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Abstract— In this paper the formulation of a concept for
a type of robust Leader-Follower equilibrium for a Multi-
Plant or multiple scenarios differential game is developed. The
game dynamic is given by a family of N different possible
differential equations (Multi-Model representation) with no
information about the trajectory which is realized. The robust
Leader-Follower strategy for each player must confront with all
possible scenarios simultaneously. The problem of each player
is the designing of min-max strategies for each player which
guarantee an equilibrium for the worst case scenario. Based on
the Robust Maximum Principle, the conditions for a game to
be in Robust Leader-Follower Equilibrium are presented. As
in the Nash equilibrium case the initial min-max differential
game may be converted into a standard static game given in a
multidimensional simplex. A numerical procedure for resolving
the case of linear quadratic differential game is presented.

I. INTRODUCTION

Beginning from the seminal works of [1], [2], [3] the

leader-follower or Stackelberg solution for an open loop

information structure in a two person differential games has

been well established (see also [4], [5]). This concept of a

solution for a game, introduced in 1934 by the economist H.

von Stackelberg [6], is suitable when one of the players is

forced to subordinate to an authority that must announces

his decision first, before play his own strategy, or when

one of the players chooses to play the game passively,

that is, composes just his optimal reaction (solve an one-

player optimization problem) given that the other player

has announced his strategy. As it is shown in the above

publications this kind of problems are still tractable using

results of optimal control theory. All of them tackle this

problem when the model of the considered dynamics is

exactly known.

In the case of one player optimization problems the robust

version of the traditional Maximum Principle referred to as

Robust Maximum Principle (RMP) (see [7], [8] and [9])

allows to design an "optimal policy" of a min-max type for a

multi-plant or multi-scenario problem, where each possible

scenario is seen as possible parametric realization of the

dynamic equation. So, it appears that we have N possible

linear state dynamic equations, each of them describing a

model and there is no a priory information which will be the

active one. The RMP is based on the concept of min-max

control problem where the operation of the maximization is

taken over a set of uncertainty (a parameter from a finite
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set) and the operation of the minimization is taken over

set of admissible control strategies. For a game with multi-

participants, choosing Nash strategies, some similar concept

of Multi-scenarios has been used to exemplify the discrepan-

cies of the players in information sets, models, cost functions

or even different amount of information that the players could

hold of a large scale system, [10], [11], [12], and recently,

applying the Robust Maximum Principle there was derived a

type of Robust Nash equilibrium ([13]) for a multi-scenario

game parametrized by a parameter belonging to a given finite

parametric set and the problem was formulated as a min-max

problem of the game.

The purpose of this paper is to develop the RMP for a

family of two person Multi-Plant game when one player is

considered as the leader and the second one as the follower.

We formulate the problem for both leader and follower as

min-max problem, that to the best of our knowledge has

never been considered before, but presents a great interest

because of its high spread applications. The focus is, as in

[13], the designing of strategies that should provide a "Robust

leader-follower equilibrium" being applied to all scenarios

(or models) of the game simultaneously. It is shown that

the resulting robust strategies for each player again appears

as a mixture (with the weights fulfilling the leader-follower

condition) of the controls which are the leader-follower

for each fixed parameter value. This technique permits to

transform the formulation of the game with a leader from

a Banach space (where it was initially formulated) into a

finite dimensional space where the strategies to be found are

the preference weights of each scenario in the weighted sum

of the individual optimal controls. The problem of finding

such equilibrium weights is solve by the implementation of a

special numerical procedure which extends the method given

in [13]. A numerical example illustrate the effectiveness of

this approach.

II. STANDARD LEADER-FOLLOWER

EQUILIBRIUM

We begin with a brief ly review of the concept for leader-

follower equilibrium. The basic idea of a leader-follower

strategy for a static two-person game seems to be very

simple. Consider two players Player 1 and Player. The cost

function associated with the players are

J1
(
u1, u2

)
for Player 1

J1
(
u1, u2

)
for Player 2

Both players want to minimize their criteria that naturally

provokes a conf lict situation. Defining the sets U1 and U2

for the admissible strategies for the player 1 and player 2.
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The resolution of this problem is given by the following

equilibrium concept. Choosing the player 1 as the leader and

player 2 as the follower. The set of strategies are said to be

in a Leader-Follower equilibria with Player 1 as the leader

and Player 2 as the follower if:

J1
(
u1∗, u2∗

(
u1∗

))
≤ J1

(
u1, u2

o (
u1
))

(1)

and

J2
(
u1, u2

o (
u1
))
= min
u2∈U2

J2
(
u1, u2

)
(2)

and u2
o

= u2
o (
u1
)

is the optimal policy of the player 2 for

a given strategy of the leader, and as is usual u2∗
(
u1∗

)
=

u2
o (
u1∗

)
. This means that being player 1 as the leader,

he must advance his strategy to play first and because the

player 2 want to minimize his functional J2 then u2
o

is the

"optimal reaction" (OR) of player 2 for the minimization of

J2 given u1. If Player 1 chooses any other strategy u1, then

Player 2 will choose a strategy u2
o

that minimizes J2, but

the resulting cost for Player 1 may be greater than or equal

to that when the Leader-Follower strategy with Player 1 as

the leader is used.

III. MULTI-MODEL TWO PLAYERS GAME

Consider the following two players multi-model differen-

tial game:

ẋα = fα
(
xα, u1, u2, t

)
(3)

where xα ∈ ℜn is the state vector of the game at time t ∈
[t0, T ], u

j ∈ ℜmj (j = 1, 2) are the control strategies of

each player at time t and α is the entire index from a finite

set A := {1, 2, ..,M} describing each possible α-model of

the dynamics game (3), M is the number of possible model.

Let the individual aim performance hi,α of each player

(i = 1, 2) for each α-model (scenario) be given by

hi,α := hi0 (x
α (T )) +

T∫

t=t0

gαi
(
xα, u1, u2, t

)
dt i = 1, 2

(4)

The worst-case (with respect to a possible scenario) cost

functional F i for each player under fixed admissible strate-

gies u1 ∈ U1 and u2 ∈ U2 is defined by

F i
(
u1, u2

)
:= max

α∈A
hi,α

(
u1, u2

)

A. Robust leader-follower Equilibrium

The set of strategies are said to be in a Robust leader-

follower equilibria with Player 1 as the leader and Player

2 as the follower if:

• for any admissible strategy (u1, u2) ∈ U1×U2 the next

inequalities hold

F 1
(
u1∗, u2∗

)
≤ F 1

(
u1, u2

o (
u1
))
, u2∗:=u2

o (
u1∗

)

(5)

where:

F 2
(
u1, u2

o (
u1
))
= min
u2∈U2

F 2
(
u1, u2

)
(6)

Note here that the main difference with the Standard

leader-follower equilibrium is the max operation taken over

all possible scenarios.

B. Open-Loop Robust leader-follower Strategies for Multi-

Model Differential Games

Proceeding first outlining the robust optimal reaction of

the follower, let us represent the robust optimal control

problem for the follower following the standard procedure in

Optimal Control Theory. For each possible scenario α ∈ A
introduce the extended variables for the follower x̄α,f =(
xα1 , ..., x

α
n, x

α,f
n+1

)
defined in ℜn+1 and the last component

x
α,f
n+1 given by

xα,fn+1 =

T∫

t=t0

gα2
(
xα, u1, u2, τ

)
dτ

or, in differential form,

ẋ
α,f
n+1 = g

α
2

(
xα, u1, u2, t

)
, x

α,f
n+1 (t0) = 0 (7)

Now the initial individual aim performance for the fol-

lower (4) can be represented in the Mayer form (without an

integral term):

h2,α = h2,α0 (x (T )) + xα,fn+1 (T ) (8)

Notice that h
2,α
0 (xα) does not depend on the last coordenate

x
α,f
n+1, that is,

∂

∂x
α,f
n+1

h
2,α
0 (xα) = 0. Define also the new

extended conjugate vector-variable by

ψα := (ψα1 , ..., ψ
α
n) ∈ ℜ

n

ψ̄
α
:=
(
ψα1 , ..., ψ

α
n, ψ

α
n+1

)
∈ ℜn+1

satisfying

ψ̇
α

j =-
n∑

k=1

∂fαk
(
xα, u1, u2, t

)

∂xαj
ψαk -

∂gα2
(
xα, u1, u2, t

)

∂xαn+1
ψαn+1

j = 1, ..., n+ 1
(9)

with some terminal condition

ψαj (T ) = b
α
j 0 ≤ t ≤ T, α ∈ A (j = 1, ..., n+ 1)

(10)

where the vector bα will be defined below. For the "super-

extended" vectors for the follower defined by

x̄♦,f :=
(
x11, ..., x

1
n+1; ...;x

M
1 , ..., x

M
n+1

)⊺

ψ̄
♦
:=
(
ψ11, ..., ψ

1
n+1; ...;ψ

M
1 , ..., ψ

M
n+1

)⊺

f̄♦,f :=
(
f11 , ..., f

1
n, g

1
2; ...; f

M
1 , ..., f

M
n , g

M
2

)⊺

f̄α,f = (fα1 , ..., f
α
n , g

α
2 ) ∈ ℜ

n+1

these vectors represent the complete family of trajectories

including the n+1 state variables for the follower. Using the

previous vectors, following [8], define the next "generalized"

Hamiltonian function for the follower:

H♦
2

(
ψ̄
♦
, x̄♦,f , u1, u2, t

)
:=
〈
ψ̄
♦
, f̄♦,f

(
x̄♦,f , u1, u2, t

)〉
=

∑

α∈A

Hα
2

(
ψ̄
α
, x̄α,f , u1, u2, t

)
=

∑

α∈A

[
∑

α∈A

(
ψαj f

α
j

(
xα,u1,u2,t

))
+ψαn+1g

α
2

(
xα,f ,u1,u2,t

)]

(11)
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the direct (3), (7) and conjugate (9) ODE equations may be

represented shortly in the standard Hamiltonian form as

d

dt
x̄♦,f =

∂H♦
2

(
ψ̄
♦
, x̄♦,f , u1, u2, t

)

∂ψ̄
♦

d

dt
ψ̄
♦
= −

∂H♦
2

(
ψ̄
♦
, x̄♦,f , u1, u2, t

)

∂x̄♦,f

(12)

Again, as it follows from the definition (6), and as it is

shown in [1], [2], the optimal reaction u2
o

of the follower

to and fixed leader strategy u1of the leader, is solved as an

standard optimal control problem, for the presented Multi-

Model problem the solution is given as in [9], the follower

should solve the following robust optimal control problem:

max
α∈A

h2,α
(
u1∗, u2

(
u1
))
→ min

u2∈U2

adm

U iadm :=
{
ui |

(
u1, u2

o (
u1
))} (13)

that provides the robust Stackelberg strategy for the follower.

Following the result of [9] the necessary condition for a

robust optimality of a strategy for the follower must fulfill

the next condition:

• (the maximality condition) The control strategies for

the follower u2
o

(t) ∈ U2adm (t ∈ [0, T ]) satisfies

H♦
2

(
ψ̄
♦
, x̄♦,f , u1, u2

o

, t
)
≥ H♦

2

(
ψ̄
♦
, x̄♦,f , u1, u2, t

)

or, equivalently,

u2
o

∈ Arg max
u2∈U2

adm

H♦
2

(
ψ̄
♦
, x̄♦,f , u1, u2

o

, t
)

(14)

• (the complementary slackness condition) For every

α ∈ A next conditions hold

µ2 (α)
(
h2,α − F 2∗

)
= 0 (15)

• (the transversality condition (Follower)) For every

α ∈ A and every i = 1, ..., N

bα + µ2 (α) gradh2,α (xα∗ (T )) = 0
ψα (T ) = bα, ψαn+1 (T ) + µ

2 (α) = 0
(16)

To derive the robust optimal condition for the leader,

using the same Mayer representation as before, the

functional for the leader is represented as:

h1,α = h1,α0 (x (T )) + xα,ln+1 (T )

where

x
α,l
n+1 =

T∫

t=t0

gα1
(
xα, u1, u2, τ

)
dτ

Now consider the next hamiltonian representation for the

leader:

H♦
1

(
ψ̄
♦
, λ̄
♦

1 , λ̄
♦

2 , λ
♦
3 , x̄

♦,l, u1, u2, t
)
:=

〈
λ̄
♦

1 , f̄
♦,l
(
x̄♦,l, u1, u2, t

)〉
-λ̄
♦⊺

2
∂H♦

2

∂x̄♦ ,f
+λ

♦⊺
3

∂H♦
2

∂u2
=

∑

α∈A

Hα
1

(
ψ̄
α
, λ̄
α

1 , λ̄
α

2 , λ
α
3 , x̄

α,l, u1, u2, t
)
=

∑

α∈A

[
∑

α∈A

(
λα1,jf

α
j

(
xα, u1, u2, t

))
+

λα1,n+1g
α
1

(
xα,f , u1, u2, t

)
-λ̄
α⊺

2
∂H♦

2

∂x̄♦ ,f
+λ

α⊺
3

∂H♦
2

∂u2

where the extended vector are defined as:

x̄♦,l :=
(
x11, ..., x

1,l
n+1; ...;x

M
1 , ..., x

M,l
n+1

)⊺

λ̄
♦

1 :=
(
λ11,1, ..., λ

1
1,n+1; ...;λ

M
1,1, ..., λ

M
1,n+1

)⊺

λ̄
♦

2 :=
(
λ12,1, ..., λ

1
2,n+1; ...;λ

M
2,1, ..., λ

M
2,n+1

)⊺

f̄♦,l :=
(
f11 , ..., f

1
n, g

1
1 ; ...; f

M
1 , ..., f

M
n , g

M
1

)⊺

f̄α,l = (fα1 , ..., f
α
n , g

α
1 ) ∈ ℜ

n+1

with the adjoint variables satisfying conditions that must be

satisfy by the leader

d

dt
λ̄
♦

1 =
∂H♦

1

(
ψ̄
♦
, λ̄
♦

1 , λ̄
♦

2 , λ
♦
3 , x̄

♦,l, u1, u2, t
)

∂x̄♦,l

d

dt
λ̄
♦

2 = −
∂H♦

1

(
ψ̄
♦
, λ̄
♦

1 , λ̄
♦

2 , λ
♦
3 , x̄

♦,l, u1, u2, t
)

∂ψ̄
♦

λ̄
♦

2 (t0) = 0

The application of the result in [9], yields to the next

conditions that must be satisfy by the leader

• (the maximality condition) The control strategies for

the leader u1∗(t) ∈ U1adm (t ∈ [t0, T ]), satisfies:

H♦
1

(
ψ̄
♦
, λ̄
♦

1 , λ̄
♦

2 , λ
♦
3 , x̄

♦,l, u1∗, u2, t
)
≥

H♦
1

(
ψ̄
♦
, λ̄
♦

1 , λ̄
♦

2 , λ
♦
3 , x̄

♦,l, u1, u2, t
)

equivalently,

u1∗ ∈ Arg max
u1∈U1

adm

H♦
1

(
ψ̄
♦
, λ̄
♦

1 , λ̄
♦

2 , λ
♦
3 , x̄

♦,l, u1, u2, t
)

(17)

• (the complementary slackness condition) For every

α ∈ A next conditions hold

µ1 (α)
(
h1,α − F 1∗

)
= 0 (18)

• (the transversality condition (Follower)) For every

α ∈ A and every i = 1, ..., N

cα + µ1 (α)
[
gradh1,α (xα∗ (T ))−

∂2

(∂xα∗)2
h2,α (xα∗ (T ))λα2 (T )

]

=0; λα1 (T ) =cα

λαn+1 (T ) + µ
1 (α) = 0

(19)

additionally the leader must satisfy the next relation:

∂H♦1

(
ψ̄
♦
, λ̄
♦

1 , λ̄
♦

2 , λ
♦
3 , x̄

♦,l, u1∗, u2, t
)

∂u2
= 0 (20)

C. Open-Loop Robust Leader-Follower Strategies in LQ

Differential Games

Consider the next two-player linear quadratic multimodel

game:

ẋα (t) = Aα (t)xα (t) +
2∑

j=1

Bα,j (t)uj (t)

xα (t) ∈ ℜn, xα (t0) = x0, uj (t) ∈ ℜmj , j = 1, 2;
t ∈ [t0, T ] , T <∞; α ∈ A = {1, 2, ...,M}

(21)
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Suppose that the individual aim performance hi,α of each

i-player (i = 1, 2) for each α-model (scenario) is given by

hi,α
(
u1, u2

)
= 1

2x
α⊺ (T )Qifx

α (T )+

1
2

T∫

t=t0

[

xα⊺Qixα +
2∑

j=1
uj⊺Rijuj

]

dt
(22)

As we mentioned before the robust optimal control problem

for each player is formulated as (13). In what follows we

illustrate how the construction given above is applied for

the case of two players leader follower LQ multi-model

differential games. The Hamiltonians for the leader and

follower LQ are:

H♦
2 =

∑

α∈A

[
1
2ψ

α⊺
n+1

(

xα⊺Q2xα +
2∑

j=1
uj⊺R2juj

)

+

ψα⊺
(
Aαxα +Bα,1u1 +Bα,2u2

)

H♦
1 =

∑

α∈A

[
1
2λ

α⊺
1,n+1

(

xα⊺Q1xα+
2∑

j=1
uj⊺R1juj

)

+

λ
α⊺
1

(
Aαxα+Bα,1u1+Bα,2u2

)
-λ
α⊺
2

(
Q2xα+Aα,⊺ψα

)
+(

R22u2 + ψα⊺Bα,2
)
λα3

(23)

The conditions (14)-(20) for the LQ multimodel plant are as

follows:

ψ̇
α

=-
∂

∂x̄α
Hα
2 =-Aα⊺ψα-ψα⊺n+1Q

2xα; ψ̇
α⊺

n+1 (t)=0

ψα (T )=-µ2 (α) grad
[
xα⊺ (T )Q2fx

α (T )+x
α,f
n+1 (T )

]
=

−µ2 (α)Q2xα (T ) ; ψα⊺n+1 (T )=-µ2 (α)

λ̇
α

1 = -
∂

∂x̄α
Hα
1 = -Aα⊺λα1 − λ

α
1,n+1Q

1xα +Q2λα2

λ̇
α

1,n+1 (t) = 0

λα1 (T ) = µ
1 (α)

[
Q1fx

α (T )−Q2fλ
α
2 (T )

]

λα1,n+1 (T ) = -µ1 (α)

λ̇
α

2 = -
∂

∂ψ̄
αH

α
1 = -Aαλα2 +B

α,2λα3 ; λ
α
2 (t0) = 0

(24)

the robust Stackelberg strategies for the leader satisfies:

u1∗(t) =

(
∑

α∈A

µ1 (α)

)−1
(
R11

)−1 ∑

α∈A

Bα,1⊺λα1 (25)

and for the follower

u2∗(t) =

(
∑

α∈A

µ2 (α)

)−1
(
R22

)−1 ∑

α∈A

Bα,2⊺ψα (26)

and

∂H♦
1

∂u2
=
∑

α∈A

[
-
(
µ1 (α)

)
R12u2∗ (t) + λα⊺1 B

α,2 +R22λα3
]

=
∑

α∈A

[
-µ1 (α)

(
µ2 (α)

)−1
R12

(
R22

)−1
Bα,2⊺ψα

+λα⊺1 B
α,2 +R22λα3

]
= 0

(27)

finally
∑

α∈A

λα3 =
∑

α∈A

(
R22

)−1
×

[
µ1 (α)

(
µ2 (α)

)−1
R12

(
R22

)−1
Bα,2⊺ψα −Bα,2λα1

]

(28)

Since at least one index α ∈ A is active we have:∑

α∈A

µi (α) > 0.Introducing the normalized adjoint variables

with as

ψ̃
α

n (t) =

{
ψαn (t)

(
µ2 (α)

)−1
if µ2 (α) > 0

0 if µ2 (α) = 0

λ̃
α

k,n (t) =

{
λαn (t)

(
µ1 (α)

)−1
if µ1 (α) > 0

0 if µ1 (α) = 0
k = 1, 2, 3

we get

·

ψ̃

α

(t)=-Aα⊺ ψ̃
α

-ψ̃
α⊺

n+1Q
2xα

·

ψ̃

α

n+1 (t) = 0;

with the corresponding transversality conditions given by

ψ̃
α
(T ) = −Q2xα (T ) , ψ̃

α⊺

n+1 (T )=-1
·

λ̃1

α

(t) = -Aα⊺ λ̃
α

1 − λ̃
α⊺

1,n+1Q
1xα +Q2λ̃

α

2

λ̃
α

1 (T ) = Q
1
fx

α (T )−Q2fλ
α
2 (T ) ; λα1,n+1 (T ) = -1

·

λ̃2

α

= -Aαλ̃
α

2 +B
α,2λ̃

α

3 ; λ
α
2 (t0) = 0

the robust Stackelberg strategies becomes:

u1∗(t) =

(
∑

α∈A

µ1 (α)

)−1 (
R11

)−1 ∑

α∈A

(
µ1
)
Bα,1⊺ λ̃

α

1 =

−
(
R11

)−1 ∑

α∈A

να,1Bα,1⊺ λ̃
α

1

(29)

and for the follower

u2∗(t) =

(
∑

α∈A

µ2 (α)

)−1 (
R22

)−1 ∑

α∈A

(
µ2
)
Bα,2⊺ ψ̃

α
=

−
(
R22

)−1 ∑

α∈A

να,2Bα,2⊺ ψ̃
α

(30)

where the vectors νi :=
(
ν
α,1
1 , ..., ν

α,M
1

)⊺
(i = 1, 2) be-

longs to the simplex:

Si,M :=

{

νi ∈ RM=|A| : να,i=µi (α)

(
∑

α∈A

µi (α)

)−1
≥ 0,

∑

α∈A

να,i = 1

(31)

Finally

∑

α∈A

λ̃
α

3 =
∑

α∈A

(
R22

)−1 [
R12

(
R22

)−1
Bα,2⊺ ψ̃

α
−Bα,2λ̃

α

1

]

(32)

As one can see from (29) and (30), the Robust Optimal

Control for both leader an follower is a mixture of the control

actions optimal for each independent index α ∈ A.
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D. Extended form for the game

Now consider the next representation for the game

A:=






A1 · · · 0
...

. . .
...

0 · · · AM




 ; Qi:=






Qi · · · 0
...

. . .
...

0 · · · Qi






Qi
f :=






Qif · · · 0
...

. . .
...

0 · · · Qif




 , Γi:=






ν1,iI · · · 0
...

. . .
...

0 · · · νM,iI






Bi⊺ :=
[
Bi,1⊺ · · ·Bi,M⊺

]
, I ∈ ℜn×n i = 1, 2

(33)

In the extended form we obtain the general dynamics given

by (bold stand for extended vectors and matrices):

ẋ=Ax+B1u1 +B2u2, x⊺(t0)=
(
x1⊺ (0) ,...,xM⊺ (0)

)

ψ̇=-A⊺ψ+Q2x; ψ (T )=-Q2
fx (T ) ;

λ̇1=-A⊺λ1−Q
1x+Q2λ2; λ1 (T )=Q1

fx (T ) -Q2
fλ2 (T )

λ̇2 = -Aλ2 +B
2λ3; λ2 (t0) = 0

λ3 =
(
R22

)−1 [
R12

(
R22

)−1
B2⊺ψ −B2⊺λ1

]

(34)

u1 = −
(
R11

)−1
B1⊺Γ1λ1

u2 = −
(
R22

)−1
B2⊺Γ2ψ

(35)

where

x⊺ :=
(
x1,⊺1 , ..., x1,⊺n ; ...;xM,⊺1 , ..., xM,⊺n

)
∈ ℜ1×nM

ψ⊺ :=
(
ψ̃
1,⊺

1 , ..., ψ̃
1,⊺

n ; ...; ψ̃
M,⊺

1 , ..., ψ̃
M,⊺

n

)
∈ ℜ1×nM

λ
⊺
k :=

(
λ̃
1,⊺

k,1, ..., λ̃
1,⊺

k,n; ...; λ̃
M,⊺

k,1 , ..., λ̃
M,⊺

,n

)
∈ ℜ1×nM

k = 1, 2, 3

Theorem: If for the two person linear quadratic dif-

ferential game (34) with the following restrictions to the

matrices: Rii > 0, R12 ≥ 0, Qi ≥ 0 and Qi
f ≥ 0 (i =

1, 2) there exists a solution set of the following parametrized

coupled differential equation [14]:

Ṗν2∗
(
A−B1R11

−1

B1⊺Λ1,ν1∗ −B
2R22

−1

B2⊺Pν2∗
)
+

Pν2∗ +A
⊺Pν2∗ + Γ

2∗Q2 = 0;
Pν2∗ (T ) = Γ

2∗Q2
f ; Pν2∗ = P

⊺
ν2∗

∈ ℜnM×nM

Λ̇1,ν1∗
(
A−B1R11

−1

B1⊺Λ1,ν1∗ −B
2R22

−1

B2⊺Pν2∗
)
+

Λ1,ν1∗ +A
⊺Λ1,ν1∗ + Γ

1∗Q1 − Γ1∗Q2Λ2,ν1∗ = 0;

Λ1,ν1∗ (T ) = Γ
1∗
(
Q1
f −Q

2
fΛ2,ν1∗ (T )

)

Λ̇2,ν1∗
(
A−B1R11

−1

B1⊺Λ1,ν1∗ −B
2R22

−1

B2⊺Pν2∗
)

+Λ2,ν1∗+AΛ2,ν1∗ + Γ
1∗B2R22

−1

R12R22
−1

B2⊺Pν2∗−

Γ1∗B2R22
−1

B2⊺Λ1,ν1∗ = 0; Γ1∗Λ2,ν1∗(t0) = 0
(36)

then the open-loop robust leader-follower equilibrium strate-

gies with Player 1 acting as the leader are:

u1 = −
(
R11

)−1
B1⊺Λ1,ν1∗x

u2 = −
(
R22

)−1
B2⊺Pν2∗x

(37)

define the open-loop robust leader-follower equilibrium so-

lution if the matrix Γi∗(i = 1, 2) in (33) contains the vectors

νi∗ which satisfy the leader-follower equilibrium condition:

J1
(
ν1∗, ν2∗

(
ν1
))
≤ J1

(
ν1, ν2

o (
ν1
))

ν2
o (
ν1
)
:= arg min

ν2∈SN
J2
(
ν1, ν2

)

for any νi ∈ Si,M
(38)

where
J i
(
ν1∗, ν2∗

)
:= max

α∈A
hi,α

(
u1, u2

)

i = 1, 2
(39)

with given by (37) parametrized by ν1∗ and ν2∗ (νi ∈ Si,M )

through (36).

Proof: Let us try to represent Γ2ψ as

Γ2ψ = −Pν2x, Γ
1λ1 = −Λ1,ν1x, and Γ1λ2 = −Λ2,ν1x.

By (36) and by the commutation of the operators

ΓiA⊺ =A⊺Γi and ΓiQi =QiΓi the result follows.�

IV. NUMERICAL PROCEDURE

For the problem of finding the leader-follower equilibrium

weights
(
ν1, ν2

(
ν1
))

we propose the use of the next min-

imizing numerical procedure. To make this analytically is

not a simple task. Assuming that J i
(
ν1, ν2

(
ν1
))
> 0 for

all νi ∈ Si,M (i = 1, 2) (if not, one can add to the

cost functions any necessary positive constant that, evidently

does not change anything) , define the series of the vectors

iterations
{
νi,k

}
(for any fixed n) as

νi,k+1 = πSi,M

{
νi,k +

γi,k

J̃ i (ν1,k, ν2,k)
F̃ i
(
ν1,k, ν2,k

)}

νi,0 ∈ Si,M , k = 1, 2, ...

F̃ i
(
ν1,k, ν2,k

)
=
[
h̃1,i

(
ν1,k, ν2,k

)
, h̃M,i

(
ν1,k, ν2,k

)]

J̃ i
(
ν1,k, ν2,k

)
= max
α∈1,N

h̃α,i
(
ν1,k, ν2,k

)

(40)

where πSi,M{·} is the projector of an argument to the

simplex Si,M and the new functional h̃α,i is defined as:

h̃α,i
(
ν1,k, ν2,k

)
:=
δ

2

∥∥∥ν(i)
∥∥∥
2

+ hα,i
(
ν1,k, ν2,k

)
(41)

whether this algorithm converges to a unique point or not

we let this discussion for a large version of this work.

Algorithm. The algorithm for finding a solution for the

robust leader-follower strategies is summarized as follows:

• Step 1) Select an initial condition

for the leader’s weights Γ1.
• Step 2) Applying the control action

equal to the weighted combination

of standard stackelberg strategies,

calculate all possible (for

each scenario) dynamics and the

corresponding cost functionals.

• Step 3) Using the corresponding cost

functionals perform iteratively the

minimizing procedure (40) to find

the optimal response of the follower

Γ2 for a given fixed strategy of the

leader.

• Step 4) Given the optimal response

of the follower Γ2 keep fixed this
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values and use again (40) to minimize

the leader’s weights Γ1.
• Step 5) Continue form the Step 1

making the initial conditions with

values found in 3) until convergence.

A. Solving Coupled equations

For the solution of the set of coupled Riccati equations

(36), we follow the work of [2], which is based on the

solution of an auxiliary system. For the lack of space we

omit the details of this method.

V. NUMERICAL EXAMPLE

Consider the next two-scenarios two-players LQ differen-

tial game given by

ẋ = Ax+B1u1 +B2u2,

A =

[
A1 0
0 A2

]
;x0 =

(
3
−1

)

A1=

(
0.25 0.2
0.7 0.7

)
;A2=

(
0.3 0.15
0.7 −0.5

)
;

B1,1=B1,2=

(
2
0

)
; B2,1=B2,2=

(
0
1

)

Q1,1=Q1,2=1× I2×2;Q
2,1=Q2,2 = 1.5× I2×2

Q
1,1
f =3I2×2;Q

1,2
f =2I2×2;Q

2,1
f =3I2×2;Q

2,2
f =2I2×2

Rii = Rij = I2×2 i, j = 1, 2

The tables below show the convergence to dependence of the

cost functionals on the weights ν1 =
(
ν11, 1− ν

1
1

)
, ν2 =(

ν21, 1− ν
2
1

)
,
(
ν11 ≥ 0, ν

2
1 ≥ 0

)
.

k ν11 ν21 h1,1 h1,2

1 0.5000 0.5000 6.3146 6.3181

...
...

...
...

...

7 0.4972 0.5028 6.3203 6.3201

8 0.4972 0.5028 6.3202 6.3202

...
...

...
...

...

36 0.4969 0.5031 6.3269 6.3269

37 0.4969 0.5031 6.3269 6.3269

Table 1 Cost Function Leader

k ν11 ν21 h2,1 h2,2

1 0.5000 0.5000 2.2697 2.2697

...
...

...
...

...

6 0.3742 0.6258 2.2717 2.2690

7 0.3742 0.6258 2.2677 2.2727

...
...

...
...

...

36 0.2659 0.7341 2.2609 2.2709

37 0.2659 0.7341 2.2609 2.2709

Table 1 Cost Function Follower

As one can see in the tables 1 and 2 the numerical

procedure works efficiently finding the robust strategies, in

this case the algorithm practically finish after one cycle of

performing 15 iterations for the follower and 5 iterations for

the leader. At the end of the process the cost functionals

arrives to the practically same values as we expected from

the complementary slackness condition (15) and (18).

VI. CONCLUSIONS

In this paper the formulation of a concept for a type

of robust Leader-Follower equilibrium for a Multi-Plant

differential game was presented. The dynamic of the game

for this kind of problems is given by a set of N different

possible differential equations (Multi-Plant problem) with no

information about the trajectory which is realized. The prob-

lem is solved designing of min-max strategies for each player

which guarantee an equilibrium for the worst case scenario.

The suggested approach was based on the Robust Maximum

Principle, the conditions for a game to be in Robust Leader-

Follower Equilibrium was given. As in the Nash equilibrium

case the initial min-max differential game is converted into

a standard static game given in a multidimensional simplex.

The realization of the numerical procedure confirms the

effectiveness of the suggested approach.
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