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Abstract—A Failure Detection, Identification and Reconfigu-
ration (FDIR) control scheme is developed for a dynamic model
of the Delta Clipper–Experimental (DC-X) single stage to orbit
rocket concept. The six degree of freedom, redundantly actuated
model provides a well-suited test case for designing a fault-
tolerant controller for actuators with different response rates.
the reconfigurable controller maintains the desired closed-loop
performance. Robustness of the system was demonstrated under
a large number of different single and multiple failure cases.

I. INTRODUCTION

The on-board Failure Detection Identification and Recon-

figuration (FDIR) problem is particularly important for space

exploration vehicles which require minimal down-time for

repairs during a mission. Our focus has been on the Delta

Clipper Experimental (DC-X), [1]-[4], which was designed

by McDonnell-Douglas in the early 1990s as a one-third

scale prototype for a proposed vertical take-off and landing

(VTOL) reusable launch vehicle capable of single stage to

orbit (SSTO).

This work presents an adaptive reconfigurable flight con-

trol design for a DC-X control design model, consisting of

translational and attitude dynamics, four gimballed engines,

four reaction control system (RCS) thrusters for attitude

control, and actuator dynamics with position and rate lim-

its. A variety of failures were injected into the model,

and our modified FDIR system, discussed in [7], [8] and

described below, was implemented and tested to evaluate

the overall system performance. Special consideration was

given to determining the total number of failures that can be

accommodated using the available actuator redundancy.

We have recently modified our baseline Fast on-Line

Actuator Reconfiguration Enhancement (FLARE) system to

include a new failure parametrization [5], as well as a

multiple model-based FDI similar to that from [10]. Central

to FLARE, Fig. 1, are FDI observers based on the new failure

parametrization that describes a large class of failures in

terms of a single uncertain parameter. A previous version of

FLARE was successfully tested under severe flight critical

failures on a piloted simulator at Boeing resulting in robust

failure accommodation and excellent overall performance

[7]. The FLARE system achieves very fast detection and

identification of failures in flight control actuators, and

effective control reconfiguration in the presence of single

*This work was supported by NASA under contract #NNAAA04C to SSCI.
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Fig. 1. Structure of the Fast on-Line Actuator Reconfiguration Enhance-
ment (FLARE) System ( c©1999-2005 Scientific Systems Company, Inc.)

or multiple actuator failures and control effector damages

even while rejecting external disturbances. The FLARE sys-

tem combines different FDIR algorithms with a disturbance

rejection mechanism within a retrofit control architecture. In

collaboration with Boeing Phantom Works, the performance

of the previous version of FLARE system was extensively

evaluated using high-fidelity and piloted simulators. The

FLARE system achieved excellent response in the presence

of severe flight-critical control effector failures, and received

excellent HQ ratings from the pilot. The FLARE system was

used as a basis for FDIR design in the context of the DC-X

model.

The sections that follow describe the plant and actuator

dynamic model, trajectory design, failure injection, recon-

figurable control design, and simulation results.

II. DC-X MODEL REPRESENTATION

The DC-X is propelled by four liquid-propelled engines

and controlled by electro-mechanical actuators (EMAs) driv-

ing two gimbal angles for each engine and four RCS

thrusters. The basic schematic for the vehicle is shown in

Fig. 3.

For each engine, three control inputs are available: thrust

magnitude (T), radial gimbal angle (αR) and tangential

gimbal angle (αT ). The radial gimbal angle is measured
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Fig. 2. (credit:NASA) The Delta Clipper–Experimental at take-off.
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Fig. 3. (a) The DC-X is a VTOL type vehicle, designed as a reusable
SSTO rocket. (b) The control inputs for each engine are thrust (T), radial
gimbal angle (αR) and tangential gimbal angle (αT ).
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Fig. 4. The RCS thrusters are designed to control the vehicle’s attitude. The
thrusters are primarily used for roll and pitch angle control. Here e1...e4

denote the locations of the engines, while t1...t4 denote RCS thrusters.

positive outward from the craft, while the tangential gimbal

angle is measured positive counter-clockwise when looking

from the nose toward the base of the vehicle. The four

engines are numbered, beginning with the engine along the

x-axis being engine one, with two through four proceeding
counter-clockwise around the perimeter of the vehicle.
Based upon angular definitions in Fig. 3, the forces acting

on the body can be calculated as follows:
Fxe1 = −T1 sin αR1, Fye1 = −T1 cos αR1 sin αT1,

Fxe2 = T2 cos αR2 sin αT2, Fye2 = −T2 sin αR2, (1)

Fxe3 = T3 sin αR3, Fye3 = −T3 cos αR3 sin αT3,

Fxe4 = −T4 cos αR4 sin αT4, Fye4 = T4 sin αR4,

Fzei = Ti cos αRi cos αTi, for i = 1, 2, 3, 4.

The RCS thrusters are installed so that all resultant forces

are applied in the x-y plane of the body frame. Hence, the

thrusters are used for attitude control. The resultant thrust

vectors from the RCS are designed primarily to give a greater

amount of torque to the pitch and roll of the vehicle. The

thrusters also produce minimal yaw moment on the vehicle,

since the resultant vector from each thruster is not incident

upon the vehicle’s center of gravity.

The contributions of each thruster to the total force acting

on the vehicle is calculated as:

Fxti = dxiPi, Fyti = dyiPi, i = 1, 2, 3, 4,

where dxi and dyi are the components of RCS along the

body frame x and y axes, respectively, and Pi are the thrust

magnitudes from each RCS thruster.

For the representation of the plant, the forces are grouped

according to the coordinate axis along which they are applied

to yield the net force in each direction in body coordinates.

Assuming a vertical world-frame orientation, the component

force due to gravity is in the negative z direction. The
elements of the force vector F = [Fx Fy Fz]

⊤ are expressed

as sums of forces from the engines and RCS thrusters:

Fx =

4∑

i=1

(Fxei + Fxti), Fy =

4∑

i=1

(Fyei + Fyti),

Fz =

4∑

i=1

(Fzei + Fzti) −mg. (2)

Torque is defined by τi = ri×Fi, with τi = [τxi τyi τzi]
⊤.

Given the lateral and longitudinal distances, a and b, re-
spectively, from the center of gravity to the point where

the engine thrust exerts forces on the vehicle, the cross

products representing the torques from the four engines about

principle axes result in

τxe = bFye1 + bFye2 + aFze2 + bFye3 + bFye4 − aFze4,

τye = −bFxe1 − aFze1 − bFxe2 − bFxe3 + aFze3 − bFxe4,

τze = aFye1 − aFxe1 − aFye3 + aFxe4.

If c and d represent the lateral and longitudinal distances
from the thrusters to the center of gravity, then the sum of

the torques from the four thrusters can be computed as

τxt = −dFyt1 − dFyt2 − dFyt3 − dFyt4,

τyt = dFxt1 + dFxt2 + dFxt3 + dFxt4, (3)

τzt = −cFxt1 + cFyt1 − cFxt2 + cFyt2

−cFxt3 + cFyt3 − cFxt4 + cFyt4.

The overall torque about each body frame axis is simply the

sum of the torque from the engines in (3) and the torque

from the thrusters in (3).
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Let the attitude dynamics be of the form Jω̇ =
∑
τ ,

where, due to small-angle approximation, we assume that

ω = [φ θ ψ]⊤ and that the Coriolis term ω×Jω can be
neglected. The system’s position and attitude dynamics are

now of the form:

ẍ =
1

m
Fx, ÿ =

1

m
Fy , z̈ =

1

m
Fz , (4)

φ̇ =
1

Jxx

τx, θ̇ =
1

Jyy

τy, ψ̇ =
1

Jzz

τz.

The attitude dynamics are simplified since the control objec-

tive is to maintain the Euler angles close to zero.

III. CONTROL DESIGN ASSUMPTIONS

Assumptions for control design include the following:

the desired reference model has second order dynamics,

the actuators have a first order response, the trajectory is

generally constant acceleration, and the faults are lock in

place, hard-over, and loss of effectiveness.

A. Reference Model Design

Our test maneuver follows a basic climb, x and y trans-
lation, then descend path. The desired closed-loop dynamics

along the z-axis are of the form:

z̈ = −k2(ż − ż∗) − k1(z − z∗) + z̈∗, (5)

where ż∗, z∗, and z̈∗ represent the desired velocity, position,
and acceleration. Each of the relationships in (4) has an

associated equation of the form in (5).

Since the plant for the DC-X dynamic model is non-affine

in its inputs, tracking the above desired dynamics cannot

be achieved in a straightforward way. However, another

derivative of the system dynamics can be taken resulting in

the derivative of the control input appearing linearly in the

dynamic equation [9]. This results in a higher-order reference

model that can be tracked, and is of the form:

...
p ∗ = −k3p̈

∗ − k2ṗ
∗ − k1p

∗ + k1r, (6)

where p∗ = [x y z w1 w2 w3]
T [x∗ y∗ z∗ 0 0 0]T , and r

denotes the command input which is zero for wi. We define

η∗ = −k3p̈
∗ − k2ṗ

∗ − k1p
∗ + k1r, (7)

as the desired system dynamics.

B. Fault Insertion

Three basic actuator fault modes are included in the

simulation. These include: (i) Lock in Place (LIP) (u(t) is
locked at its current position); (ii) Hard-over (u(t) locks at
the position limit); and (iii) Loss of Effectiveness (actuator

gain decreases from k = 1 to a value k ∈ (0, 1).
To simulate engine or gimbal failures, an appropriate

failure model is needed. First, a LIP matrix Σ is defined
as Σ = diag([σ1 σ2 ... σm]), where σi(t) = 1 for t < tFi,

and σi(t) = 0 for t ≥ tFi. This matrix is initialized to an

m ×m identity matrix, where m is the number of control
inputs. When a LIP failure occurs at the j-th input, the
value at Σ(j, j) is set to zero. For convenience, the value

at Σ(j, j) will also be referred to as σj . To include LOE

within the model, an Input Effectiveness Matrix K is chosen
as a diagonal matrix whose elements describe effectiveness

of each control input.K is also initialized as an n×n identity
matrix.

Now the actuator dynamics including the failure model is

of the form:

u̇ = Λa[(u− Kuc) + (I − Σ)u], (8)

where uc is the controller output, u is the output of the ac-

tuator, Λa = diag[λa1 λa2 ... λam] is the matrix of actuator
gains, and K = diag([k1 k2 ... km]), where ki ∈ [ǫi, 0], and
ǫi << 1.

IV. FAILURE DETECTION AND IDENTIFICATION

The algorithms for estimating the unknown failure-related

parameters associated with DC-X actuators are based on

the basic FLARE design augmented with the new failure

parametrization-based FDI observers, and are given below.

Observer: The observer for the model (8) is based on the

new failure parametrization [5] of the form:

u̇ = −Λau + Λa(Θuc + ∆u). (9)

where Θ = diag[θ1 θ2 ... θm],

∆ = diag(
δ

θ1 + δ

δ

θ2 + δ
· · ·

δ

θm + δ
), (10)

and 0 < δ << 1. It is seen that, when θi = 0, u̇i = 0.
When θi = θ̄i > 0, we have that u̇i

∼= λai(ui − θ̄iuci) since
δūi/(θ̄i + δ) ∼= 0. Hence the above model has the desired
properties of covering both the LIP and LOE cases for a

sufficiently small δ.
Now the observer is chosen in the form:

˙̂u = −Λau + Λa(Θ̂uc + ∆̂u) − λoê, (11)

where ê = û− u, Θ̂ = diag[θ̂1 θ̂2 ... θ̂m],

∆ = diag(
δ

θ̂1 + δ

δ

θ̂2 + δ
· · ·

δ

θ̂m + δ
), (12)

and Λo = diag[λo1 λo2 ... λom].
Adaptive laws: Adaptive laws are of the form:

˙̂
θi = Proj[0,1]{−γiωiêi}, θ̂i(0) = 1, (13)

where γi > 0 denote adaptive gains, and

ωi = uci −
δui

(θ̂i + δ)(θi + δ)
.

V. CONTROL DESIGN

The reconfigurable control design starts with the design

of a baseline controller. The latter is used as a basis for

the adaptive controller that at every instant uses estimates

generated by an FDI observer. We describe the baseline

control design below.
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A. Baseline Controller

In the no-failure case the nonlinear state-space model of

the DC-X dynamics can be represented in a compact form

as:

ẋ1 = x2 (14)

ẋ2 = Go(u) + [0 0 − g 0 0 0]⊤ , (15)

where x1 = [x y z w1 w2 w3]
T , x2 = [ẋ ẏ ż ẇ1 ẇ2 ẇ3]

T ,

and u ∈ IR16. It is seen that the above system can be

rewritten as ẍ1 = Go(u) + ḡ.
The actuator dynamics are of the form:

u̇ = −Λ(u− uc),

where Λ = diag[λ1 λ2 ... λm] and λi > 0.
Since Go cannot be inverted analytically, using the ap-

proach from [9] we take another derivative of the above

equation to obtain:

...
x 1 = G(u)u̇, (16)

where G = ∂Go(u)
∂u
. Assuming that G is invertible on a

domain, we design the following dynamic controller:

uc = u+ Λ−1G(u)⊤(G(u)G(u)⊤)−1
η
∗. (17)

The resulting closed-loop system is simply
...
x 1 = η

∗. More
details regarding the dynamic controller technique in the

adaptive control context can be found in [9].

It is interesting to note that, due to the first-order actuator

dynamics, the actual control input uc is static, i.e. there is

no need to generate it as a solution of a differential equation

since it can be directly computed from (17). In addition,

since Λ is known, even when u is not measurable, we can
build a simple observer to estimate u, ˙̂u = Λ(û−uc) so that,
for zero initial conditions, û(t) = u(t) for all time.

B. Adaptive Reconfigurable Controller

Now the adaptive reconfigurable controller is chosen in

the form:

u = (G(u)Θ̂)T (G(u)Θ̂2G(u)T )−1(η∗ −

m∑

i=1

gi(x)
δui

θ̂i + δ
).

As shown in [5], this control law, in conjunction with

the above estimator and adaptive laws, assures closed-loop

stability and asymptotic convergence of the tracking error to

zero.

VI. SIMULATION SETUP

The high-fidelity DC-X dynamic model describes the rela-

tionship between the states of the vehicle and the main engine

propulsive thrust, gimbal angles and the RCS thrusters.

For the control design, the fully nonlinear dynamics were

linearized about nominal values to help alleviate scaling

issues which led to matrix singularity and loss of rank. Nom-

inal input conditions were assumed to be those providing

steady hover (gimbal angles and RCS equal to zero, total

main engine thrust balancing gravity). A change of coordi-

nates for the main engine thrust and RCS further improved

the conditioning of the controller so all inputs maintained

the same order of magnitude. The plant position dynamics

remained fully nonlinear, while plant attitude dynamics were

approximated by a linear model.

Since the controller was designed to accommodate both

loss of effectiveness (LOE) and lock in place (LIP) failures,

a test regime of increasingly drastic failures was designed

to evaluate the spectrum of faults that the controller could

tolerate. The failures were injected at 20 seconds (during the

ascent portion of the trajectory) which was expected to be

the worst-time-of-failure for this particular trajectory.

Before online failure estimation was included in the simu-

lation, the controller was first validated using known failures.

Once the robustness of the scheme was established amid

failures, the failure estimators were included in the closed

loop and tuned for acceptable performance.

VII. SIMULATION RESULTS

Sample results are presented in Table I. The actuators

are numbered 1 through 16, with four main engines, four

radial gimbal angles, four tangential angles, and four RCS

thrusters, as designated in the schematics, Figs. 3 and 4. For

the sake of comparison, the baseline controller utilizing an

inverse dynamics control scheme is simulated alongside the

reconfigurable controller. The table presents the maximum

rotation about each axis, the maximum tracking error, and

the final tracking error. Pitch and yaw angles greater than 45

degrees are considered failure.

Failures were introduced to the system both symmetrically

and asymmetrically. Figs. 5(a), 5(b) and 5(c) records the

states, estimates, and inputs, respectively, for the reconfig-

urable controller with LIP failures at actuators 1, 5, and 9.

The inputs in Fig. 5(d) are from a simulation performed at the

theoretical limit of controllability, i.e. we control six degrees-

of-freedom using only six actuators (ten actuators are failed).

The plots from the other simulations in Table I look very

similar to the included results.

VIII. DISCUSSION OF RESULTS

The reconfigurable controller is able to accommodate

multiple severe failures, though doing so may exhaust the

available control authority. For instance, when the maneuver

requires the control authority that is already close to its

limit and there are multiple failures, the reconfigurable

controller may fail to meet the control objective. In addition,

accommodation of hard-over failures require large control

authority and reduce the operational envelope. The necessary

control authority is not available in DC-X in the case of two

or more hard-over failures.

Simulation results and analysis of the plant affirm that the

gimballing actuators are linked to specific body-frame trans-

lations and rotations. For example, it is apparent that failures

of actuator 10 (the 12 o’clock tangential EMA driving angle

αT2) are tied to translations in x and yaw rotations. Hence
the persistant excitation to adapt the failure parameter on

actuator 10 is not available until the trajectory requires the

actuator contribute to x-translation. Furthermore, holding a
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TABLE I

DC-X LIP AND LOE FAILUREMATRIX RESULTS

Failure Mode Baseline Controller Reconfigurable Controller

Actuators Failure Max Angles Tracking Error Max Angles Tracking Error

Lock in Place Pitch Yaw Roll Max Final Pitch Yaw Roll Max Final

1,5,9 All LIP 2.1 9.4 8.9 22.9 9.4 .5 4.2 0.8 4.1 1.4

5,6,7,8 All LIP 3.3 3.0 0 6.1 3.7 .5 .5 0 3.9 .9

5,6,9,10 All LIP 3.5 3.1 1.0 6.4 3.8 .5 .5 .2 3.9 .9

5,7,9,11 All LIP 3.3 3.0 0 6.1 3.7 .5 .5 0 3.9 .9

1,5,6,9,10 All LIP 4.0 9.8 7.6 23.2 10.8 .4 3.8 1.4 4.1 1.3

1,2,5,6,9,10 All LIP 12.7 13.6 2.7 69.4 21.4 7.7 5.6 .2 6.7 1.9

1,5,6,7,9,10,11 All LIP 8.5 60.8 272.8 278.4 278.4 3.6 5.2 14.3 4.1 .8

1,2,5,6,7,9,10,11 All LIP 17.7 62.0 285.3 272.4 272.4 9.2 5.5 12.8 6.8 2.2

1,2,3,5,6,7,8,11,12 All LIP 9.3 7.3 17.7 162.5 45.9 12.1 1.9 24.1 8.2 2.0

1,2,3,5,6,7,8,11,12,14 All LIP 11.3 20.9 74.7 175.6 50.1 28.6 29.5 45.5 8.2 2.0

1,2,3,5,6,7,8,11,12,15 All LIP 24.7 25.8 113.7 223.2 223.2 12.1 2.1 24.1 8.2 2.0

Lock in Place/Hard Over

1,5,9 HO(h),LIP,LIP 2.3 33.7 9.9 75.5 41.5 .5 35.2 1.1 13.6 3.4

1,5,9 LIP,HO(h),LIP 2.1 56.2 8.9 26.4 16.5 .5 43.3 1.3 5.1 2.0

1,5,9 LIP,HO(l),LIP 2.1 51.0 8.8 22.1 15.4 .5 50.1 1.1 5.5 2.2

1,5,9 LIP,LIP,HO(h) 57.7 9.4 249.8 26.1 20.9 50.4 3.7 213.1 5.7 2.6

1,5,9 LIP,HO(h),HO(h) 57.1 56.3 249.6 30.5 25.1 56.9 43.1 214.2 6.8 3.8

Loss of Effectiveness

1,5,9 .5,.5,.5 1.6 3.9 6.0 7.0 5.6 .9 6.4 4.2 4.1 1.5

1,5,9 .25,.5,.75 .7 6.3 2.9 10.6 9.7 .5 2.5 2.1 4.2 1.7

1,5,9 .75,.75,.75 .8 1.8 2.9 4.9 2.6 .5 .8 2.1 3.8 1.1

1,5,9 .25,.25,.25 2.6 6.4 9.5 10.6 9.7 1.2 2.5 6.3 4.2 1.7

1,2,5,9,6,10 .4,.4,.4,.4,.4,.4 5.7 5.7 1.4 15.9 15.8 5.6 3.8 1.6 4.9 2.7

Slow Degradation

k=.2 1,5,9 .5,.5,.5 1.6 3.9 6.0 7.0 5.6 .9 6.4 4.2 4.1 1.5

k=1 1,5,9 .5,.5,.5 1.4 3.9 5.0 7.0 5.6 .6 6.1 2.6 4.1 1.5

k=10 1,5,9 .5,.5,.5 .9 3.9 3.2 7.0 5.5 .6 7.4 3.6 4.1 1.5

k=25 1,5,9 .5,.5,.5 .9 3.8 3.1 7.0 5.5 .6 1.6 4.5 4.1 1.4

HYBRID

1,5,6,7,9,10,11 LOE@7,11(.4) 5.6 10.9 34.3 24.3 18.1 5.0 5.9 15.2 4.0 1.2

command does not provide sufficient persistent excitation for

estimate convergence. Trajectories which require continuous

motion of inputs to actuators yield more accurate estimates.

This concept lends itself to another observation that the

vehicle’s dynamic response to failure depends largely on

the trajectory required for the vehicle: failure of an unused

actuator results in no appreciable change in vehicle behavior.

The results organized in Table I indicate that in every case

the reconfigurable controller outperformed the baseline con-

troller in terms of tracking the trajectory while maintaining

nominal attitude. The assortment of LIP failures resulted in

maximum tracking error between 3.9 and 8.2 meters for the

reconfigurable controller compared to 6.2 to 278.4 meters

maximum error for the baseline controller. In no LOE or LIP

cases did the reconfigurable controller violate the acceptable

attitude criteria, whereas two of the baseline test cases failed.

Failures of an even more drastic type, such as hard-over

actuator failures, have potentially devastating results. Both

controllers were able to mitigate a hard-over full throttle

engine, though the reconfigurable controller tracked the de-

sired trajectory much better (baseline-75.5 m error, reconfig-

13.6 m error). Hard-over failures on the EMA-driven angles

result in unacceptable performance in the case of the both

controllers. Two hard-over failures cause both controllers to

fail.

Amid partially failed actuators, tabulated in the lower half

of Table I, our FDIR system is capable of accurately iden-

tifying and accommodating the failures. As with the results

from LIP failures, the reconfigurable controller outperforms

the baseline in all cases. Naturally, failures closer to zero (e.g.

0.25 or less) produce results which resemble LIP failures.

Analyzing the speed of performance degradation indicates

that the estimators are consistent regardless of the speed of

the failure.

As shown in Fig. 5(d), the plant has sufficient redundancy

not to saturate the control inputs. With all but six actuators

locked into place mid-maneuver, the remaining six actuators

maintain six degree-of-freedom trajectory tracking for the

rest of the maneuver. The system has 16 actuators, 10

of which are redundant. However, as noted above, this

redundancy is contingent upon the demands of the trajectory

and the status of the actuators at the time of failure.

The baseline controller is also observed to perform very

well amid the failures. This does not hint at a weakness

in the reconfigurable controller, but rather notes a strength

in the principles associated with control design in the case

of redundant actuators. Also it is important to note that the

vehicle maintains stability in large part because of this over-

actuation: as failures occur, the remaining active actuators are

able to decrease the tracking error arising due to the failures.

1050



IX. CONCLUSIONS AND FUTURE WORK

In this paper a FDIR control scheme is developed for

a dynamic model of the Delta Clipper–Experimental (DC-

X) single stage to orbit rocket concept. The six degree of

freedom redundantly actuated model provides a well-suited

test case for designing a controller for actuators with different

response rates using a multiple-model failure parameter

estimation method. Even under multiple severe flight-critical

failures, the reconfigurable controller was shown through

high-fidelity simulations to maintain the desired closed-loop

performance. Robustness of the system was demonstrated

under a large number of different single and multiple failure

cases.

The simulations presented here utilized a linearized con-

troller. Future studies incorporating the dynamic nonlinear

controller and a high-fidelity nonlinear plant model are

anticipated to provide insight into the capabilities of the

proposed system to handle failures in the nonlinear flight

regimes and over an enlarged flight envelope. While greater

controller and model complexity may provide better tracking

over larger failure sets, we note that in the all cases except

hard-over failures the linearized reconfigurable controller

performed extremely well. Hence a study related to the use

of different controllers in different regions of the state or

parameter space may be of interest. A suitable framework

for the corresponding reconfigurable control design might

be based, for instance, on the concept of Multiple Models,

Switching and Tuning [10]. Future work will also include a

more complete Monte-Carlo simulations to arrive at a precise

set of failures that can be accommodated using the proposed

approach.
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