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Abstract— We introduce a new framework for distributed
control and optimization of complex networks. Conservation
laws for extensive quantities and the second law of thermody-
namics lead to conditions for stability and optimality of the
network. We derive a general way of describing interconnec-
tions in networks through matrix representations that capture
a network’s topology using basic principles from electrical
engineering methodologies. This shows how the dynamics of
independent entities in a network define the objective function
of the optimization problem that is simultaneously solved. A
generalized version of Tellegen’s theorem from electrical circuit
theory plays a central role in developing the objective function
of the regarded dynamic networks. These results indicate
that we can solve optimization problems using dynamical
systems, and how the objective function depends on the choice
of feedback control and strategies. Examples are presented
to illustrate these principles for different types of network
connections, both for transient and stationary conditions. We
apply the introduced theory to business systems integrated into
larger logistic systems.
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trol, entropy, dissipation, oil production, network theory,
irreversible thermodynamics, distributed control, passivity,
agents, production optimization, multiphase flow.

I. INTRODUCTION

Information technology has had a tremendous impact on
the operation of integrated systems such as logistic supply
networks, chemical plants and oil and gas pipeline networks.
Such networks can be viewed as complex distributed systems
where physics, communication, and computation are inte-
grated so that objectives such as stability and optimality are
met simultaneously. Computer technology has enabled fast
information exchange and, as a consequence, facilitated fast
adaptation to changing conditions [1]. A complete theory for
design and operation of such systems is lacking at present.
Large scale systems form complex networks in which de-
centralized parts of the system are highly interconnected
both through physical connections and signal flows. The
structure of interconnected systems plays a crucial role in
their dynamic behavior and has to be well understood to
achieve stability and optimality [2].
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A process system can be described as a thermodynamic
system where interconnections between process units lead to
complex behavior. Thermodynamics is a phenomenological
theory and thus, a formal structure which allows to establish
relationships between quantities but it cannot account for
physical events in detail [3]. Although a thermodynamic
description of a process system will not be sufficient to
account for all of the complex behavior of the systems, it can
give us an idea of how the system evolves over time and show
how its behavior depends on the interconnections with the
environment. Conservation laws for certain inventories such
as energy and mass in process systems confine the system
behavior and, combining it with the second law of thermody-
namics, we can determine stability and convergence of these
systems to a desired steady state. These ideas are particularly
useful when applying control and thus influencing the natural
evolvement of the system into a desired equilibrium.

The complexity of many process systems arises from
the variety of different process subunits and the way they
are connected and interact with each other [4]. In general,
especially the connections between the subunits lead to
complex nonlinear behavior of the total process system. A
crucial component in understanding and modeling process
systems is therefore to understand how connections between
the subunits lead to complex system behavior.

Network theory offers a framework suitable to model and
describe the thermodynamics of complex interconnected sys-
tems in a modular fashion [5]. The purpose of network theory
in this application to process systems is therefore to provide
an organizational framework for treating complex process
systems. The techniques we develop here are particularly
suitable for the description of process systems due to the
nonlinear dynamics of individual processes, the organiza-
tional complexity of the entire system and the intricacy of
the resulting detailed mathematical equations [6].

The formalism of network theory has been particularly
successful for the control and modeling of dynamics sys-
tems in electrical engineering. Classically, electrical circuit
theory is not considered an application of non-equilibrium
thermodynamics. Nevertheless, electrical circuits are typical
irreversible thermodynamic systems. The formalism devel-
oped in electrical circuit theory can however easily be
extended to general thermodynamic systems [5], [6]. In
particular the application to complex biological systems
has been successfully carried out [7], [8]. Network theory
brings thermodynamics a degree of mathematical rigor and
allows to unify ideas from non-equilibrium thermodynamics,
dynamic system theory and control. If we look at the
mathematical models of many dynamic physical systems, we
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can typically identify two mathematical structures underlying
most physical models. There is the kinematic structure which
addresses the topology of the system and a dynamical struc-
ture [7]. The connectivity properties of the system describe
the physical processes where the dynamical structure defines
the relationships between the state variables to characterize
the system.

In this paper, we propose to analyze complex dynamical
systems in terms of their network character. We develop a
theoretical framework for distributed control and optimiza-
tion of such networks by combining ideas from thermody-
namics, electrical circuit theory, and mathematical system
theory.

II. PROCESS NETWORKS
Let Σ be a convex sub-set of Rn

+ and let Z = (Z1, ...,Zn)
represent an arbitrary point. The vector Z can be regarded
as the inventory of n different properties of the system P .
We distinguish between two types of inputs and outputs.
The signals, y and u, represent measured outputs and control
inputs. The vectors f j can be thought of as physical flows
which connect the system to other process systems or the
environment. The two-port representation allows different al-
gebraic structures for the representation of physical flows and
signals. The state of the process system evolves according
to the conservation laws

dZ
dt

= p(Z)+
m

∑
i=1

fi(u,Z,d), Z(0) = Z0 (1)

y = h(Z) (2)

The vector Z0 is the initial condition, p(Z) defines the
rate of generation of Z, the vectors fi(u,Z,d) , i = 1, ...,n
denote flows. The flows may depend on control signals
u, the state as well as external signals d which represent
boundary conditions. The vector y denotes the measurements.
We now define a class of C1 functions ε(Z) : Σ 7−→R+ called
extensions. An extension is said to be conserved if its rate
of production equals zero. It is dissipative if its production
is less or equal to zero and it satisfies the Clausius Planck
inequality if its rate of production is greater or equal to zero
[3]. Mass and energy are examples of extensions that satisfy
all these properties. The entropy of classical thermodynamics
satisfies the Clausius Planck inequality. The extensions used
in passivity theory are called storage or dissipation functions
and they satisfy the dissipation inequality.

Definition 1: A system P with conservation laws (1) is
called a process system if there exist extensions S(Z) and
E(Z) so that

1) S(Z) is concave in Z.
2) S(Z) is positively homogeneous of degree one in Z.
3) E(Z) is conserved and T = ∂E

∂S .
The function S(Z) is called the entropy, the function E(Z)
is called the energy and T is called the temperature.

We can now define a network of processes in which each
node can be a process system:

Fig. 1. Graphical network representation: Topological structure of a
network consisting of nodes, terminals, and flows. Nodes can contain
subgraphs and give rise to a hierarchical multiscale structure.

Definition 2: A network of vertices Pi, i = 1, ...,np,np +
1, ...,nt consisting of nodes and terminals interconnected
through edges Fi, i = 1, ...,n f with topology defined by the
graph

G = (F,P)

is called a network if:

1) We can uniquely define the state of the network
through the state of the nodes Zi

2) Conservation laws for extensive quantities Zi hold.
3) The first order homogeneous function S(Zi) = Ziwi

defines a concave storage function at each node Pi.
The potential at the nodes is defined as wi = ∂Si

∂Zi
.

A representation to graphically display the topology of an
arbitrary network is given in Fig. 1. We follow the graph
notation by Desoer [9] according to the following definition:

Definition 3: The nt × n f matrix Aa is called node-to-
branch incidence matrix for the matrix elements ai j being

ai j =

 1, if flow j leaves node i
−1, if flow j enters node i

0, if flow j is not incident with node i

A reference or datum node P0 is introduced to represent the
environment and connected to all dynamic nodes and termi-
nals. The (nt−1)×n f matrix A, where the row that contains
the elements a0 j of the reference node P0 is eliminated, is
called reduced incidence matrix.

The incidence matrix Aa and the reduced incident matrix
have same rank r = nt − 1 and, therefore, the row of the
reference node is a linear combination of the preceding rows
[9]. We can use the matrix representation of the network to
formulate the conservation laws for the nodes:

AF = 0 (3)
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where FT = [ dZ1
dt , dZ2

dt , ..., dZt
dt , f12, f13... fnt−1,nt , p1, ..., pt ]. The

flows fi j represent connections between two nodes i.e. fi j
connects node i to node j, pi denotes sources or sinks.
Equation (3) corresponds to Kirchhoff’s current law (KCL)
of electrical circuit theory in a generalized form.

We can define a change in potential from node i to j as
Wi j = wi−w j. The potential difference Wi j acts as a driving
force which induces flow between nodes i and j. The flows
are connected to the potential differences through constitutive
relationships of the form

F = K(u)W (4)

where u is an optimization or control parameter and K(u) is
a matrix function.

From our definition of potentials, we conclude that po-
tential differences around any closed loop or mesh in the
network for any given mesh inside the network [10] add up
to zero. Using the matrix notation introduced in Definition
3, we denote the mesh equations as

W = ATw (5)

where we use the transpose of the reduced incident matrix
A [9]. The matrix equation (5) correspond to a generalized
Kirchhoff’s voltage law (KVL) of electrical circuit theory.
In order to determine the state of the network at any given
point in time, it is necessary to model the connection struc-
ture through the incident matrix and pose the constitutive
relations between the potentials W and flows F for each
branch in the network. In addition, we have to supply one
boundary condition for each terminal in the network. In the
dynamic case, it is necessary to define initial conditons for
the inventories Zi(0) for every dynamic node.

III. THE TELLEGEN THEOREM FOR PROCESS
NETWORKS

In this section, we develop a theorem that is only based
on the topological properties of the process network. The so
called Tellegen theorem plays an important role in deriving
an objective function for network optimization problems.

Theorem 1: For any two networks denoted by the su-
perscripts a and b that follow Definition 1 with the same
topology, i.e. same reduced incidence matrix A,

n f

∑
i=1

Fa
i W b

i =
n f

∑
i=1

Fb
i W a

i = 0 (6)

Proof:

nb

∑
i=1

Fa
i W b

i = (Wb)TFa (7)

using KVL (5)

= (ATwb)TFa (8)

= ((wb)TA)Fa (9)

= (wb)TAFa = 0 (10)

since AFa = 0 using KCL (3).

The Tellegen theorem holds for any two networks with
the same topology even if they consist of different network
elements. It is also valid for any network being in two
different states and holds true for time evolving networks.
In case, we regard only one network, it reduces to an energy
balance. The constitutive equations (4) may be nonlinear
or linear, discrete or continuous, passive or active, and the
network may have single or multiple steady states.

IV. PASSIVITY OF PROCESS NETWORKS
Passivity theory offers a physics based mathematical

framework for the analysis of stability and control of net-
worked process systems with nonlinear dynamics. According
to the passivity concept, all states of the system can be
stabilized, if the total energy and mass of the system are
bounded. To prove passivity for the framework here, we
have to find a storage function according to the following
definition from [10]:

Definition 4: A process network is said to be dissipative
with respect to the supply rate φ(y,u) if there exists a storage
function V (Z) so that for all t ≥ 0, all initial conditions and
all controls

0≤V (Z(t))≤V (0)+
∫ t

0
φ(y,u)ds (11)

In order to find controls for the system, we have to identify
passive input-output pairs of extensive and intensive variables
for the network as given by y and u for the supply rate
φ(y,u) in (11 which correspond to the terminal potential and
flows for the pipeline network. For the case in which we
can determine passive properties of the regarded networked
process system, the system naturally converges to a state in
which the entropy production is a minimum [10].

Passivity follows directly from the properties of the flow
connections and the production at the nodes.

Definition 5: A connection is said to be positive if there
exists constant β ≥ 0 so that

(W 1−W 2)T (F1−F2)≥ β
∥∥W 1−W 2∥∥

The connection is strictly positive if β > 0.
W i, F i are the potential differences between any two nodes

and the connecting flows at two arbitrary states i of the
network.

Theorem 2: A process system P is passive if the flows are
positive and (p1− p2)T (w1−w2)≥ 0

Proof: The proof is given in [10].

V. OPTIMALITY OF PROCESS NETWORKS
Based on the Tellegen theorem as an objective function,

we can propose an optimization problem that allows us to
find the steady state of a dynamic process network.

Theorem 3: Consider a process network G as defined
in Definition 1 with given passive constitutive equations
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and boundary conditions for each terminal. The solution
( dZi

dt = 0) for the network with equations (3) and (5) and the
constitutive equations (4) is given by solving the following
optimization problem:

min
F or W

∑
n f
i=1 FiWi (12)

s.t. W = ATw or AF = 0 (13)
F = KW (14)

FT = FT(t) or WT = WT(t) (15)
Proof:

Lagrange function:

L(F,W,w,λ ,µ) = WTF+λ
T(W−ATw)+ µ

T(F−KW)
(16)

Karush-Kuhn-Tucker conditions:

∂L
∂W

= F+λ −Kµ = 0 (17)

∂L
∂F

= W+ µ = 0 (18)

∂L
∂w

= Aλ = 0 (19)

∂L
∂λ

= W−ATw = 0 (20)

∂L
∂ µ

= F−KW = 0 (21)

Solving (18) for µ and substituting in (17), then solving (17)
for λ and substituting in (19) gives

A(F+KW)) = 0

using the constitutive equations (4) to substitute KW results
in:

AF = 0

which is the Kirchhoff current law.

The objective function is a measure for dissipation of the
storage variable over time. We conclude that the steady state
of a passive network minimizes the dissipated power subject
to the constraints imposed by the constitutive equations,
topology, and boundary conditions, i.e. terminal connections.

So far, we performed a node analysis and formulated KVL
and KCL in form of the nodal incident matrix. The analysis
can as well be performed and the topology captured using
a mesh analysis, where the inner meshes are forming the
incident matrix M and the outer mesh is redundant and
linearly dependent.

The optimization problem can be formulated as follows:

min
F or W

∑
n f
i=1 FiWi (22)

s.t. F = MTf or MW = 0 (23)
F = KW (24)

WT = WT(t) or FT = FT(t) (25)

Proof:
The proof works analogously to the node analysis formu-

lation and results in the derivation of KVL for mesh analysis.

MW = 0

The findings in this section indicate that we have a dual
formulation given for the optimization problem. As already
shown for the Tellegen theorem, flows and potentials are
orthogonal spaces and duality of the matrix representation
and optimization problem are an important property of our
class of networks.

VI. APPLICATION TO BUSINESS SYSTEMS

In this section, we apply the network theory developed in
the previous section to model financial, material and service
flows in business systems. Decision making in a business
system has to be understood as a multiobjective optimization
problem [11], [12] on different time and hierarchical scales.
Business organizations can be regarded as complex networks
in which a combination of centralized and decentralized
decision making aims to optmize a business’ performance
[13]. Regardless of the complexity, a business’ objective to
maximize its profit and as a consequence its total value
is often implemented through very simple decentralized
management policies that lead to self-optimizing structures
using key indicators such as the Net Present Value or the
Return on Investment [14]. We attempt to point out how this
modeling approach can support understanding the network
character of business systems, help explore self-optimizing
structures, and develop optimization and control policies for
complex and highly interconnected business systems [12].

We define a network of activities of a business orga-
nization according to Definition 1. At the vertices of the
business network activities take place in which material, cash
or liabilities can be stored, routed, or transformed as depicted
in Fig. 2. The connections between the vertices represent
material or financial flows. The terminals on the left hand
side are connections to suppliers, the ones on the right hand
side represent the costumers which connect the business to
economic markets.

For our discussion, it is convenient to define the following
extensive variables when we develop an abstract framework
for business decision making. These variables describe the
assets

a =


acurrent − current assets (inventory I and cash c)
a f ixed− fixed assets (buildings equipment)
aother− other assets (patents, market position)
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Fig. 2. The value chain tracks how process operations add value to goods
as they move through the production system. The last section includes the
price markup as a value added step.

and liabilities

l =
{

lcurrent − short term liabilities (outstanding bills)
llongterm− long term liabilitites (loans, mortgages)

Material, service and cash flows entering and leaving a node
are conserved. Forming a vector of all assets a and liabilities
l for each node, the inventories of assets and liabilities for
all vertices vT = (a1

T , l1T ,a2
T , l2T , ...,anp

T , lnp
T ) determine

the state of the dynamic system under consideration that the
flows determine how assets and liabilities are re-allocated
throughout the business organization.

The dynamic system consists of input-output variables i.e.
the incoming and outgoing flows of assets and liabilities.

dv
dt

= φ(u, t)+p (26)

(26) corresponds to the Kirchhoff current law. We now define
potentials in form of prices or values w at the nodes in the
network according to the network theory presented in the
last sections. In order to introduce potentials, we need to
define an appropriate storage function for business systems.
Herefore, the storage function E(v) is used to capture the
total value of the business

E = A−L (27)

E formally corresponds to the shareholder or owner equity
(net worth) of a business. We also define the functions value
of all assets A and value of all liabilities L

A =
Nassets

∑
i

aiwa,i,value of assets [Value] (28)

L =
Nassets

∑
i

liwl,i, liabilities [Value] (29)

(30)

After defining an appropriate storage function for the busi-
ness network, we can now derive potentials w for each node
in the network through partial derivatives.

The companies value is then defined through the net worth
or owner’s/shareholder equity E(v). A companies objective
is to maximize its total value over time. An increase of the

value can be achieved through a positive cost/profit balance
of all the activities. The profit of an activity is calculated so
that

P(t) =
∫ t+T

t
(R−C)ds (31)

where T is the reporting period, R is the rate of income
and from sales and C is the rate of cost. The difference
R−C is called rate of accounting earning. The activity costs
include transportation, storage, manufacture (assembly), and
purchase. By differentiating the expression above, we obtain
the differential balance

dP
dt

= R−C (32)

(32) corresponds to the Tellegen theorem previously intro-
duced through (6) for one network. The cost rates through
transportation, manufacture and storage corresponds to dis-
sipative elements of our general network definition. The
earnings through sales R and cost through purchase can
be regarded as in/outflux of value through terminals. Anal-
ogously to the optimization problem in the last section,
a business organization intends to maximize the rate of
accounting earnings R−C to achieve maximum profit. This
can be achieved through minimizing the total rate of cost of
the network which corresponds to the optimization problem
posed in the last section.

VII. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

A modeling framework has been developed to describe
complex process networks. The framework is based largely
on fundamental ideas from thermodynamics, including the
use of a storage function, as well as flows or production of
extensive variables based on potentials or potential differ-
ences. The developed framework is derived through a matrix
representation of the flows and nodes and allows a compact
formulation of basic network properties. Optimality of this
class of process networks was demonstrated by formulat-
ing the optimization problem that is solved for a dynamic
network converging into steady state. The Tellegen theorem
serves as an objective function in this framework. We have
shown that the used modeling framework can be applied to
business systems represented as value added networks.

B. Future Works

Future work will focus on developing a framework to in-
tegrate transformation of extensive quantities in the topology
of the network. The decentralized optimization problem will
be extended for transient conditions. This implies showing
that the solutions of the dynamical system solve an optimal
control problem and that the state trajectory of the network
is determined by solving Euler-Lagrange equations for the
problem at hand. Further research will include uncertainty,
stochastic processes, and discounting, in particular in the
context of modeling business organizations [12]. One goal
of this work is to relate decentralized decision making
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using passivity based control in complex networks to the
method of Lagrangian decomposition for solving large scale
optimization problems.

We further explore the developed theory for a petroleum
production optimization problem for oil reservoir manage-
ment in the North Sea. The work focuses on applying
network theory to integrate the given offshore pipeline net-
work into economic markets and perform simulations of
distributed optimization on particular clusters of the regarded
platform.

The integrated network will be analyzed using averaging
and decomposition methods to investigate the system on
different hierarchical levels and time scales, developing a
decentralized control network, smart agents [15], [16], and
decision making policies based on passitivity theory. The
applied decentralized control will be developed to implement
self-optimizing structures in the pipeline system. This con-
tributes to the optimization of the offshore pipeline network
on a global level for changing operating conditions.
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