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Abstract— This paper presents a unified fault isolation
scheme for process faults and sensor faults in a class of
nonlinear uncertain systems. The proposed fault diagnosis
architecture consists of a fault detection estimator and a bank
of isolation estimators, each corresponding to a particular
fault type. Based on the class of nonlinear systems and fault
types under consideration, adaptive thresholds are derived for
the isolation estimators, and fault isolability conditions are
rigorously investigated, characterizing the class of process faults
and sensor faults that are isolable by the proposed scheme.

I. INTRODUCTION

In recent years, there has been a lot of research activity in

the design and analysis of fault diagnosis and accommoda-

tion schemes for different classes of dynamic systems (see,

for example, [5], [1]). Considerable effort has been devoted

to the development of fault diagnosis schemes for nonlinear

systems in the framework of various kinds of assumptions

and fault scenarios (see, for instance, [6], [7], [3], and the

references cited therein).

In this paper, we focus on the fault isolation problem,

which is a crucial step in the design of intelligent control

and health management systems. Typically, fault isolation

goes into effect after a fault is detected with the objective of

determining the location/type of the fault. The fault isolation

problem has been studied in the context of several different

formulations including: (a) determining the particular type

of the fault among a set of known (or partially known)

possible fault types (for example, a bearing may exhibit

abnormal behavior as a result of spalling, pitting, or over-

rolling of debris); (b) determining the particular faulty com-

ponents among the set of all components under consideration

(for example, sensor validation); (c) for spatially distributed

systems, determining the physical location of the faulty

subsystem (for example, locating faulty sensor clusters in

a distributed wireless sensor networks monitoring a large

physical region of interest).

In previous papers [11], [12], the authors investigated

the nonlinear fault isolation problem in the context of type

(a) and (b), respectively. However, for the process fault

isolation problem we assume the sensors are healthy [11],
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and for the sensor fault isolation problem we assume there

are no process faults [12]. In real-world applications, both

the process (including plant and actuators) and the sensors

are prone to faults. Fault isolation methods that only consider

process faults could provide a wrong isolation decision in the

presence of sensor faults, and vice versa. The objective of this

paper is to develop a fault isolation method that deals with

both process faults and sensor faults in a unified framework.

An architecture based on adaptive techniques has been

presented with the aim of detecting and isolating process

faults or sensor faults (see [6], [2], [10], [11], [12] for related

results). In this connection, a design methodology for fault

isolation of the considered class of process faults and sensor

faults is provided, as well as a rigorous analytical frame-

work aimed at characterizing the behaviors of the proposed

scheme. The analysis of the fault isolation scheme focuses

on: (i) determining adaptive thresholds for fault isolation; and

(ii) deriving isolability conditions of the process faults and

sensor faults under consideration on the basis of the so-called

fault mismatch function, which provides a suitable measure

of the mutual difference between faults.

The paper is organized as follows. Section II defines the

classes of nonlinear systems and faults to be investigated.

In Section III, the design of the proposed fault detection

and isolation (FDI) scheme is described. In Section IV

the design of adaptive thresholds is addressed, while in

Section V the fault isolability analysis is carried out. Finally,

the conclusions and future work are presented.

II. PROBLEM FORMULATION

Consider a class of nonlinear multi-input-multi-output

(MIMO) dynamic systems described by

ẋ = Ax + γ(y, u) + η(x, u, t) + βx(t − Tx)φ(y, u)
y = Cx + d(x, u, t) + βy(t − Ty)Fθ(t)

(1)

where x ∈ ℜn is the system state vector, u ∈ ℜm is the input

vector, y ∈ ℜl is the output vector, γ : ℜl × ℜm 7→ ℜn,

η : ℜn × ℜm × ℜ+ 7→ ℜn, φ : ℜl × ℜm 7→ ℜn, and

d : ℜn × ℜm × ℜ+ 7→ ℜl are smooth vector fields, and

(A, C) is an observable pair. The state equations

ẋN = AxN + γ(yN , u)
yN = CxN

represents the known nominal system dynamics, while the

healthy system is described by

ẋH = AxH + γ(yH , u) + η(xH , u, t)
yH = CxH + d(xH , u, t).
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The difference between the nominal model and the actual

(healthy) system is due to the vector fields η and d, which

represent the modeling uncertainties in the state equation

and output equation, respectively. The changes in the system

dynamics as a result of a process fault are characterized by

the term βx(t − Tx)φ(y, u) in (1). Specifically, βx(t − Tx)
denotes the time profile of a process fault which occurs at

some unknown time Tx, and φ(y, u) represents the nonlinear

fault function. The changes in the system dynamics as a

result of a sensor fault are characterized by βy(t−Ty)Fθ(t)
in (1). Specifically, the vector Fθ(t) represents a time–

varying bias due to a sensor fault, and the function βy(t −
Ty) characterizes the time profile of the sensor fault, where

Ty is the unknown fault occurrence time.

In this paper, we only consider the case of abrupt (sudden)

faults; therefore, βx(·) and βy(·) take the form of a step

function β(·) given by

β(t − T0) =

{

0 if t < T0

1 if t ≥ T0
,

where T0 = Tx for process faults, and T0 = Ty for sensor

faults. Moreover, the analysis is based on the assumption that

only a single fault occurs, which is either a process fault or

a sensor fault.

The class of sensor faults under consideration is repre-

sented by Fθ(t), where F ∈ ℜl is the fault distribution

vector, and θ(t) is the magnitude of the time–varying sensor

bias. Because of the single fault assumption, the sensor fault

distribution vector F has only one non-zero entry, which

represents the corresponding corrupted output measurement.

Depending on the location of the fault, the distribution vector

F belongs to a class of l possible vectors {F 1, F 2, . . . , F l } ,

where, for any j = 1, · · · l, only the j–th component of

vector F j is different from zero. Accordingly, the scalar

θj(t) ∈ ℜ is the magnitude of the time–varying bias in the

j–th sensor.

The process fault function φ under consideration is mod-

eled as a nonlinear function of measurable quantities y and

u. It is assumed that there are N types of possible process

faults in the fault class; specifically, φ(y, u) belongs to a

finite set of functions given by

FP
△
=

{

φ1(y, u), . . . , φN (y, u)
}

. (2)

Each fault function φp, p = 1, · · · , N , is described by

φp(y, u)
△
=

[

(θp
1)⊤gp

1(y, u), · · · , (θp
n)⊤gp

n(y, u)
]⊤

, (3)

where θp
i , i = 1, · · · , n , is an unknown parameter vector

assumed to belong to a known compact and convex set Θp
i

(i.e., θp
i ∈ Θp

i ⊂ ℜυ
p

i ) and gp
i : ℜl × ℜm 7→ ℜυ

p

i is a

known smooth vector field. As discussed in [11], the process

fault model described by (2) and (3) characterizes a general

class of nonlinear faults where the vector field gp
i represents

the functional structure of the p-th fault affecting the i-
th state equation, while the unknown parameter vector θp

i

characterizes the “magnitude” of the fault. The dimension

υp
i of each parameter vector θp

i is determined both by the

type of fault and by the specific state equation considered.

The main objective of this paper is to develop a robust

fault isolation scheme for process faults and sensor faults

in nonlinear dynamic systems modeled by (1). It is worth

noting that in addition to nonlinear systems in the form of (1),

the presented algorithm can also be applied to more general

nonlinear systems which are transformable to (1) using a

local diffeomorphism [9], [10].

Throughout the paper, the following assumptions are

made:

Assumption 1. The modeling uncertainties, represented by η
and d in (1), are unstructured and unknown nonlinear func-

tions of x, u, and t, but bounded by given known functionals,

i.e.,

|η(x, u, t)| ≤ η̄(y, u, t), |d(x, u, t)| ≤ d̄(y, u, t) ,

∀(x, y, u) ∈ X × Y × U , ∀t ≥ 0 , (4)

where the bounding functions η̄(y, u, t) and d̄(y, u, t) are

known and uniformly bounded in Y × U × ℜ+ , X ⊂ ℜn

is some compact domain of interest, and U ⊂ ℜm and

Y ⊂ ℜl are the compact sets of admissible inputs and outputs,

respectively.

Assumption 2. The system state vector x belongs to a

possibly unknown compact set X ⊂ ℜn before and after the

occurrence of a fault, that is, x(t) ∈ X for all t ≥ 0.

Assumption 3. The rates of change of the process fault

parameter vector θp(t) (p = 1, · · · , N), and the sensor bias

θj(t) (j = 1, · · · , l), are uniformly bounded, respectively,

i.e.,

• for process faults, |θ̇p(t)| ≤ αp for all t ≥ 0, where

θp △
=

[

(θp
1)

⊤
, · · · , (θp

n)
⊤

]⊤

,

and αp is a known positive constant;

• for sensor bias, |θ̇j(t)| ≤ δ for all t ≥ 0, where δ is a

known positive constant.

Assumption 1 characterizes the class of modeling uncer-

tainties under consideration. The bounds on the unstructured

modeling uncertainties are needed in order to be able to

distinguish between the effects of faults and modeling un-

certainty [11].

Assumption 2 requires the boundedness of the state vari-

ables before and after the occurrence of a fault. Hence, it

is assumed that the feedback control system is capable of

retaining the boundedness of the state variables even in the

presence of a fault. This is a technical assumption required

for well posedness since the fault isolation design that we

consider does not influence the closed-loop dynamics and

stability. It is important to note that the proposed fault de-

tection and isolation design does not depend on the structure

of the controller.

Finally, in Assumption 3 known bounds on the rates of

change of θp(t) and θj(t) are assumed. In practice, the rate

bounds αp and δ can be set by exploiting some a priori

knowledge on the fault developing dynamics. In the case of

a constant fault size or bias, we simply set αp = 0 or δ = 0 .
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III. FAULT DETECTION AND ISOLATION

ARCHITECTURE

The fault detection and isolation architecture is based on a

bank of N + l+1 nonlinear adaptive estimators, where N is

the number of different nonlinear process faults in the fault

class FP , and l is the number of sensors or output variables

under consideration. One of the nonlinear adaptive estimators

is the fault detection estimator (FDE) used for detecting

the occurrence of any faults, while the remaining N + l
nonlinear adaptive estimators are fault isolation estimators

(FIEs) which are activated for the purpose of fault isolation

only after a fault is detected.

A. Fault Detection Scheme

Based on the system model given by (1), the following

FDE is chosen:

˙̂x0 = Ax̂0 + L(y − ŷ0) + γ(y, u), x̂0(0) = 0

ŷ0 = Cx̂0 ,

where x̂0 and ŷ0 denote the estimated state and output

vectors, respectively, and L ∈ ℜn×l is design gain matrix.

Moreover, let ǫ0x
△
= x− x̂0 denote the state estimation error.

Then

ǫ̇0x = A0ǫ
0
x − Ld(x, u, t) + η(x, u, t), t < min(Tx, Ty)

(5)

where the gain L is chosen such that the matrix A0
△
=

(A−LC) is Hurwitz. Each component ǫ0yj

△
= yj − ŷ0

j , j =
1, . . . , l of the output estimation error is given by

ǫ0yj
= Cjǫ

0
x + dj(x, u, t) , (6)

where Cj is the j-th row vector of matrix C, and dj is the

j-th component of the measurement uncertainty d . From (5)

and (6), we have

|ǫ0yj
(t)| ≤

∫ t

0

kj e−λj(t−τ) | η(x, u, τ) − Ld(x, u, τ) |dτ

+ |dj(x(t), u(t), t)| + kj x̄e−λjt , (7)

where kj and λj are positive constants chosen such that

|Cje
A0t| ≤ kje

−λjt (since A0 is Hurwitz, constants kj and

λj satisfying the above inequality always exist [8]), and x̄
is a (possibly conservative) bound for |x|, such that |x| ≤ x̄,

∀x ∈ X (by Assumption 2). It is worth noting that, since

the effect of this bound decreases exponentially, the use of

such a conservative bound will not weaken significantly the

performance of the fault detection scheme. By using (4) and

(7), the fault detection scheme is designed as follows. A fault

is detected when at least one component of the modulus of

the output estimation error |ǫ0yj
(t)| exceeds its corresponding

threshold ǭ0yj
(t), which is defined as

ǭ0yj
(t)

△
=

∫ t

0

kj e−λj(t−τ)
[

η̄(y, u, τ) + ||L|| d̄(y, u, τ)
]

· dτ + kj x̄e−λjt + d̄j(y(t), u(t), t) . (8)

More precisely, the fault detection time Td is defined as

Td
△
= inf

l
⋃

j=1

{

t ≥ 0 :
∣

∣

∣
ǫ0yj

(t)
∣

∣

∣
> ǭ0yj

(t)
}

.

B. Fault Isolation Estimators and Decision Scheme

Assume now that a fault is detected at some time Td;

accordingly, at t = Td the fault isolation estimators are

activated. Each FIE corresponds to one potential fault type.

Specifically, among the N +l FIEs employed in the fault iso-

lation scheme, N FIEs are designed based on the functional

structure of the process faults defined in (2) and (3), and the

remaining l FIEs are designed based on the the functional

structure of the potential sensor faults. The following N FIEs

correspond to process faults: for p = 1, · · · , N ,

˙̂xp = Ax̂p + γ(y, u) + L(y − ŷp) + Ωp ˙̂
θp

+ φ̂p(y, u, θ̂p) , x̂p(Td) = 0 ,

Ω̇p = A0Ω
p + Zp(y, u) , Ωp(Td) = 0 ,

φ̂p(y, u, θ̂p) = [(θ̂p
1)⊤gp

1(y, u), · · · , (θ̂p
n)⊤gp

n(y, u)]⊤ ,
ŷp = Cx̂p ,

(9)

where θ̂p
i ∈ ℜυ

p

i , for i = 1, · · · , n, is the estimate of

the fault parameter vector in the i-th state equation of

the p-th isolation estimator. It is noted that according to

(3) the fault approximation model φ̂p is linear in the ad-

justable weights θ̂p, consequently, the gradient matrix Zp △
=

∂φ̂p(y, u, θ̂p) / ∂θ̂p = diag [(gp
1)⊤, · · · , (gp

n)⊤] does not

depend on θ̂p.

The adaptation in the isolation estimators arises due to the

unknown parameter vector θp △
=

[

(θp
1)

⊤
, · · · , (θp

n)
⊤

]⊤

.

The adaptive law for adjusting each θ̂p is derived using the

Lyapunov synthesis approach (see for example [8]), with

the projection operator restricting θ̂p to the corresponding

known set Θp (in order to guarantee stability of the learning

algorithm in the presence of modeling uncertainty [8], [4]).

Specifically, the learning algorithm is chosen as follows

˙̂
θp = PΘp

{

ΓΩp⊤C⊤ǫp
y

}

, (10)

where ǫp
y(t)

△
= y(t) − ŷp(t) denotes the output estimation

error of the p-th estimator, and Γ > 0 is a symmetric,

positive-definite learning rate matrix.

Analogously, the following l FIEs correspond to sensor

faults: for q = N + 1, · · · , N + l,

˙̂xq = Ax̂q + γ(y, u) + L(y − ŷq) + Ωq ˙̂
θq,

x̂q(Td) = 0 ,

Ω̇q = A0Ω
q − LF q , Ωq(Td) = 0 ,

ŷq = Cx̂q + F q θ̂q ,
˙̂
θq = PΘq

{

γq (CΩq + F q)
⊤

ǫq
y

}

,

(11)

where ǫq
y(t)

△
= yq(t) − ŷq(t) denotes the output estimation

error, the projection operator P restricts the parameter

estimation θ̂q to a predefined compact and convex region

Θq ⊂ ℜ [8], [4], and γq ∈ ℜ is the learning rate.
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Remark 1. The parameter estimate θ̂p and θ̂q also provides

useful information for fault isolation. However, it is impor-

tant to stress that it cannot be guaranteed that, for the actual

fault, the parameter estimate θ̂p and θ̂q will converge to the

true value, unless we assume persistency of excitation [8],

[4], a condition which, in general, is too restrictive (in this

paper, we do not assume persistency of excitation.)

The stability and learning capability of the FIEs described

by (9) and (11) have been rigorously investigated in [11] and

[12].

Now, let us consider process fault p, where p = 1, · · · N ,

and sensor fault q, where q = N +1, · · · N + l , in a unified

framework. Then we have N + l faults in the augmented

fault class. More specifically, for s = 1, · · · N + l , fault

s is a process fault, if 1 ≤ s ≤ N , and fault s is a

sensor fault, if N + 1 ≤ s ≤ N + l. The fault isolation

decision scheme is based on the following intuitive principle:

for s = 1, · · · , N + l, if fault s occurs at time T0 and

is detected at time Td, then a set of adaptive threshold

functions {µs
j(t), j = 1, · · · , l} can be designed for the s-

th isolation estimator, such that the j-th component of its

output estimation error satisfies |ǫs
yj

(t)| ≤ µs
j(t), for all

t > Td. Consequently, for each s = 1, · · · , N , such a set of

adaptive thresholds {µs
j(t), j = 1, · · · , l} can be associated

with the output estimation of the s-th isolation estimator.

In the fault isolation procedure, if for a particular isolation

estimator s, there exists some j ∈ {1, · · · , l}, such that

the j-th component of its output estimation error satisfies

|ǫs
yj

(t)| > µs
j(t) for some finite time t > Td, then the

possibility of the occurrence of fault s can be excluded.

Based on this intuitive idea, the following fault isolation

decision scheme is devised:

Fault Isolation Decision Scheme: if, for each r ∈
{1, · · · , N + l}\{s} , there exist some finite time tr > Td

and some j ∈ {1, · · · , l}, such that |ǫr
yj

(tr)| > µr
j(t

r), then

the occurrence of fault s is concluded.

In the next section, we will derive the threshold µs(t)
associated with each isolation estimator.

IV. ADAPTIVE THRESHOLDS FOR FAULT

ISOLATION

The threshold functions µs
j(t) play a significant role in

the proposed fault isolation scheme. The following lemma

provides a bounding function for the output estimation of

the s–th isolation estimator in the case that fault s occurs.

Lemma 1. Suppose that fault s, occurring at time t = T0

is detected at time t = Td , where s = 1, · · · N + l . Then,

for all t ≥ Td , the j-th component of the output estimation

error of the s-th isolation estimator satisfies the following

inequality:

|ǫs
yj

(t)| ≤ |Υs(t)| |θ̃s(t)| + kj x̄e−λj(t−Td) + d̄j(y, u, t)

+ kj

∫ t

Td

e−λj(t−τ)

[

η̄(y(τ), u(τ), τ) + ρs||Ωs||

+||L|| d̄(y(τ), u(τ), τ)

]

dτ , (12)

where

Υs △
=

{

CjΩ
s if 1 ≤ s ≤ N

CjΩ
s + F s

j if N < s ≤ N + l
, (13)

and

ρs △
=

{

αs if 1 ≤ s ≤ N
δ if N < s ≤ N + l

. (14)

Proof: Denote the state estimation error of the s-th isolation

estimator by ǫs
x(t)

△
= x(t) − x̂s(t), for s = 1, · · · N + l .

The proof consists of two parts.

Part I: In the presence of a process fault p, p = 1, · · · , N ,

(or equivalently, fault s with 1 ≤ s ≤ N ), by using (1), the

system dynamics for t > Tx are given by

ẋ = Ax + γ(y, u) + η(x, u, t) + φp(y, u)
y = Cx + d(x, u, t) .

(15)

Using (15), (9), and Zp = Ω̇p − A0 Ωp, after some simple

algebraic manipulations, we obtain

ǫ̇p
x(t) = A0

(

ǫp
x(t) + Ωpθ̃p

)

+ η(x, u, t) − Ld(x, u, , t)

−
d

dt
(Ωpθ̃p) − Ωpθ̇p .

By letting ǭp
x(t)

△
= ǫp

x(t)+ Ωpθ̃p, the above equation can be

rewritten as

˙̄ǫp
x(t) = A0ǭ

p
x(t) + η(x, u, t) − L d(x, u, t) − Ωpθ̇p . (16)

By defining ǫp
yj

(t)
△
= yj(t) − ŷp

j (t) and using (15) and (9),

we have:

ǫp
yj

(t) = Cj

(

ǭp
x(t) − Ωpθ̃p

)

+ dj(x, u, t) . (17)

Now, based on (16), (17), (13), and (14), as well as assump-

tion 1 and assumption 3, it can be easily shown that

|ǫp
yj

(t)| ≤ |CjΩ
p| |θ̃p(t)| + kj x̄e−λj(t−Td) + d̄j(y, u, t)

+ kj

∫ t

Td

e−λj(t−τ)

[

η̄(y(τ), u(τ), τ) + αp

· ||Ωp|| + ||L|| d̄(y(τ), u(τ), τ)

]

dτ , (18)

Part II: In the presence of a sensor fault q, q = 1, · · · , l,
(or equivalently, fault s with N < s ≤ N + l), by using

(1), the system dynamics for t > Ty are given by

ẋ = Ax + γ(y, u) + η(x, u, t)
y = Cx + d(x, u, t) + F qθq(t) .

(19)

The dynamics of the output estimation error of the q–th FIE

described by (11) has been investigated in [12], the results

are repeated as follows:

|ǫq
yj

(t)| ≤ |CjΩ
q + F q

j | |θ̃
q(t)| + kj x̄ e−λj(t−Td)

+kj

∫ t

Td

e−λj(t−τ)

[

η̄(y(τ), u(τ), τ) + δ|Ωq|

+‖L‖ d̄(y(τ), u(τ), τ)

]

dτ + d̄j(y, u, t) . (20)

Now the proof of (12) easily follows from (13), (14), (18),

and (20).
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Although Lemma 1 provides an upper bound on the output

estimation error of the s-th estimator, the right-hand side

of (12) cannot be directly used as a threshold function for

fault isolation because θ̃s(t) is not available. However, as

the estimate θ̂s belongs to the known compact set Θs, we

have

∣

∣

∣
θs − θ̂s(t)

∣

∣

∣
≤ κs(t) for a suitable κs(t) depending on

the geometric properties of set Θs (see [11]). Hence, based

on the above discussions, the following threshold function is

chosen:

|µs
j(t)| ≤ |Υs(t)| |κs(t)| + kj x̄e−λj(t−Td) + d̄j(y, u, t)

+ kj

∫ t

Td

e−λj(t−τ)

[

η̄(y(τ), u(τ), τ) + ρs||Ωs||

+||L|| d̄(y(τ), u(τ), τ)

]

dτ . (21)

Remark 2. The adaptive threshold function described by

(21) is influenced by several sources of uncertainty entering

the fault isolability problem, such as modeling uncertainty

η, measurement errors d and parametric uncertainty κs.

Intuitively, the smaller the uncertainty (resulting in a smaller

threshold µs
j(t), the easier the task of isolating the faults. On

the other hand, as clarified in the next section, the capability

to isolate a fault depends not only on µs
j(t), but also on the

degree that the faults are “different” from each other.

V. FAULT ISOLABILITY ANALYSIS

For our purpose, a fault is said to be isolable if the

fault isolation scheme is able to reach a correct decision

in finite time. Intuitively, faults are isolable if they are

mutually different according to a certain measure quantifying

the difference in the effects that different faults have on

measurable outputs and on the estimated quantities in the

isolation scheme. In this respect, we introduce the fault

mismatch function between the s–th fault and the r–th fault:

hsr
j (t)

△
= Υsθs − Υr θ̂r , r, s = 1, · · · , N + l, r 6= s

(22)

where Υs and Υr, defined in (13), represent respectively the

functional structure of fault s and fault r related to the j–th

output variable, yj .

Remark 3. The fault mismatch function hsr
j (t) is related

to both the structural difference between the faults (i.e., Υs

and Υr) and the properties of the isolation scheme (i.e., the

estimates θ̂r). However, as described in Section III-B, the

fault isolation estimators are designed based on the structure

of the faults (i.e., Zp and F q). Moreover, the adaptive

thresholds are designed in such a way that faults can not be

isolated unless their structures are sufficiently different (see

[11], [12]). Therefore, the structural difference between the

faults has a predominant effect on the isolability properties

than the actual behavior of the estimates θ̂r provided by the

FIEs.

The following theorem characterizes (in a non-closed

form) the class of isolable faults.

Theorem 1. Consider the fault isolation scheme described by

(9)–(11) and (21). Suppose that Assumptions 1, 2, and 3 hold

and that a fault s, s = 1, · · · N + l, occurring at time t = T0

is detected at time t = Td . Then fault s is isolable if, for each

r ∈ {1, · · · , N + l}\{s} , there exist some time tr > Td and

some j ∈ {1, · · · l} , such that the fault mismatch function

hsr
j (tr) satisfies the following inequality:

∣

∣hsr
j (tr)

∣

∣ > |Υr|κr(tr) + 2d̄j(y(tr), u(tr), tr)

+

∣

∣

∣

∣

∫ tr

Td

Cje
A0(t

r
−τ)

(

η(x, u, τ) − Ld(x, u, τ) − Ωsθ̇s

)
∣

∣

∣

∣

dτ

+ kj

∫ tr

Td

e−λj(t
r
−τ)

[

η̄(y, u, τ) + ‖L‖ d̄(y, u, τ)

+ ρr||Ωr||

]

dτ + 2kjx̄e−λj(t
r
−Td) . (23)

Proof: The state estimation error and output estimation error

associated with the r-th fault isolation estimator is ǫr
x(t)

△
=

x(t) − x̂r(t) , and ǫr
y(t)

△
= y(t) − ŷr(t) , respectively. Based

on the values of s and r, the proof consists of the following

four parts.

Part I: the isolability of a process fault s from other pro-

cess faults r, where 1 ≤ s ≤ N , and r ∈ {1, · · · , N}\{s}.

In this case, the dynamics of the system are given by

(15), and the dynamics of FIE r are described by (9).

Therefore, the output estimation error ǫr
y(t) is given by

ǫr
y(t) = Cǫr

x(t) + d(x, u, t) . The dynamics of the state

estimation error ǫr
x(t) is described by

˙̄ǫr
x(t) = A0ǫ

r
x(t) − Ld(x, u, t) + η(x, u, t) + Zsθs

−Zrθ̂r − Ωr ˙̂
θr . (24)

By substituting Zs = Ω̇s −A0Ω
s and Zr = Ω̇r −A0Ω

r into

(24), and by letting ǭr
x(t)

△
= ǫr

x(t)−Ωsθs +Ωrθ̂r, we obtain:

˙̄ǫr
x(t) = A0ǭ

r
x(t) + η(x, u, t) − Ld(x, u, t) − Ωsθ̇s . (25)

By defining the j-th component of the output estimation error

as

ǫr
yj

(t)
△
= yj(t) − ŷr

j (t) , (26)

and by using (15), (9), (13), and (22), it can be shown that

ǫr
yj

(t) = Cj ǭ
r
x(t) + hsr

j (t) + dj(x, u, t) . (27)

Using (25) and the triangle inequality, we obtain

|ǫr
yj

(t)| ≥ |hsr
j (t)| − kj x̄e−λj(t−Td)

−

∣

∣

∣

∣

∫ t

Td

Cje
A0(t−τ)

(

−Ld(x, u, τ) − Ωsθ̇s

+η(x, u, τ)

) ∣

∣

∣

∣

dτ − |dj(x, u, t)| . (28)

Now taking into account the corresponding adaptive thresh-

old µr
j(t) given by (21), we can immediately conclude that,

if condition (23) is satisfied at tr, we obtain |ǫr
yj

(tr)| >
µr

j(t
r), which implies that the possibility of the occurrence

of fault r can be excluded at time t = tr. Note that the

special case of θ̇s = 0 has been considered in [11].
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Part II: the isolability of a process fault s from sensor

faults r, where 1 ≤ s ≤ N , and r ∈ {N + 1, · · · , N + l}.

In this case, the dynamics of the system are given by (15),

and the dynamics of FIE r are described by (11). Therefore,

the output estimation error ǫr
y(t) is given by

ǫr
y(t) = Cǫr

x(t) + d(x, u, t) − F rθ̂r .

The dynamics of the state estimation error ǫr
x(t) is described

by

˙̄ǫr
x(t) = A0ǫ

r
x(t) + η(x, u, t) − Ld(x, u, t) + LF rθ̂r

+Zsθs − Ωr ˙̂
θr . (29)

By substituting LF r = −Ω̇r + A0Ω
r and Zs = Ω̇s − A0Ω

s

into (29), and by means of some simple algebra (along the

same reasoning that was reported in the proof of Part 1), we

have

˙̄ǫr
x(t) = A0ǭ

r
x(t)+η(x(t), u(t), t)−Ld(x(t), u(t), t)−Ωs θ̇s

(30)

where ǭr
x(t)

△
= ǫr

x(t)−Ωsθs +Ωr θ̂r. By using (15) and (11),

we can see that the output estimation error ǫr
yj

(t), defined in

(26), is given by

ǫr
yj

(t) = Cj ǭ
r
x(t) +

(

CjΩ
sθs − (CjΩ

r + F r
j )θ̂r

)

+dj(x, u, t) . (31)

By using (13) and (22), (31) can be rewritten in the same

form as (27), where ǭr
x(t) is given by (30).

Now the proof of Theorem 1 for this case easily follows

by using the same reasoning method as reported in Part I of

of the proof.

Part III: the isolability of a sensor fault s from process

faults r, where N + 1 ≤ s ≤ N + l, and r ∈ {1, · · · , N}.

In this case, the dynamics of the system are given by (19),

and the dynamics of FIE r are described by (9). Therefore,

the output estimation error ǫr
y(t) is given by

ǫr
y(t) = Cǫr

x(t) + d(x, u, t) + F sθs .

The dynamics of the state estimation error ǫr
x(t) is described

by

˙̄ǫr
x(t) = A0ǫ

r
x(t) + η(x, u, t) − Ld(x, u, t) − LF sθs

−Zrθ̂r − Ωr ˙̂
θr . (32)

By substituting LF s = −Ω̇s + A0Ω
s and Zr = Ω̇r − A0Ω

r

into (32), and by means of some simple algebra (along the

same reasoning reported in the proof of Part 1), we have

˙̄ǫr
x(t) = A0ǭ

r
x(t)+η(x(t), u(t), t)−Ld(x(t), u(t), t)−Ωs θ̇s

(33)

where ǭr
x(t)

△
= ǫr

x(t) −Ωsθs + Ωr θ̂r. By using (19) and (9),

we can see that the output estimation error ǫr
yj

(t), defined in

(26), is given by

ǫr
yj

(t) = Cj ǭ
r
x(t) +

(

(CjΩ
s + F s

j )θs − CjΩ
r θ̂r

)

+dj(x, u, t) . (34)

By using (13) and (22), (34) can be rewritten in the same

form as (27), where ǭr
x(t) is given by (33).

Now the proof of Theorem 1 for this case easily follows

by using the same reasoning method as reported in Part I of

of the proof.

Part IV: the isolability of a sensor fault s from other

sensor faults r, where N + 1 ≤ s ≤ N + l and r ∈ {N +
1, · · · , N + l}\{s}.

The dynamics of the output estimation error of this case

have been analyzed in Theorem 1 of [12]. Specifically, the

following results was proved:

|ǫr
yj

(t)| ≥
∣

∣hsr
j (t)

∣

∣ − d̄j(y(t), u(t), t) − |Cje
A0(t−Td)|x̄

−

∣

∣

∣

∣

∫ t

Td

Cje
A0(t−τ)

(

η(x, u, τ) − Ld(x, u, τ)

−Ωsθ̇s
)

dτ

∣

∣

∣

∣

where hsr
j (t) = (CjΩ

s + F s
j )θs − (CjΩ

r + F r
j )θ̂r. Clearly,

the fault mismatch function hsr
j (t) follows the definition

given by (13) and (22).

Now, the proof of this case easily follows by using the

same reasoning method as reported in Part I of the proof.

Based on the analysis of the above four cases, it can be

concluded that, if condition (23) is satisfied at tr, for each

r ∈ {1, · · · , N + l}\{s} , then fault s is isolable.

VI. CONCLUDING REMARKS

In this paper, the design of a fault isolation method for

process faults and sensor faults in a class of nonlinear

uncertain systems is presented. Analytical results regarding

adaptive thresholds for fault isolation and fault isolability

conditions are established. Future research work will involve

the consideration of a larger class of nonlinear systems.
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