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Abstract— We study the problem of motion coordination of
multiple agents, under a graph connectivity constraint. We
develop a framework for the problem based on partial ordering
of graphs and embedding of constraint sets and identify a
certain convexity property of the constraint set induced by
the graph connectivity constraint. This property is used to
solve two instances of the coordination problem. In the first
instance, the agents are required to converge from an arbitrary
position to a formation characterized by its adjacency matrix.
In the second instance, we study the specific problem of
moving from one formation to another formation so that the
formation graph remains connected at all times. We show
that both these problems can be reduced to static convex
optimization problems. Existence and uniqueness of solutions
are also investigated.

I. INTRODUCTION

The problem of motion coordination of multiple robotic
agents has been studied in a number of settings. The term
‘coordination’ loosely refers to a global criterion that needs
to be met by the robotic agents. In all of these cases the
coordination task can be represented as a function of the
state of the agents. In certain problems the coordination
task is only dependent on the final states of the agents
at the end of a finite or infinite time horizon. Let us call
such problems as belonging to class I. The problem of
finite time or asymptotic rendezvous falls into this class. In
these problems the transient behavior of states is of little
importance, unless an additional criterion such as collision
avoidance is taken into account. In another class (class II),
the coordination task is dependent on the state trajectory
over a time horizon. An example for this case is the area
coverage problem. For a third class of problems (class III) the
coordination criterion needs to be met at each point in time.
Problems in this class arise mainly because of the presence of
constraints in the state space, which need to be satisfied at all
times. We are concerned with a specific kind of constraint
that arises due to the limited sensing and communication
range of the wireless sensors and controllers. Note that these
classes are not mutually exclusive and depend mainly on
problem formulation. Typically, by choosing suitable states
the problems can be reformulated to lie in a different class.
An example is the Lagrange formulation of the optimal
control problem, where by augmenting the state vector the
problem can be reformulated only in terms of the final state.
This formulation of the optimal control problem is said to
be in Mayer form [16].
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The main object of our study is the graph formed by the
agents using nearest neighbor rules. By definition, such a
graph is dependent on the state of the nodes which in this
case is the position of the agents. Such graphs owing to their
changing topology have been termed as dynamic graphs in
the literature. In many multi vehicle coordination examples
it is undesirable for the formation to break into subparts
as this implies a loss of communication. This requirement
can be modeled as a connectivity constraint on the graph
formed with the nodes as the agents. This condition induces
a constraint on the state space which needs to be satisfied at
all times.
The remainder of this paper is organized as follows. In
section II we place the current work in the context of pre-
vious research in related areas, and provide a brief literature
survey. In section III we state and discuss some definition and
preliminaries required for analysis. In section IV we state the
main problems and derive the related results to solve these.
Finally in section V we provide the conclusion and future
directions for research.

II. RELATED WORK

Dynamic graphs and its connectivity properties have been
studied in a variety of contexts. Mesbahi in [6] studies state
dependent graphs and defines a notion of controllability for
such graphs. Further in [7] Kim and Mesbahi provide an
algorithm for maximizing the second smallest eigenvalue
of the graph Laplacian. This is akin to maximizing the
connectivity of the graph. In [5] the authors provide a de-
centralized scheme for the same problem. Šiljak [8] studied
dynamic graphs in relation to the structural properties of
interconnected dynamical systems. He defined notions of
input reachability, structural controllability and observability.
He also studied the notion of connective stability, which is
defined as the Lyapunov stability under structural pertur-
bations. A closely related idea was studied by Erdös and
Rényi [12], where they considered the probability of a graph
to remain connected under random dropout of vertices and
edges. Recently a number of researchers, while investigating
problems in multi agent rendezvous and state agreement,
have proved the requirement of graph connectivity as a
necessary condition. In [1] and [3], this condition arises
as a necessity for the proof of rendezvous. Some of the
consensus protocols assume that the connectivity is main-
tained at all times [13], and in some protocols a relaxed
condition of graph connectivity infinitely number of times
is assumed [14], [15]. A number of authors have developed
control laws for the connectivity maintenance problem for
multiagent systems [3], [4]. In [3] the main focus of the paper
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is to facilitate rendezvous while preserving connectedness.
In [4] the authors develop a constraint on control actions
which preserve connectivity. This constraint was enforced
by solving an optimization problem at each time step.
Our approach differs from the earlier approaches to the
problem in the sense that we provide an analysis of the con-
strained state space arising from the connectivity constraint.
We also show how we can use this structure to come up with
solutions which are optimal in some sense. The mathematical
framework developed can be useful in addressing problems
concerned with dynamically changing graph topologies.

III. DEFINITIONS AND PRELIMINARIES

We will first state some terms from graph theory which are
of relevance here. For more details refer any of the standard
texts like [9]. A graph G as an abstract object is modeled
as the pair V (G), E(G) where V (G) denotes the vertex set
and E(G) ⊆ V (G) × V (G) denotes the set of edges. Two
vertices x, y ∈ V (G) are said to be adjacent if an edge exists
between them, i.e, (x, y) ∈ E(G). A graph is called complete
if every pair of vertices are adjacent. The complete graph on
N vertices is denoted by KN . A subgraph of a graph X is
a graph Y such that V (Y ) ⊆ V (X) and E(Y ) ⊆ E(X). If
V (Y ) = V (X), Y is called a spanning subgraph. A cycle
is a connected graph where every vertex has exactly two
neighbors. A connected acyclic graph is called a tree and a
spanning subgraph with no cycles is called a spanning tree.
The adjacency matrix of a graph is defined such that the
i, j entry is either 1 or 0, if i, j are adjacent vertices or not
respectively. We will be dealing with graphs with no self
loops hence the diagonal entry is typically 0.
Let us consider a group of N agents. The position of the
ith agent in a global reference frame is denoted as the
column vector xi ∈ R

2. We define the state vector as
the concatenation x = (xT

1 , xT
2 , . . . , xT

N )T . We can identify
each agent as a vertex of a graph G. Thus the vertex
set consists of the indices V (G) = {1, . . . , N}. Let us
define the set C(R) ⊂ R

4 as C(R) = {(xi, xj)|xi, xj ∈
R

2 and ‖xi − xj‖ ≤ R}. Since R is constant throughout
the paper, we remove the dependence on R from the notation
and refer to C(R) as simply C. The characteristic function
of the set is denoted as χC and is defined as

χC(xi, xj) =

{

1 (xi, xj) ∈ C
0 (xi, xj) /∈ C

We say that the agents i, j are adjacent or connected when
χC(xi, xj) = 1. Thus the edge set of the graph G is E(G) =
{(i, j)|χC(xi, xj) = 1}. Let us denote as M the set of N×N
symmetric matrices so that each entry is either 0 or 1 and
the diagonal terms are zero. This gives us a way to define
the adjacency matrix as a function that maps the state space
to the set M.

A : R
2N → M

This is done as follows:

A(x)ij = χC(xi, xj) − δij

Where δij = 1 if i = j and δij = 0 if i 6= j. Here
we have subtracted 1 from the diagonal terms to force the
diagonal terms to be zero. Once we fix the indices for the
vertices, a graph can be completely described in terms of
the adjacency matrix. Thus, we will use the term graph and
adjacency matrix interchangeably.
Consider an equation of the form A(x) = X , where X ∈ M.
Checking if this equation admits a solution is equivalent to
checking the feasibility of a system of inequalities. There
are efficient algorithms available for this task [10], [11]. In
case this equation has a solution then the graph X is said
to be realizable. The feasibility problem can be cast as an
LMI problem utilizing the quadratic structure of the norm
and the S−procedure [2]. It is clear to see that the function
A(x) is invariant under translation and rotation. This reflects
in the fact that if x solves the above equation then so does
x + α1, where 1 denotes a vector of compatible dimension
with each entry 1.

We define a relation “ 4M ” on M as follows. Given
X, Y ∈ M we will say X 4M Y if Xij = 1 ⇒ Yij = 1.
In other words X 4M Y if the graph represented by X is
a spanning subgraph of the graph represented by Y . It is
easily verifiable that 4M indeed defines a relation. In fact
this induces a partial order on the set M. Given X ∈ M we
define

CX = {x ∈ R
2N |X 4M A(x)}

Thus CX denotes the set of states x whose graphical represen-
tation preserves those edges present in X . It is worth pointing
out that for X 4M Y we have CY ⊆ CX . This is a reiteration
of the fact that as we impose more constraints on the state
space, the feasible states satisfying the constraints shrink.
This can be stated in more general terms as follows: Consider
a function f : X → Y where X and Y are arbitrary sets. If
there exists an ordering 4Y on Y then f induces an ordering
on X as follows: x 4X y for x, y ∈ X if f(x) 4Y f(y). An
example is a Lyapunov function V : R

n → R. Since R is
totally ordered with the usual ordering we have the induced
ordering on R

n given in terms of the nested level sets of
V . Coming back to our original problem we have that under
this ordering there is a maximum element in M, denoted as
KN . By definition X 4M KN ∀X ∈ M. KN represents
the complete graph on N vertices and clearly denotes the
case when all agents can communicate with each other and
hence A(x)ij = 1 ∀x ∈ CKN

i 6= j. Note that we could
have ordered the elements of M in terms of set inclusion of
the corresponding constraint set induced by the elements, i.e
X 4M Y if CX ⊆ CY . In this ordering KN would be the
minimal element.
We will say that the graph G is connected if there is a
sequence of vertices i = k0, k1, k2, . . . , kn = j between each
agent i and j such that A(x)klkl+1

= 1 ∀l = 0, . . . , n − 1.
The set of adjacency matrices which represent connected
graphs are a strict subset of M. We will denote as Mc the
set of all such adjacency matrices. Given a matrix X ∈ M
let us define an auxiliary matrix SX =

∑N−1
k=0 Xk. This

2649



matrix has a useful interpretation. The i, j entry of the matrix
SX gives the sum of the number of k − hop paths, where
k = {0, . . . , N − 1}, between i and j. Thus we have that
X ∈ Mc if and only if all entries of the matrix SX are
nonzero. The connectivity requirement imposes a constraint
on the state space. The feasible set can be represented as

Ω = {x ∈ R
2N |A(x) ∈ Mc}

or equivalently,

Ω =
⋃

k

CAk
, where Ak ∈ Mc, ∀k

We can restrict the partial order 4M introduced earlier to
Mc. We will drop the subscript and denote the restriction
on Mc by 4. In this set we have the minimal elements,
which are a subset of the class of spanning trees involving
N nodes. This is due to the fact that not all spanning trees are
necessarily realizable in the sense described earlier. In fact,
in [2] the authors have shown that the set of realizable graphs
are a strict subset of the class of graphs on N nodes when
N ≥ 5. This is why the minimal elements which maintain
connectivity are a strict subset of the spanning trees when
N ≥ 5. Note that the maximal element KN introduced earlier
also belongs to Mc. The constraint set induced by KN has
a useful representation as follows.

CKN
=

⋂

k

CAk
, where Ak ∈ Mc, ∀k

Given a set of matrices X0, X1, . . . , Xn in Mc. We say
that these matrices form a chain, if for any Xi and Xj

we have either Xi 4 Xj or Xj 4 Xi. In other words,
the partial ordering when restricted to a chain is a total
ordering. We will label the minimal elements of the set Mc

as Θk. As mentioned earlier these are the adjacency matrices
representing spanning trees. Given any X ∈ Mc we always
have at least one minimal element Θk for which Θk 4 X .
It is of course possible that we have more than one minimal
element for a given X ∈ Mc. In fact for all X which are
not trivially minimal elements themselves we have more than
one minimal element satisfying the earlier condition.

IV. PROBLEM FORMULATION

In this section we formulate and state our main results.
The following lemma is crucial in what follows.

Lemma 4.1: The set CX is closed and convex for each
X ∈ Mc.

Proof: It follows from the definition of CX that if x =
(xT

1 , xT
2 , . . . , xT

N )T ∈ CX and y = (yT
1 , yT

2 , . . . , yT
N )T ∈ CX

then ∀i, j such that Xij = 1, we have ‖xi − xj‖ ≤ R and
‖yi − yj‖ ≤ R. Hence for any z = αx + (1− α)y such that
α ∈ [0, 1] we have

‖zi − zj‖ = ‖α(xi − xj) + (1 − α)(yi − yj)‖

≤ α ‖xi − xj‖ + (1 − α) ‖yi − yj‖

≤ αR + (1 − α)R = R

which implies z ∈ CX . This proves convexity. The closedness
follows from the fact that we do not have strict inequalities.

Remark 4.2: A point to note is that this result essentially
follows from the convexity of the sublevel sets of the ‖·‖
function.
We now have the framework to undertake the first problem.
Consider the following scenario. Let us assume that we
have N agents which are distributed arbitrarily. We wish
to compute terminal positions for each agents so that their
final configuration corresponds to having a desired adjacency
matrix as a subgraph. In doing so we also wish to minimize
the cost function given by ‖x0 − xf‖ where x0 is the initial
position and xf is the final state vector. The choice of
this cost function is equivalent to minimizing the distance
traveled by the agents to reach the final state and hence the
energy expenditure. We will now show that this problem can
be formulated as a convex optimization problem and admits
a unique solution. The problem can be formulated as follows.

A. Problem I

Given an arbitrary initial condition x0 and an adjacency
matrix X ∈ Mc we wish to solve the following optimization
problem.

min
xf∈CX

‖x0 − xf‖

The convexity of the constraint set CX and the cost function
makes this a convex optimization problem. This is equivalent
to the problem of determining the minimum distance to a
closed convex set and hence admits a unique solution [17].
This problem differs from the more often used approach
in formation stabilization where the desired formation is
generally specified by the desired relative spacing between
nodes. In our case the formation is specified in terms of the
desired adjacency matrix. However because of the way we
have defined the constraint set CX the final configuration
might have more connected vertices than specified by X .
In other words, we will have X 4 A(xf ) where xf is the
solution of the above optimization problem.

1) Example: The simulation result in figure1 illustrates
the case when N=6. The initial conditions are randomly
generated and the desired configuration is defined in terms
of the adjacency matrix

X =

















0 1 0 0 0 0
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0

















Problem I illustrates a straightforward application borne
out of the convexity of the constraint sets. This problem can
be seen as a constrained facility location problem, where the
initial position of the nodes are the set points and the final
points or the location of the facilities need to chosen so as
to minimize a convex cost.
We will now consider the problem where unlike problem I
the final position is completely specified, and the objective
is to design manoeuvres which will maintain graph connec-
tivity.
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Fig. 1. Convergence to a desired adjacency matrix
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Fig. 2. Illustration of Proposition 4.3

B. Problem II

Given x0 ∈ Ω and xf ∈ Ω we wish to find the shortest
path x(t), so that x(0) = x0, x(T ) = xf for some T and
x(t) ∈ Ω ∀0 ≤ t ≤ T .

In this problem the shortest path is evaluated under the
Euclidean norm in R

2N . It is clear that under the Euclidean
l2 norm the shortest path between points xi and xf is the
straight line joining them. Another important property of this
shortest path is that if xi and xf belong to a convex set,
then all the points on the straight line joining them belong
to this set. The problem would be trivial if the constraint
set Ω was convex; however, this is not the case. As can
be seen from the definition of Ω, it is a union of convex
sets and hence not necessarily convex itself. Thus, this is in

general a nonconvex optimization problem. Another issue is
that the constraint set is not defined as a set of inequalities. A
complete characterization of the constraint set would require
a complete enumeration of the graphs formed by N nodes
and hence makes this a hard problem to solve. We will
show that under some relaxation of optimality criterion we
can formulate this as a convex optimization problem. The
following proposition states the condition under which we
can find a convex subset of the constraint set Ω containing
the initial and final configuration. As mentioned earlier if
this is the case then the straight line joining the initial and
final configurations is optimal.

Proposition 4.3: If there exists a spanning subgraph Θ
such that Θ 4 A(x0) and Θ 4 A(xf ) then x(t) = (1 −
t)x0 + txf where, t ∈ [0, 1]; solves Problem II.

Proof: It follows from the definition of 4 that the
condition Θ 4 A(x0) and Θ 4 A(xf ) imply that x0 ∈ CΘ

and xf ∈ CΘ. From Lemma 4.1 we have that CΘ is convex
and hence x(t) ∈ CΘ ⊂ Ω. The optimality follows from the
fact that given two points, the straight line joining them is
shortest under the euclidian norm.

Corollary 4.4: If we have A(x0) 4 A(xf ) or A(xf ) 4

A(x0) then x(t) = (1 − t)x0 + txf , for t ∈ [0, 1] solves
Problem II.

Proof: This follows in a straightforward way from
proposition 4.3. If A(x0) 4 A(xf ) then for all Θ 4 A(x0)
we also have Θ 4 A(xf ), similarly for the reverse case.

Though Proposition 4.3 provides a more general result,
it might be computationally challenging to verify the con-
ditions under which it holds. The Corollary 4.4 provides
a condition which is easier to verify but holds only for
a subclass of cases where Proposition 4.3 holds. We now
provide an algebraic criterion to verify if the conditions for
the Proposition 4.3 are met or not. We define the matrix

[A(x0) ∧ A(xf )]ij := A(x0)ijA(xf )ij

This matrix essentially represents the edges which are com-
mon in both A(x0) and A(xf ). It has the important property
that A(x0) ∧ A(xf ) 4M A(x0) and A(x0) ∧ A(xf ) 4M

A(xf ). Thus, if A(x0) ∧ A(xf ) ∈ Mc, then we have
∀Θ 4 A(x0) ∧ A(xf ), Θ 4 A(x0) and Θ 4 A(xf ). Thus
the problem reduces to verifying the condition A(x0) ∧
A(xf ) ∈ Mc. This can be done algebraically by checking
if all the elements of the corresponding SA(x0)∧A(xf ) defined
earlier are nonzero, or studying the spectral properties of
the associated Laplacian matrix [9]. This involves verifying
if the second smallest eigenvalue of the Laplacian matrix
corresponding to the graph represented by A(x0)∧A(xf ) is
nonzero.

1) Example: The simulation result in Figure 2 illustrate
the result in Proposition 4.3. The initial and final desired
configuration are marked a) and d), respectively. The graph
representing the common minimal element between initial
and final configurations Θ is represented by bold lines. In
the example considered we have Θ = A(x0) ∧ A(xf ). It
can be seen that this bold graph is preserved at intermediate
configurations b) and c).
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Proposition 4.3 provides us a condition under which the
optimal solution to Problem II can easily be computed. It
remains to be shown that there exists a feasible solution
to Problem II even when the conditions of Proposition 4.3
are not met i.e A(x0) ∧ A(xf ) /∈ Mc. This case can be
illustrated via the following example. Let A(x0) = Θk and
A(xf ) = Θl and Θk 6= Θl where the equality is evaluated
term by term. In this case A(x0) ∧ A(xf ) = 0 /∈ Mc. The
following Proposition proves the feasibility of problem II.

Proposition 4.5: Given any x0 and xf in Ω there exists a
x(t) connecting x0 and xf such that x(t) ∈ Ω.

Proof: This can be seen as a consequence of the fact
that CKN

⊆ CX , ∀X ∈ Mc. In other words there always
exists a path x(t) from each state x0 ∈ CX0

to each state
xs ∈ CKN

so that x(t) ∈ CX0
. By concatenating two segments

from x0 to xs and xf to xs. We have a path joining x0 and
xf , which satisfies the constraint.

The previous Proposition provides a suboptimal solution
to Problem II. However, the solution it provides is highly
inefficient as it requires the agents to converge to a state
which corresponds to a fully connected graph. Such a ma-
noeuvre is not always desirable and certainly not optimal.
Consider a scenario where the agents are distributed on a
large geographical area and we want to swap the positions
of two agents. In this case it doesn’t make sense to converge
to a configuration where we have full connectivity. Hence,
it makes sense to search for ways to exploit the structure of
the constraint set more effectively. Our approach will be a
heuristic approach in the sense that it does not guarantee a
globally optimal solution.
The following formulation explicitly considers the case when
the condition of Proposition 4.3 are not met.

C. Problem III

Given x0, xf ∈ Ω such that A(x0) ∧ A(xf ) /∈ Mc and
X ∈ MC such that A(x0) 4 X and A(xf ) 4 X we wish to
solve the following problem.

min
x∈CX

‖x − x0‖ + ‖x − xf‖

Let us denote the cost function as f(x). A solution to
Problem III ,also provides a suboptimal solution to problem
II. Again, as we did earlier we evaluate distance in terms
of the l2 norm. Since, we have A(x0) 4 X and A(xf ) 4

X , this implies that CX ⊆ CA(x0) ∩ CA(xf ). Thus, the
concatenation of segments joining x0 → x and x → xf ,
gives us a suboptimal path between the initial and final
position which satisfies the constraint. Note that in proving
Proposition 4.5 the choice of X we used is KN . Let us define
[A(x0) ∨ A(xf )]ij := A(x0)ij ◦ A(xf )ij , where ◦ signifies
the logical “or” operation. This matrix has the property that
A(x0) 4 A(x0) ∨ A(xf ) and A(xf ) 4 A(x0) ∨ A(xf ). Thus
we can pick X as X = A(x0) ∨ A(xf ). This choice is
essentially a least upper bound on the set consisting of the
elements A(x0) and A(xf ). Typically the choice of X plays
a big factor in the kind of solution achieved, and hence it
can be chosen to satisfy any specified criterion. However,
the choice of X is not completely independent as it needs
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to satisfy the condition A(x0) 4 X and A(xf ) 4 X . The
following lemma provides condition on the uniqueness of
solution to Problem III.

Lemma 4.6: The solution to problem III is unique if and
only if we have ∀α ∈ [0, 1], (1 − α)x0 + αxf /∈ CX ,
otherwise all such x = (1−α)x0 +αxf ∈ CX solve Problem
III.

Proof: Figure 3 illustrates the idea behind Lemma 4.6.
It is straightforward to note that the cost function is constant
for all x(α) = (1 − α)x0 + αxf where α ∈ [0, 1]. Also all
such x(α) is the solution of the unconstrained minimization
problem. Hence if for some α we have x(α) ∈ CX then all
such x(α) are the minimizers. To prove the converse assume
that x(α) /∈ CX . Also assume that the solution is not unique,
i.e ∃x, y ∈ CX such that

f(x) = ‖x − x0‖ + ‖x − xf‖ = ‖y − x0‖ + ‖y − xf‖ = c

Then it is a consequence of the triangle inequality that for
all x̄(α) = (1 − α)x + αy, we have f(x̄(α)) ≤ c. Since c is
the minimum, we have f(x̄(α)) = c. However, since x(α) is
the only linear level set, we have a contradiction.
It is possible to further weaken the requirement on the choice
of X in Problem III. In loose terms, it can be said that the
larger the set X is, the better solution we achieve, i.e if for
X1 and X2 we have CX2

⊆ CX1
, then the corresponding

solutions x∗1, x∗
2 to Problem III satisfy f(x∗

1) ≤ f(x∗2). Thus,
our objective reduces to finding a ‘large’ constraint set CX .
This is equivalent to finding a satisfactory X with least
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number of non-zero elements. Since more non-zero elements
imply the presence of more constraints which needs to be
satisfied and hence reduce the search space. The following
approach gives us a heuristic way to come up with such a set
CX , and also provides a way as to weaken the requirement
on X as required in the statement of Problem III.

Given x0 and xf let {Θ1
0, Θ

2
0, . . . , Θ

k1

0 } and
{Θ1

f , Θ2
f , . . . , Θk2

f } denote the sets of minimal elements,
which satisfy Θj

0 4 A(x0) ∀j = 1, . . . , k1 and
Θj

f 4 A(xf ) ∀j = 1, . . . , k2 respectively. For our
current discussion we will assume that the conditions
for proposition 4.3 are not met. This implies that
Θi

0 6= Θj
f , ∀i = 1, . . . , k1 and ∀j = 1, . . . , k2, or

equivalently A(x0) ∧ A(xf ) /∈ Mc.
Define X ij = Θi

0 ∨ Θj
f . Then, X ij can replace X in

Problem III. Note that we no longer have A(x0) 4 X ij or
A(xf ) 4 X ij . However, since Θi

0 4 X ij and Θj
f 4 X ij

we have CXij ⊆ CΘi
0
∩ CΘj

f

. Also x0 ∈ CΘi
0
, xf ∈ CΘj

f

and
x ∈ CΘi

0
∩ CΘj

f
, where x is the solution to problem III. Thus

concatenation of segments joining x0 → x and x → xf ,
provides a suboptimal solution.

This approach can be seen in light of the notion of graph
grammar [18]. As the choice of the matrix X essentially
gives a rule for graph transition while maintaining connec-
tivity.

Figure 4 illustrates the main idea through an example. In
the figure A(x0) represents the initial formation A(xf ) repre-
sents the desired formation and A(x0)∨A(xf ) represents the
Adjacency matrix for the intermediate formation. As can be
seen the initial and final configurations violate the condition
required for Proposition 4.3. However, by passing through
an intermediate configuration as provided by the choice of
a suitable X = A(x0) ∨ A(xf ), the graph connectivity is
maintained at all times.

V. CONCLUSION

We have developed a mathematical framework to address
dynamically evolving formation graphs due to the motion of
the nodes in a plane. In this framework we considered two in-
stances of the multi-agent coordination problem and showed
that in both these instances certain convexity properties of
the constraint set can be leveraged to reduce the problem
to a static optimization problem. However the solution we
provided in this paper is centralized and the control law it
generates is an open loop control law. Thus, it suffers from
the shortcomings which come from using an open loop law,
like inability to handle disturbance and uncertainty. However,
our approach can be used to design higher level supervisory
control laws, which generates setpoints in the state space.
The lower layer control laws can be designed as a feedback
law to achieve these setpoints. This lower layer can control
law can be made decentralized by using potential functions.
Thus the control task can be split into two phases, in the
first phase the agents communicate among themselves to
compute the centralized policy and then the local controllers
implement the decentralized algorithm. This forms the basis
of future research.
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