuous on Bu. By

theorem 2, Vk(·) converges uniformly on Bu. Since Bu

is a compact set, the desired result follows directly from

Theorem 7.24 in [10].

With all the results developed so far, a general procedure

for solving the DLQRS problem is described in Algorithm 1.
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Fig. 1. Convergence results for Ex1. (a) Convergence of the Value function. (b) Difference between the last two iterations.

Algorithm 1

1) Step 1: Set H∗
0 = Qf and specify a tolerance ǫ for the

minimum cost.

2) Step 2: For each step k ≥ 1, update the MES according

to equation (13) and compute the value function at

certain sampling points on the unit sphere in R
n using

Corollary 1.

3) Step 3: If |Vk(z) − Vk−1(z)| > ǫ for some sampling

points, then go back to step 2. Otherwise continue.

4) Step 4: Define H∗
k = H∗

kǫ
for kǫ ≤ k ≤ N , where kǫ

is the number of steps taken for the convergence.

5) Step 5: The suboptimal trajectory can now be obtained

by

x(t+ 1) = Av∗(t)x(t) +Bv∗(t)u
∗(t), with x(0) = x0,

where v∗(t) and u∗(t) are determined using Corol-

lary 1 based on the set H∗

N−(t+1).

V. EXAMPLES

A. Example 1

First consider a simple DLQRS problem, referred to as

Ex1, with control horizon N = 100 and two second-order

subsystems:

A1 =

[

2 1
0 1

]

, B1 =

[

1
1

]

,

A2 =

[

2 1
0 0.5

]

, B2 =

[

1
2

]

,

with state and control weights Q1 = Q2 = I2×2 and

R1 = R2 = 1. Both subsystems are unstable but controllable.

Algorithm 1 is applied to solve this DLQRS problem. It

turns out that with the error tolerance ǫ = 10−3 the value

function of Ex1 converges in 6 steps. By (12), it suffices

to plot Vk(·) on the unit circle. If we identify R
2 with the

complex plane C, the points on the unit circle are of the form

ejθ. It can be easily verified that for second-order system,

Vk(ejθ) = Vk(ej(θ+π)), i.e., the value function is periodic

along the unit circle with period π. Therefore, in Fig. 1-(a),

the value function is plotted only at points ejθ for θ ∈ [0, π]
at each time step. The difference between the value functions

in the last two iterations are shown in Fig. 1-(b). The number

of elements in H∗
k at each step is listed in Table I. It can be

seen that N∗
k is indeed very small, and will stabilize at the

maximum value 5 as opposed to growing exponentially as k

increases.

Furthermore, the optimal switching strategy is illustrated

in Fig. 2. At each time step, the whole space is divided

into several conic regions. The regions with the same gray

scale share the same optimal mode. However, the points with

the same optimal mode may correspond to different optimal

feedback gains. The radial lines in Fig 2 further divide the

optimal-mode regions into smaller conic regions each with

a different optimal-feedback gain. In this way, the proposed

approach actually characterizes the optimal control strategies

for the entire state space.

TABLE I

N
∗

k
FOR S1

k 1 2 3 4 5 6

N
∗

k
2 4 5 5 5 5

B. Example 2

Consider a more complex DLQRS example, referred to as

Ex2, with 4 subsystems. The first two subsystems are the

same as Ex1 and the other two are defined as:

A3 =

[

3 1
0 0.2

]

, A4 =

[

1 1
0 0.8

]

,

B3 = B1, and B4 = B2.

With the same tolerance, the value function of Ex2 converges

in 5 steps. This indicates that under the same tolerance, the

speed of the convergence of the value function may not nec-

essarily increase with the number of subsystems. However,
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Fig. 2. Switching Regions for Ex1: Gray Region – mode 1 optimal; Black
Region – mode 2 optimal.

with more subsystems, N∗
k grows more rapidly as listed in

Table II. The switching regions at the final step is shown in

Fig. 3, which can be interpreted in the same way as Fig. 2.

Compared with Ex1, the optimal state feedback gain in this

example has more distinct values. It is worth mentioning that

the maximum N∗
k for this example is only 15 (as opposed

to the nominal size of Hk, Nk = 45 = 1024). Therefore, the

proposed method has dramatically simplified the problem,

making an NP hard problem numerically tractable.

TABLE II

N
∗

k
FOR EX2

k 1 2 3 4 5

N
∗

k
3 9 15 15 15

VI. CONCLUSION

This paper studies the DLQRS problem based on dynamic

programming approach. Different from the traditional LQR

problem, the value function of the DLQRS problem is no

longer a single quadratic function; it is a pointwise minimum

of a finite number of quadratic functions. In addition, instead

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Fig. 3. Converged switching regions of Ex2

of having a single Kalman feedback gain as in the LQR

case, the optimal state-feedback gain in the DLQRS problem

becomes state dependent. Analytical expressions have been

derived for both the optimal switching strategy and optimal

control inputs. The concept of minimum equivalent subsets is

introduced to simplify the computation of the value function.

An efficient algorithm is developed to compute the optimal

strategies with guaranteed accuracy of the optimal cost.

Simulation results indicate that the proposed algorithm can

solve the second-order DLQRS problems with fairly low

computational complexity. Future research will focus on how

to extend proposed approach to solve the continuous time

LQR problem for switched linear systems.
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