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Abstract— This paper is concerned with model reduction for
a complex Markov chain using state aggregation. The work is
motivated in part by the need for reduced order estimation
of occupancy in a building during evacuation. We propose and
compare two distinct model reduction techniques, each of which
is based on the potential matrix for the Markov semigroup.
The first method is based on spectral graph partitioning where
the weights are defined by the entries of the potential matrix.
The second approach is based on aggregating states with
similar long term uncertainty, where uncertainty is captured
using conditional entropy. It is shown that entropy can be
conveniently expressed in terms of the potential matrix.

In application to the building model, the entries of the
potential matrix correspond to the mean time an individual
occupies a given cell. Numerical results are described, including
a simulation study of the reduced order estimator.

I. INTRODUCTION

Grid based methods, including cellular automata [1], are
computationally attractive for simulating traffic in buildings,
planes, and outdoor walkways [2], [3]. The power of these
methods lies in their ability to simulate agent-based behavior
by having each agent follow a set of heuristic rules that
determine how agents move and interact with one another.
The discrete-time/discrete-state models favored in these pa-
pers are useful for efficient computer simulations for the
purposes of performance assessment and off-line design, but
their application for real-time control and estimation has been
limited on account of complexity.

The focus of this paper is on Markovian models, and
the particular application of interest is the modeling of
occupancy evolution in a large building. Of particular interest
is egress. That is, we consider a transient regime in which
the occupants will leave the building eventually. Egress may
be due to an emergency, or the end of a work day. In this
case the Markov model contains a single absorbing state that
represents an empty building. The floors in the building are
divided into cells to create a large grid, as illustrated in Fig. 1.

A sensor network comprising of several sensors scattered
throughout the building monitor specific regions of the grid.
Subject to conditions on the occupancy evolution and the
observation process, the system can be described as a hidden
Markov model (HMM) [4], [5]. The most natural estimator
in this context is the Bayesian estimator, which is optimal
with respect to an `2 criterion [6].

Model reduction is essential in this application since
common models explode in complexity with building size
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Fig. 1. Layout of Office Model where × corresponds to the sample path
of the agent, ◦ are the sensors, the heavy black lines show the divisions
between the corridors, gray grid spaces are walls, and the black grid space
is the exit. The agent starts in the bottom-right corner and proceeds toward
the exit according to simple probabilistic rules.

and topology. For example, a natural Markov model for the
simple building illustrated in Fig. 1 has 400 nodes. With a
single person, this leads to 400 states for the Markov chain.
For a crowd of people with a limit of one person per node,
this grows to 2400 possible states.

Perhaps the most natural approach to model reduction is to
aggregate states into super-states to obtain a Markov model
on the aggregated state space. This approach can be justified
using the notion of nearly completely decomposable Markov
chains introduced by Ando and Fisher [7], which is closely
related to quasi-stationarity [8]. This is the background for
the decomposition results using singular perturbation in [9].
For a certain restricted class of Markov chains, aggregation
has also been considered using the concept of lumpabil-
ity [10]. This approach can offer substantial computational
savings in the estimation [11], as well as the control.

An important new tool for understanding multi-scale phe-
nomenon is based on the spectral theory of Markov models.
For a finite state-space ergodic Markov chain the second
eigenvalue is precisely the rate of convergence to stationarity.
A more recent contribution to the theory of Markov chains
is the use of the second eigenvector (or eigenfunction) to
obtain intuition regarding dynamics, as well as methods
for aggregation in complex models. This technique was
introduced as a heuristic in [12], [13] to obtain a state-
space decomposition based on an analysis of the Perron
cluster of eigenvalues for the generator of a Markov process.
The technique has been applied in diverse settings: [13]
considers analysis of the nonlinear chaotic dynamics of
Chua’s circuit model, [12] concerns molecular models, [14]
considers model validation for combustion dynamics, and
[15] treats transport phenomena in building systems. In each
of these papers it is shown through numerical examples
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that the associated eigenvectors carry significant information
regarding dynamics. In particular, its sign structure can be
used to obtain a decomposition for defining super-states.
Theory to support this aggregation technique is contained
in [16], based on a change of measure similar to what is
used to establish large deviations asymptotically. In this way,
these results may be regarded as an extension of the classical
Wentzell–Freidlin theory [17].

In this paper we are motivated by the problem of con-
structing multi-scale models for the purposes of estimation
in transient systems, such as the application to egress. We
find that a valuable tool for analysis and the construction of
a reduced order model is found in the potential matrix of
the Markov model. The potential matrix is the solution to a
Lyapunov equation for an associated linear system.

Based on the potential matrix, we consider two distinct
methods for aggregating states.

The first is based on spectral graph partitioning, in which
the Markov model defines a graph, and the weights on the
edges of the graph are defined by the entries of the potential
matrix. In application to egress, large weights correspond to
a pair of cells that have a high level of interaction on average.

The second method is based on aggregating states with
similar long term uncertainty, where uncertainty is captured
using the entropy H (x0)

.= H(xn
1|x0) of the Markov sequence

xn
1 = {x1, . . . ,xn} with initial condition x0. It is shown that

entropy can be conveniently expressed in terms of the
potential matrix. State aggregation is achieved by grouping
together states with similar entropy.

Either of the proposed methods yields a coarse partition
consisting of aggregated states, called ‘super-states’. Based
on this partition, a reduced order Markov model is defined
whose state space consists of super-states. The resulting
model can then be used for estimation, or other purposes.

The remainder of the paper is organized as follows. In
Section II we describe the two aggregation methods, and in
Section III the theory is illustrated using the example illus-
trated in Fig. 1. Section IV presents results on reduced order
estimation for this example . Conclusions and directions for
future research are summarized in Section V.

II. AGGREGATION METHODS FOR MARKOV MODEL

A. Markov Model

We consider a finite state-space Markov chain with a single
absorbing state (see [18] for terminology). The following
notation is adopted throughout the paper: The state value at
time t is denoted as X(t), the initial condition X(0) is denoted
as x0, and the sequence {X(1),X(2), . . . ,X(n)} is denoted as
Xn

1 . The transition matrix is defined for each i, j via,

Pi j = Prob(X(t +1) = d j|X(t) = di), (1)

A transition matrix defines a directed graph,

G = {V,E} , (2)

whose vertices V = {d j} are states, and edge set E contains
those pairs (i, j) for which Pi j > 0.

Although the theory is far more general, for the purposes
of exposition we consider the following special case in which
X is a non-homogeneous, transient random walk on the nodes
of a graph. We denote by D = {di}M

i=1 the nodes of the
graph, and d∞ ∈Dc the state at which the chain is eventually
absorbed (i.e., P(d∞,d∞) = 1). Hence the state space of the
Markov chain is the union D∪{d∞}. In application to egress,
this corresponds to a model consisting of a single agent; The
state at time t is the location of the agent in the building if
X(t) ∈ D, and the agent has left the building if X(t) = d∞.

Although, we account for both probability of movement
and noise in the Markov model, we do not account for
congestion effects in model reduction and estimation con-
siderations relevant to this paper; cf. [19] for modeling and
estimation for cellular automata models with congestion.

Sensors are assumed memoryless: Letting S denote a
sequence of observations we have,

Prob{S(t) = s | X t
0}= Prob{S(t) = s | X(t)}, (3)

where s ∈ {s0,s1, . . . ,sN} are the possible observation values
corresponding to N sensors, and s0 corresponds to no obser-
vation. A Bayesian estimator can be constructed based on
the observation matrix defined by

Oi j = Prob{S(t) = si | X(t) = d j}. (4)

In this paper we focus on a model reduction framework
without explicitly considering the sensors. The two initial
conditions x0 and x′0 are considered similar if the resulting
probabilistic behavior of X from the respective initial con-
ditions is similar. Algorithms for constructing reduced order
models for both P and O as well as reduced order estimator
are described in Section II-E.

B. Potential Matrix

The potential matrix is defined as the sum,

R =
∞

∑
t=0

Pt (5)

where Pt is the t-fold matrix product of P. For each initial
condition we define the row vector with values µx0( j) = Ri j
for i = x0, and j = 1, . . . ,M. We have Pt

i j = Prob(X(t) =
d j|X(0) = di), and hence the potential matrix has the fol-
lowing interpretation,

Ri j =E[Number of times X(t) = d j prior to exit |X(0)= di].

In building examples we find that initial conditions in
separate corridors will give rise to approximately singular
measures µx0 ,µx′0 , while initial conditions in a common room
result in nearly equal values.

The potential matrix is the solution to a linear equation
analogous to the Lyapunov equation for LTI systems,

R−PR = I. (6)

It follows that the vector µx0 is the solution to the linear
equation,

µx0 −µx0P = δx0 , (7)
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where δx0 is the Dirac delta measure supported at the initial
condition x0.

In the following two sections we desribe two methods that
employ the potential matrix to construct super-states.

C. Spectral Method

The first approach is to use the potential matrix to identify
and group cells with a high degree of interaction. The
potential matrix provides information on degree of average
interaction amongst cells: the entry Ri j is the expected
number of visits to the jth cell starting from the ith cell.
Hence, if Ri j or R ji are relatively large, then the two states
exhibit significant interaction. Aggregation based on the level
of interaction can be posed as a spectral graph partitioning
problem.

We assign weights to the edges of the graph (2) defined
as

Wi j =
Ri j +R ji

2
. (8)

The matrix W is symmetric, and each entry Wi j is a measure
of the average time passed between nodes di and d j.

For aggregation purposes we use the NCutk algorithm [20],
[21]. For a given collection of k super-states comprising of
k disjoint and nonempty subsets {D1, ...,Dk} .= ∆ taken from
the vertex set V , the NCutk metric is defined as

Ncutk(∆) =
cut(D1,V −D1)

assoc(D1,V )
+ ...+

cut(Dk,V −Dk)
assoc(Dk,V )

, (9)

where cut(E,F) = ∑i∈E, j∈F Wi j and assoc(E,V ) =
∑i∈E, j∈V Wi j. The NCutk algorithm seeks to choose ∆
that minimizes the NCutk metric. In effect, the NCutk
algorithm not only balances the size of the cuts, but also
the sizes of the clusters.

The ideas are best explained for the special case of k = 2,
where the solution is also most easily apparent in terms of
spectral bisection. We begin by defining a diagonal matrix
D as

Dii = ∑
j∈V

Wi j. (10)

Using D and W , the Laplacian matrix L is defined as

L = D−W. (11)

With these matrices, the NCut2 reduces to a solution of the
following bisection problem:

min
y

yT Ly
yT Dy

s.t. y(i) ∈ {1,−b} , yT D1 = 0,

(12)

where y(i) can take values from a discrete set; cf., [20]. These
values also indicate the optimal aggregation that serves to
minimize the NCut2 metric. This problem is often relaxed by
allowing y to take on any real value. In this case, the solution
simplifies to solving a generalized eigenvalue problem

L f = λ2D f , (13)

where λ2 is the second lowest eigenvalue of L and f is
the corresponding eigenvector. The super-states are defined
according to

D1 = {di : fi > 0}
D2 = {di : fi ≤ 0} . (14)

This gives the standard spectral bisection method. The
method can also be applied recursively whereby a superstate
at any stage is split by application of spectral bisection
method.

Apart from recursive spectral bisection, there are several
alternate approximation methods for the general NCutk prob-
lem. In this paper we utilize the Meila-Shi algorithm to
make the multiple cuts [21]. The method utilizes the first k
eigenvectors of the generalized eigenvalue problem together
with an application of the k-means algorithm. We refer the
reader to [21] for details on the algorithm.

D. Entropy Method
In the second approach we propose to use entropy as an

analogue of energy to generalize the Hankel norm approach
to model reduction. In particular, much like energy is used
for model reduction in linear systems (initial states with
low energy are discarded), entropy can be used for model
reduction via aggregation, where initial states with a similar
level of long-term uncertainty are aggregated.

For a given initial condition we denote the entropy of the
distribution of the Markov sequence X t

1 by

H(X t
1 | x0) =−E[log p(X t

1 | x0)], (15)

where p(X t
1|x0) denotes the joint probability distribution [22].

The limit as t →∞ is the infinite-horizon entropy considered
here,

H (x0) = lim
t→∞

H(X t
1 | x0). (16)

The limit is finite since the Markov chain is assumed to
be absorbed at d∞ with probability one from each initial
condition.

The total entropy (16) can be expressed in terms of the
potential matrix. We first observe that Equation (16) can be
expressed as

H (x0) = lim
t→∞

t

∑
i=1

H(X(i) | X i−1
1 ,x0)

= lim
t→∞

t

∑
i=1

H(X(i) | X(i−1)), (17)

where the first step is due to the chain rule for entropy and
the second step is a result of the Markov assumption [22].
Writing the recursion,

πt+1 = πtP,

π0 = δx0 , (18)

we obtain a compact representation for entropy:

H (x0) = −∑
t

∑
i, j

πt(i)Pi j log(Pi j)

= −∑
i, j

µx0(i)Pi j log(Pi j). (19)
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State aggregation is performed by sorting the initial con-
ditions of X based on the corresponding values of entropy
H (x0). Depending on the desired number of super-states,
the ordered states are partitioned into states of roughly equal
size.

E. Reduced Order Markov System

Aggregation leads to a coarse graph with nodes {Di} that
correspond to aggregated states. The next step is to define a
transition matrix on this graph. We present two approaches.

1) Uniform Smearing: Here a probability is uniformly
smeared over a superstate. The reduced order Markov matrix
is denoted as Pred,unif, and obtained using

Pred,unif
i j =

∑u∈Di ∑v∈D j Puv

Ki
, (20)

where u ∈Di denotes the cells (nodes) of the original graph
that have been aggregated to form the super-state Di and Ki
is a normalization constant.

To define a reduced order observation matrix, we follow
the heuristic of uniformly smearing the probability. As a
result, there is now a probability of detection

oD j =
# of sensors in D j

# of cells in D j
(21)

for an agent in (one of the cells contained in) D j. This
probability is used to construct a reduced order observation
matrix Ored,unif with respect to the sensors present. We note
that the number of observation states for a single agent can at
most be the number of aggregated states, plus the additional
unobserved state.

2) Weighted Smearing: For the weighted smearing case
a weighting vector, w, must first be defined with respect
to the nodes of the original Markov chain. For an ergodic
Markov matrix, w would be the stationary distribution. With
absorbing Markov chains, such a weighting is clearly not
applicable. We define the weighting vector according to the
proportion of time that is spent in a specific cell contained
in a given super-state:

wk = ∑i∈V Rik

∑k∈D ∑i∈V Rik
, (22)

where V is the vertex set, R is the Potential matrix, k is a
particular cell in the grid, and D is the super-state in which
state k lies. With the weight vector, the reduced order Markov
matrix is obtained using

Pred,weight
i j =

∑u∈Di wu ∑v∈D j Puv

Ki
, (23)

where Ki is once again a normalization constant.
Just as in the uniform case, a reduced order observation

matrix must be defined. As before, there is now a probability
of detection

oD j = ∑
k∈S(D j)

wk, (24)

where S(D j) is the set of sensors contained in D j. This
probability is used to construct a reduced order observation
matrix Ored,weight with respect to the sensors present.

Fig. 2. The entropy defined by Equation (19) for each grid location. Notice
the increased uncertainty with farther distances from the exit.

III. EXAMPLE OF AGGREGATION METHOD

In this section we consider the large scale office building
example illustrated in Fig. 1. This is a model of a single floor
in a building. The exits are denoted by black, and walls by
gray. Unless otherwise stated, it is assumed that only the
top-left exit is in use.

The motion of the agent is described by a Markov chain
on a graph consisting of the 400 cells shown, plus the state
corresponding to an empty building. The probabilistic model
is constructed so that an agent has a higher probability of
moving toward an exit.

Based on the geometry seen in Fig. 1 one would guess
that a single (spectral) split of the states would occur by
dividing along the diagonal from the top-left to bottom-right
corner. Fig. 3 (top left) illustrates the results of the Meila-Shi
algorithm for a single cut. The single cut result is consistent
with the aggregation obtained via spectral bisection.

For a model as large as this example, multiple cuts
are necessary. Recursive spectral bisection, while simple to
implement, does not always give good cuts because this
method does not take all of the information of the system into
account. It is in these cases that the Meila-Shi algorithm is
much more effective. Fig. 3 shows the results of aggregating
the original 400 states into 2, 4, and 9 super-states. For
the most part, the super-states are grouped by states that
are all adjacent to one another. Intuitively, the aggregates
make sense because corridors are grouped with the connected
offices. Aggregating states in this way will greatly alleviate
the computational burden of estimation.

We now turn to the entropy based aggregation. Figure 2
depicts the entropy plot (H (x0) for initial conditions on the
grid). Entropy increases as the grid locations are farther away
from the exit. This is expected because entropy is a measure
of uncertainty; with increased distance from the exit, more
uncertainty results. Locations with zero entropy correspond
to the walls.

Aggregation into two super-states based on entropy is
carried out as described in Sec. II-D. For a particular initial
condition x0, the entropy of the cells in the support of µx0
are displayed in ascending order in Fig. 5. By assigning a
single threshold at the mean entropy value, we aggregate the
cells into two super-states. The graphical interpretation of
this aggregation technique is displayed in Fig. 4. To construct
additional super-states, we use multiple threshold values to
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Fig. 3. Results of the Meila-Shi algorithm for a 1, 3, and 8 cut, respectively. Notice how cells in super-states are not always adjacent.

Fig. 4. Depictions of 2, 4, and 9 aggregated states grouped using entropy on the support of µx0 . The bold lines indicate the different super-states.

Fig. 5. The entropy that is supported by µx0 sorted in ascending order.

split the entropy of the cells on the support of µx0 . Fig. 4
uses 3 (8) threshold values for 4 (9) aggregated states. One
interesting observation regarding the partition with 9 super-
states is that cells near the exits of the individual offices
are grouped together. It is expected that the super-states
would approximate the system relatively well because of this
aggregation of cells.

IV. FULL AND REDUCED ORDER ESTIMATION

We now apply these model reduction techniques to state
estimation.

A. Problem Statement and Estimation

A Markov model for the building example in Section III
describes the evolution of a single agent moving toward the
exit. We now include sensors to estimate the location of the
agent, which is modeled by a memoryless observation pro-
cess satisfying (4). We consider Bayesian estimation using
the full and reduced order Markov models, and compare their
respective performance.

The non-normalized recursive estimation equation is given
by

υ̂t+1 = υ̂tPdiag(OYt+1), (25)

where υ̂t is the current estimate, P is the Markov matrix, and
diag(OYt+1) is a diagonal matrix with diagonal constructed
from the row of the observation matrix corresponding to the
observation at time = t + 1. The optimal Bayesian estimate
is obtained by normalizing υ̂t+1 to be a probability vector. It
represents the conditional probability that the agent occupies
a node given all past and present observations.

For the purposes of reduced order estimation, super-states
are created by aggregating states, as described in Section III.
Aggregation leads to a coarse graph with nodes {Di} for
which reduced order Markov and observation matrices are
defined. Once Pred and Ored are defined (as in Section II-
E), the reduced-order estimation is carried out following
Equation (25). The results are described next.

B. Estimation Results

We applied the reduced order model to estimate the correct
corridor for the agent as she exits the building starting from
the location depicted in Fig. 1. The full order estimation used
the original 400 state model while reduced order estimation
was carried out with models consisting of a varying number
(4,9,16) of aggregated states.

The estimation results were post-processed to obtain the
probability of agent occupying a corridor. For the spectral
method, these results are shown in Fig. 6. Overall, the
probability from a reduced order estimate approximately
follows the trend of the full order estimate (which is much
more accurate). The probability estimated for corridors 1
and 2 is zero and hence is not shown. This is consistent
with the dynamics of the Markov chain. At times where
there is a detection by a sensor (times 8 and 13), the
estimate jumps (and improves) but the quality of the estimate
declines with time if there are no additional observations.
The estimates typically improves with finer aggregation (full
order estimator’s predictions are better than predictions with
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Fig. 6. Estimation results with spectral (left) and entropy (right) methods: the plots show the estimate probabilities of being located in Corridors 3. Full
order estimation as well as reduced order estimation using a varying number of super-states are displayed.

16 states, which in turn are better than 9). Exceptions arise
when cells within a superstate overlap between the corridors.

Next, we discuss the estimation results based on model
reduction using the entropy approach. Simulation results are
shown on the right in Fig. 6. Although many of the previous
comments apply to these results too, overall the entropy
method gives much better estimates than the spectral method.
As before, the estimate improves with increasing number
of states. A crucial observation is that estimates based on
16 super-states are virtually indistinguishable from the full
order estimates. This suggests a remarkable reduction in
complexity. Also as before, the estimates improve at the time
of detection and decline with no detection.

V. CONCLUSION

In this paper we demonstrated two methods for model
reduction of a large Markov model. Both methods utilize
the potential matrix for state aggregation. The first method
is essentially spectral graph partitioning (see [12], [13], [15])
with connectivity between aggregated states defined in terms
of the potential matrix. The second method is based upon
aggregating states with similar long-term uncertainty, where
entropy is proposed as a metric.

An example was used to demonstrate the proposed model
reduction methods. The models were used for the purposes
of reduced order estimation of an agent’s location as he (or
she) exits a large building. The reduced order estimators
gave acceptable estimates in most cases. The reduced order
models obtained using the entropy based method gave better
results than obtained using the spectral method. With the
former, a 16 state model provided estimates comparable with
the full order (400 state) model.

These simulation results point to the potential of aggrega-
tion for reduced order estimation in large Markov models.
There are many open issues. In particular, there is the issue of
complexity faced in construction of the reduced order model.
One also needs error bounds for the reduced-order estimator.
This is the subject of continuing research.

REFERENCES

[1] S. Wolfram. Theory and applications of cellular automata. World
Scientific, Singapore, 1986.

[2] A. Schadschneider. Cellular automation approach to pedestrian
dynamics-theory. In Michael Schreckenberg and Som Deo Sharma,
editors, Pedestrian and Evacuation Dynamics, pages 75–86. Springer,
2002.

[3] S. Gwynne, E.R. Galea, M. Owen, P.J. Lawrence, and L. Filippidis.
A systematic comparison of building EXODUS predictions with
experimental data from the Stapelfeldt trials and the Milburn House
evacuation. Applied Mathematical Modelling, 29:818–851, 2005.

[4] L. R. Rabiner. A tutorial on hidden Markov models and selected ap-
plications in speech recognition. Proceedings of the IEEE, 77(2):257–
286, February 1989.

[5] Y. Ephraim. Hidden Markov processes. IEEE Trans on Information
Theory, 48(6), 2002.

[6] R. J. Elliott, L. Aggoun, and J. B. Moore. Hidden Markov Models:
Estimation and Control. Springer-Verlag New York, Inc., New York,
NY, first edition, 1995.

[7] H. A. Simon and A. Ando. Aggregation of variables in dynamic
systems. Econometrica, 29:111–138, 1961.

[8] J. N. Darroch and E. Seneta. On Quasi-Stationary Distributions in
Absorbing Discrete-Time Finite Markov Chains. J. Appl. Probab.,
2(1):88–100, 1965.

[9] R. G. Phillips and P. V. Kokotovic. A singular pertubation approach
to modeling and control of Markov chains. IEEE Transactions on
Automatic Control, 26(5), 1981.

[10] L. B. White, R. Mahony, and G. D. Brushe. Lumpable hidden
Markov models-model reduction and reduced complexity filtering.
IEEE Transactions on Automatic Control, 45(12), 2000.

[11] M. Huang and S. Dey. Distributed state estimation for hidden Markov
models by sensor networks with dynamic quantization. Proceedings
of the 2004 Intelligent Sensors, Sensor Network and Information
Processing Conference, ISSNIP ’04, pages 355–360, 2004.
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