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Abstract— In Hybrid Electric Vehicle (HEV) applications, un-
like electric vehicles, operation with the battery system requires
control in a relatively limited range of state-of-charge (SoC),
where best efficiency, gradual aging, and no self-damaging
operations are expected. In this context, one of the main, critical
technical challenges is the estimation of the SoC under vehicle
operations, which typically do not involve full charging or
discharging. This task is particularly arduous to accomplish
in real-time, due to the complex and nonlinear behavior of
the battery, as well as the inevitable presence of on-board
measurement errors. In this work, we describe a model-based
calibration process for capturing the important characteristics
of modern batteries used in typical HEV applications. This
process consists of reproducible procedural steps, including pre-
specified data collection, while ultimately admitting a calibra-
tion. The resulting models are useful in HEV system control
design for algorithms centered on maintaining the battery SoC,
in algorithms for prognostics and diagnostics, and in prediction
and estimation tasks.

I. INTRODUCTION

While Li-ion batteries are quickly emerging as the tech-

nology of choice for future Hybrid Electric Vehicles (HEVs),

current production HEVs utilize NiMH battery packs. In

these HEV applications, unlike electric vehicles, the batteries

have to be controlled to operate in a relatively limited

range of State-of-Charge (SoC) where best efficiency, slow

aging and no self-damaging operations are expected. In this

context, one of the main technical challenges and of key

relevance is the estimation of the State-of-Charge (SoC)

under vehicle operations, which typically do not involve full

charging or discharging ([2] - [5]). This task is particularly

arduous to accomplish in real-time, due to the complex and

nonlinear behavior of the battery, as well as the inevitable

presence of on-board measurement errors.

Several physically-based and ad-hoc algorithms have been

proposed in the literature (and some implemented in produc-

tion) for determining the battery pack SoC during vehicle

operation. Broadly speaking, these algorithms are based on
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different approaches, including current integration, SoC esti-

mation based on Open Circuit Voltage (OCV), approximate

model inversion (Kalman filters, model observers, etc.), or

black-box methods (ANN, fuzzy logic, etc.) ([3], [5] - [10]).

Practical algorithms for on-board SoC estimation in vehicles

typically involve more than one of the mentioned approaches,

and many are highly proprietary. However, regardless of the

approach, these algorithms involve very significant calibra-

tion effort to provide robust SoC estimators for the life of

the vehicle subject to a wide range of electrical and thermal

conditions.

Furthermore, an effective SoC estimation algorithm for

real time applications must be computationally fast, rely only

on commonly available quantities (basically load voltage,

current, temperature), be immune to noise and allow for off-

line calibration.

With increasing complexity in modern HEVs comes an

increasing number of control parameters, translating to a

substantial increase in calibration time. Increased time, as

well as complexity, due to required calibration adds to the

overall development effort and, therefore, cost. The auto-

motive engineering field has gradually come to realize the

tremendous potential of model-based control as a solution

to this fast-growing calibration problem. A model-based ap-

proach to calibration typically consists of building statistical

models from real data to characterize important behaviors,

upon which control theory design steps can be utilized to

produce a “calibration”. Thus, the use of time-series analysis,

efficient and effective optimization algorithms, and proven

system identification techniques become very important in

this process, because the dependence on realistic plant data

is critical.

In this work, we advocate the use of a model-based calibra-

tion process, consisting of reproducible procedural steps, for

capturing the important characteristics of modern batteries

used in typical HEV applications. Such a process involves a

pre-specified rich data collection, ultimately allowing for a

semi-automated calibration; the result can be characterized

as “data in, calibration out”. The resulting models are useful

in HEV system control design for algorithms centered on

maintaining the battery state-of-charge, in algorithms for

prognostics and diagnostics, and in prediction and estimation

tasks.

Specifically, we present in this paper a model structure

and a suitable identification procedure to yield a globally

valid equivalent electrical circuit model for a NiMH battery.

This model, which is intended to account for the relevant
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dynamics experienced in HEV applications, is well suited

for designing a model-based SoC estimator. Together with

the model structure, a detailed procedure is provided to

identify all parameters from a single experiment, specifically

designed to excite the relevant dynamics and span the entire

useful range of State-of-Charge. All the model parameters

are allowed to vary in a piecewise linear manner with

respect to the SoC, and then optimized using a genetic

algorithm to yield a globally valid model in a form which

is easy to integrate into a control, diagnostics or prognostics

framework.

II. BATTERY MODELING

Much research has been done on battery modeling for

the purpose of SoC estimation. First, there are physically-

based models involving description of the internal reactions

kinetics. Although errors of SoC estimators based on such

models are reported to be less than 2%, the prominent

nonlinearities of these models cause them to be impractical

for real-time applications in HEVs ([11] - [13]).

Malkhandi [9] and Salkind [10] present a method for

NiMH’s SoC and State of Health (SoH) prediction using

fuzzy logic modeling. Other studies propose Kalman Filters

(KF) and extended Kalman filtering techniques as well as

sliding mode observers as a self-correcting solution for

determining the SoC ([7], [8]). Accuracy of these learning

methods still leaves substantial uncertainties. Probably the

most relevant discriminant is represented by the real time

constraint on SoC calculation.

In [1], a model-based SoC estimation is presented, which

blends a simple current integration with an estimate of

the SoC based on a model inversion. The model used in

the inversion is an interesting structure that combines a

simple electrical circuit with a set of dynamic open circuit

voltage maps. The high degrees of freedom in that model

structure make it a candidate for applying our identification

methodology. Henceforth, this is the only model structure

that will be investigated in this paper. The following sections

present the model structure and its dynamical equations. As

a simplification for this paper, all battery data are taken

in isothermal conditions, making temperature an irrelevant

factor in the model. However, the results produced can be

readily extended to include temperature.

A. Battery Load Voltage Relaxation

It has been observed by many that all batteries exhibit sig-

nificant dynamical behaviors in their current voltage relation-

ship and this is often characterized by Electrical Impedance

Spectroscopy (EIS) or other suitable techniques. While the

physical source of these observed dynamical effects is linked

to electrochemistry, species diffusion, etc., their net behavior

is often approximated by considering equivalent electrical

circuits of reduced order which mimics relevant parts of the

frequency response as determined by EIS. Equivalent circuits

of batteries are often represented by 1st, 2nd or 3rd order

linear differential equations with the possible addition of

some non-linear element like the Warburg impedance (1/2

order). All such electrical models rely on the determination

of an ideal voltage source, the Open Circuit Voltage (OCV).

Typically the OCV is considered to a monotonic function

of SoC (and temperature), and the parameter values of the

equivalent electrical circuit are either fixed or varying as a

function of SoC, current direction and temperature.

B. Open Circuit Voltage Hysteresis Effect

However, in addition to electrical effects described above,

batteries also exhibit very pronounced hysteresis behavior in

the OCV. These effects are particularly significant and slow

in NiMH (see [4]). In the context of an electrical circuit rep-

resentation, batteries typically exhibit different OCV curves

in charge and discharge. This complex phenomenon severely

limits the ability to identify a battery electrical equivalent

circuit which is uniformly valid, and to use such a model to

estimate the SoC.

To construct a uniformly valid electrical equivalent circuit,

we want to model the battery’s “true” OCV which is defined

as the voltage measured at the battery terminals when no load

is applied and all internal processes are completely relaxed.

Because the internal relaxation in this battery chemistry lasts

many hours, the direct measurement of this “true” OCV is

very lengthy (practically impossible), as even experiments

conducted at minute charge and discharge currents (such as

0.1C, as recommended in the literature and manufacturer

data) will yield two different OCV curve separated by

approximately 0.1V per cell depending on the direction of

the current. This “hysteresis” behavior relaxes with time

extremely slowly. Hence, the model developed must either

properly account for the root causes of this behavior, or

develop an ad hoc method for two different OCV curves

with an appropriate slow relaxation behavior. The first choice

is not practical for automotive applications such as SoC

estimation. It is clear that with the second approach, the

model, by construction, depends on the protocol by which

the OCV curves are determined; this is because they are

not absolute, but an artifact of the experiment (current level,

resting time, etc.).

The study in [1] suggests that the hysteresis behavior of the

OCV can be successfully captured combining an equivalent

electrical circuit with different OCV maps while providing

a physically meaningful smooth transition from one map to

the other, as well as suitable relaxation. Because optimization

is used, we do not need to construct accurate OCV maps.

Rather, as long as a preliminary set of curves is available,

an optimization tool can be used to find the curves in an

automated fashion.

C. Battery Model Structure

Taking into consideration all of the above considerations,

a first order equivalent electrical circuit model, adapted from

[1], is chosen as shown in Figure 1. The diodes shown are

ideal diodes and are only used to reflect the fact that the

resistances in the RC circuits are different during charging

and discharging. The capacitance on the other hand does not
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Fig. 1. Electrical circuit model of battery
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Fig. 2. Transition between different maps modeled by 1st order system

change between charging and discharging. This is to main-

tain an energy-conservative model representation. However,

unlike other such 1st order models in the literature, the open

circuit voltage is prescribed by three maps: a “charging” map,

a “discharging” map and a “relaxed” map, together with a

1st order system that models the transition between the maps

(see Figure 2). The charge OCV curve and discharge OCV

curves are readily obtained empirically, as they do not require

any significant relaxation period. Obtaining the relaxed map,

on the other hand, can take many hours of experimentation

due to the long relaxation time explained in Section II-

B. Therefore the relaxed curve used here is approximately

the average between the charge and discharge curves. This

assumption does not result is a sufficiently accurate curve,

but it does provide a starting point from which we can

proceed.

D. Battery Model Analysis

Analysis of the electrical circuit shown in Figure 1 is

straightforward. The system output Vbatt is found using

Kirchoff’s voltage law:

Vbatt = Voc −VR0
−V1. (1)

The RC circuit is described by two ordinary differential

equations obtained using Kirchoff’s current law and the

definition of an ideal capacitor:

dV1

dt
= −

V1

C1R1 j

+
1

R1 j

I, j = charge/discharge (2)

In such a model, the parameters Voc, Ri, and Ci are unknown

functions of SoC and temperature. For the purpose of this pa-

per, the temperature was kept constant within a few degrees

Centigrade to simplify the model identification problem. In

an actual application, the dependency on temperature must

be explicitly captured, thus increasing the complexity of the

identification problem by an order of magnitude.

The open circuit voltage (Voc) is determined by the output

of a first order system. Define a state x as the difference

between the current OCV and the relaxed OCV value at the

current SoC (which we call Em(SoC)). Then the dynamical

equation for x is given by

ẋ = −
1

t
x+

1

t
(E(I,SoC)−Em(SoC)), (3)

where t is the time constant and E(I,SoC) is defined as

E(I,SoC) =







Ec(SoC) I < −1A

Em(SoC) |I| ≤ 1A

Ed(SoC) I > 1A

(4)

where Ec represents the charging OCV, and Ed represents the

discharging OCV. The OCV to be used by the model is then

given by Voc = x + Em(SoC). The SoC used for modeling

is obtained by beginning a test at a known SoC and then

integrating the current. To prevent rapid switching between

the charge and discharge equations in the case of unavoidable

noise in the current measurement, a hysteresis element is

included to add a dead band of ±1 A around 0 A. With

this, the model switches state only if the measured current

exceeds 1 amp in magnitude.

The above assumptions result in a relatively simple model

that, at the same time, provides a description for the relevant

behavior of the battery.

III. PARAMETER IDENTIFICATION AND

OPTIMIZATION USING LINEAR SPLINE

TECHNIQUES

To construct the battery equivalent circuit model, all the

components of the RC circuit in Figure 1 (resistances and

capacitances in particular) must be identified. Because avail-

able experimental techniques for extracting these quantities

can be inaccurate, the OCV curves and the relaxation time

constants can be optimized to result in better models. In this

section we address the methodology for identification.

A. Optimization

There is no simple analytical method for identifying a

parameter varying linear continuous model as in (1), (2),

and (3). We propose to use an optimization routine to pick

the unknown coefficients in the model so that the output of

the model best matches the measurement. Several popular

optimization techniques can be used for this purpose, each

with its own advantages and disadvantages. We choose to

use a genetic algorithm (GA) to do this optimization (see

[17] for a detailed introduction).

A genetic algorithm uses the principles of evolution to

find the best parameters to a problem. The algorithm starts

with a set of candidate solutions, usually referred to as the
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initial population. A fitness function is used to assign a merit

value to each candidate solution in the population. Then

the algorithm randomly selects two solutions and combines

them to generate two new solutions. The selection process is

random but the solution with higher fitness value is more

likely to be selected. This emulates the natural selection

idea, in which the traits of the fitter individual are more

likely to be preserved than those of the weaker. To prevent

the algorithm from sticking at a local optimum, the next

generation solutions are mutated so that they contain traits

foreign to their parents. Mutation occurs randomly and with

very low probability. This reproduction cycle repeats for

many generations until the fitness of the best solution in the

latest generation is high enough.

In our case, the candidate battery model is implemented

on a computer and simulated using data collected during

the physical experiment. Then the GA is used to pick the

unknowns (resistance, capacitance, time constants and so

on) in the model such that the average absolute difference

between the model battery voltage output and the measured

battery voltage at pre-specified sample points is minimized.

In other words, the fitness function to be used by the GA

is the negative of this sum. Because the laboratory data set

is designed in such way that all the relevant dynamics of

the battery are excited, the optimized model with the highest

fitness value should have desirable behavior in all aspects of

the battery behavior.

There are many public domain software implementation of

GAs freely available for use (examples: GALib ([15]) and

PIKAIA ([14])). In this work, the software package PIKAIA

is used because of its flexibility, simplicity, and adaptability.

To find the fitness of a candidate solution, we must evaluate

the solutions of the ordinary differential equations (ODE)

shown in (1), (2), and (3). The long experimental data set

and the complexity of ODE solvers make each evaluation

very time consuming. If only one computer is used, the

optimization process can be very tedious. Consequently, we

chose to use a version of PIKAIA called MPIKAIA ([16]),

which has the capability of allowing multiple computers to

work on a single task. We worked to optimize MPIKAIA

significantly to reduce peer to peer communication, thereby

reducing unnecessary computational overhead. In a typical

GA, approximately 95% of the computational time is spent

evaluating the fitness of the sample solutions. Calculation

of the fitness of one candidate solution does not interfere

with the calculation of another candidate solution. Therefore

the task of fitness evaluation can be distributed to multiple

computers such that the speed increases linearly with the

number of computers (up to some limits). The final software

solution in this work is implemented on the parallel com-

puting cluster at The Center for Automotive Research. This

cluster is comprised of 20 separate computers with Core-2

Duo processors, which essentially amounts to 40 independent

workers that can participate on a job.

B. Linear Splines for SoC Dependent Parameters

Previous research on battery modeling has shown that the

parameters of an RC circuit battery model are dependent on

the state of the charge and temperature. The usual approach

in modeling and identification is to exercise a battery within

a narrow band of a particular SoC and temperature and find

a constant linear model for that region. Doing this for many

ranges of SoC and temperature results in a family of models

that when used together can describe the behavior of the

battery over the entire spectrum of SoC and temperature. In

other words, the composite model is a linear parameter vary-

ing (LPV) model where the model coefficients are piecewise

constant functions of the SoC and temperature.

While simple and relatively effective, this type of model

suffers from its inherent transitional discontinuity. If the

SoC vacillates between two SoC regions where the model

coefficients are different (for example, because of noise in

measurement), there may exist undesirable chattering behav-

ior. We propose to use an LPV model where the coefficients

are linear spline functions of the SoC (for information on

spline functions and its applications in automotive systems

modeling, see [19], and [18]). By definition, linear spline

functions are piecewise linear continuous functions. They are

especially effective when the domain of the function is fixed

to a compact set, such as in this case where the SoC is

always bounded to the interval [0% to 100%]. To specify

a linear spline function, one needs a partition and a set of

coefficients which specify the slopes of the piecewise linear

function on each subinterval of the partition. In the case of

SoC, an effective sample partition is [0, 5, 10, 20, . . . , 80, 90,

95, 100] (all in percentage), because battery behavior across

a 10% change in SoC is relatively constant. Linear splines

techniques are easily generalized to multi-dimensional (for

instance SoC and T) with or without cross-terms, making

this technique particularly attractive to deal with the practical

battery identification problem which includes temperature.

A battery model with coefficients which are linear spline

functions of the SoC does not suffer from transitional dis-

continuity. With a rather dense partition such as the one

described above, the model will be quite flexible, result-

ing in a reasonable approximation of the battery behavior.

Furthermore, many linear parameter varying control design

techniques that have surfaced recently can be applied to

this model which enables them to be used effectively in

HEV applications. For example, a linear parameter varying

observer can be used in state of charge estimation, which is

the ultimate goal for battery modeling in HEV applications.

C. Model Identification

With an algorithm such as a GA, it is tempting to simply

let the GA run to find all the SoC-dependent coefficients,

the OCV curves, and the relaxation time constant, simul-

taneously. However, there can be over 90 parameters for

a full first order LPV model with three separate OCV

curves, even under the isothermal assumption. The size of

the problem is easily double that if temperature effects are

included. With so many parameters, the GA would have to
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search in a very large space, in which the probability of

finding a good solution is small. To make the problem more

tractable, bounds are specified for each unknown coefficient

as tightly as possible (bounds result from physical insight

and intuition). But even then the curse of dimensionality is

still prevalent. A prudent approach is to reduce the problem

size and gradually increase the complexity. This will ensure

that meaningful solutions can be found at each stage. As

an added benefit, such a layered approach can also indicate

whether a simpler model is sufficient to capture the dynamics

of the battery.

We choose to simplify the problem into three separate

identification exercises. In the first identification, the RC

parameters in the model are considered non-SoC-dependent.

The OCV curves used are those found experimentally (see

Figure 2 for the OCV curves). With these reductions, the total

number of unknowns is only nine, which is small enough

that good results can be obtained using the GA without

good initial estimates. This overly simple model is unlikely

to produce acceptable results. However, using the outcome

as an initial estimate for future identifications is a good

strategy to obtain meaningful results. Furthermore, this is an

effective way to narrow down the bounds on the parameters

for the LPV model, in case the physics based intuition is not

sufficient.

In the second identification exercise, the open circuit

voltage curves and the relaxation time constant also become

part of the unknowns in addition to the constant RC circuit

parameters. We could search for all three curves, but since

the charging and discharging curves are easily measured,

they are reasonably accurate. The middle curve on the other

hand is obtained by averaging the two other curves, which

is completely heuristic and most likely inaccurate. Therefore

we choose to only modify the middle curve. This logical

second step allows us to improve the OCV curves shown in

Figure 2, and therefore improve the model performance.

We parameterize the unknown OCV curve as linear spline

functions of the SoC. It is also constructed to satisfy charac-

teristics of the OCV curve. In particular, it must be strictly

monotonically increasing with the SoC and is nonintersecting

with the other two curves. The number of unknowns in this

problem is more than twice the previous problem. However,

using the RC parameters found in the previous step as well

as the initial heuristic relaxed curve as the initial guess,

identifying so many parameters is a tractable task. Since the

relaxed OCV curve is directly related to the SoC, obtaining

a good curve is very useful to the overall problem of SoC

estimation.

The final identification step improves upon the previous

by allowing the RC circuit parameters to be linear spline

functions of the SoC as well. This large model contains

about 70 unknown parameters, which results in a very large

searching space for the GA. Therefore it is important that

we start the search using results from the previous step. The

end result of this step is the full LPV battery model.

IV. MODELING RESULTS

To validate the approach outlined above, we applied the

aforementioned technique to a Panasonic NiMH module (six

cells) with nominal capacity of 6.5 A.h. This battery is taken

from a Toyota Prius battery pack. First we designed a com-

prehensive current profile (approximately 16,000 seconds,

or 4.5 hours) that can excite the various parameters of this

battery. Then the GA is applied to the first half (first 8,000

seconds) of the data set according to the layered approach

outlined above to find the full LPV model that best fits the

data. Finally, the model is executed over the entire data set

as a validation.

A. Experimental Setup

The initial SoC, initial OCV, and the initial state of

relaxation of the battery are all critical components that

will impact the integrity of the data set, which in turn will

affect the accuracy of the model. Therefore, prior to any data

taking, we first charge the battery to 100% SoC according

to manufacturer specified procedures. Then the battery is

discharged to 85% SoC (6.5 A for 10 minutes). After that the

battery is allowed to rest for over 8 hours (note that 8 hours

is short enough that the internal discharge of the battery will

be negligible). This set of procedures gives us an accurate

initial SoC and an accurate initial OCV, which can be used to

initialize the battery model during parameter identification.

By integrating the current using the initial SoC as initial

condition, we also obtain an accurate SoC measurement for

the battery over the entire span of testing. In this study, we

restrict the battery SoC during this profile to be between

30% and 100%. The lower SoC region is avoided because

unexpected and unrealistic voltage drop can occur in this

region that would cause data problems. Since this region is

typically avoided in HEV applications, omitting it does not

limit the usability of the resulting model.

The current profile engineered for the battery is a series

of asymmetrical charging and discharging staircases, with

resting inserted in between. Figure 3 shows examples of these

asymmetrical staircases. Using these staircases allows us to

accomplish several goals for a good input design. First, step

inputs allow the time constant and input coefficients of the

first order RC circuit to be identified. Second, by grouping

staircases in various ways, we can allow the SoC to traverse

the entire desired region. In this way the dependence on SoC

for various parameters can be identified. Figure 4 shows the

SoC profile that resulted from this current profile. Third, the

various switches between charging staircase and discharging

staircase allows us to find the dependence of the parameters

on the current direction. Fourth, the resting period inserted

in between charging and discharging allows identification of

the OCV dynamical equation. Last but not least, steps are

consistent with actual current demand in an HEV. All of

these merits make asymmetrical staircases a good option to

use for an excitation current profile.
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TABLE I

MODEL FIT RESULTS

Test Parameter Type Modify OCV Curves Mean Abs Error

1 Constant No 0.055 V
2 Constant Yes 0.028 V
3 SoC Yes 0.020 V

B. Identification Results

The identification procedure presented in section III-C is

performed using the dataset collected from the experiment.

Table I summarizes the average absolute error between

the model battery output voltage and the measured battery

voltage.

First to be modeled is the constant parameter system,

which uses the OCV curves obtained experimentally. Rather

than directly identifying the RC circuit components (which

produces a larger than desired search region), we decided

to visualize the battery model as a ordinary first order

system. Then the problem is to identify the time constant

and input coefficient of the system. Figure 5 shows the

battery voltage produced by the model and the measured

voltage. As we can see there is very good agreement over

the entire data set despite the fact that the model has only

nine parameters. The average absolute error between the

measured response and the model response is only 0.055

V, which is less than 1% of the nominal operating voltage

of 7.2 V. From this identification, we were able to obtain

tight bounds for the parameters, which will be used in all

subsequent identifications. The numbers that the GA selected

are as expected from physical intuition. For example, the

relaxation time is identified to be on the order of 1 to 2

hours, which matches with our physical observations.

There is also a clear deficiency in this model. As seen

in Figure 5, the initial model voltage does not fit the data

very well. This is because the middle OCV curve does not

accurately describe the OCV for each SoC (in particular

the initial SoC). Figure 6 shows the OCV values produced

by the model during the simulation, plotted on top of the

OCV curves used. We can see that the OCV values are not

tending to the middle OCV curve during the resting periods,

especially in the beginning of the data set when the battery

is truly at rest. This is a hint that the heuristically derived

middle OCV curve needs to be optimized.

Therefore, in this next step, we allow the middle OCV

curve to be adjusted as well. The bounds for the constant

coefficients are tightened according to the results from the

previous exercise. The model response is improved signif-

icantly over the previous exercise. The average error is

reduced by almost half to 0.028 V. Figure 7 shows the model

output vs. measurement while Figure 8 shows the OCV

values on top of the optimized OCV curves. The GA did

what we expected by adjusting the middle curves so that the

behavior of the simulated OCV values adhere better to the

data. In particular, the error in the beginning of the data is

completely removed.

Lastly, we identify a model where the coefficients are

allowed to be linear spline functions of the SoC. Once

again, the fit improved as expected. The average error is

now reduced to 0.020 V. Figure 9 displays the agreement

of the voltage plots for the parameters found by the GA

as a function of SoC. The change in OCV curve is not

significant compared to the previous case (see Figure 10).

This is expected since if the previous optimization did the

job correctly, there would be no need for significant changes

here. This shows that the construct of linear spline based

LPV model structure is a sound choice.

To validate the final full LPV model, we allowed the model

to execute over the entire 16,000 seconds represented in

the data set. Figure 11 shows the resulting fit. The overall

average absolute error is a mere 0.022 V, only slightly larger

than the error over the modeling portion of the data. This

shows that the model formed is not biased towards the

modeling data. In an upcoming paper, we will illustrate

the model behavior as validated for other profiles, including

actual driving cycle data.

As a final note, we comment on the computational burden
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Fig. 5. Battery voltage from constant model with experimental OCV curves
vs. measured voltage; average error = 0.055 V
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Fig. 6. OCV curves used for this identification

of this identification process. As an illustration, Table II

offers time performance results for identifications carried out

on a cluster of five computers. The longest time spent was

for the full LPV model. But even at four hours, this auto-

mated procedure is very easy to perform. As a comparison,

earlier results (not on the cluster) were carried out using

the Matlab optimization toolbox, requiring several days to

identify the constant model with only nine parameters. Given

this comparison point, the process we described here offers a

platform to perform quick model calibration as well as model

structure studies. Moreover, although this identification work

was performed under an isothermal assumption, we envision

a straightforward generalization to include temperature de-

pendence; we will report on this concept in an upcoming

paper.

V. CONCLUSION

The goal of this work is twofold. First, we have presented

a framework for model identification that is suitable for mod-
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Fig. 7. Battery voltage from constant model with GA optimized OCV
curves vs. measured voltage; average error = 0.028 V
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Fig. 8. Modified OCV curves in the second identification, where model
parameters are constants

eling a variety of battery types. Second, we have obtained a

simple, yet accurate battery model for a NiMH battery that

can be used in HEV applications to correctly assess the SoC

of the battery pack, leading to useful control-oriented models.

We demonstrated that genetic algorithm optimization can be

used to quickly and easily identify the parameters in an LPV

battery model for all SoC, when a sufficiently rich data set

is available.

The approach to battery modeling described here repre-

sents a contribution in several ways. First, since all parame-

ters of the battery can be identified together using a rich data

set, the identification procedure is very simple. Compared to

existing schemes for identifying constant models for various

ranges of the SoC, this method is quicker and more efficient.

Secondly, the use of linear splines for the model coefficient

parametrization allows the final model to be continuous

in nature, eliminating potential undesirable dynamic effects

due to discontinuities. Lastly, the parallel computing GA
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Fig. 9. Battery voltage from the LPV model with OCV curves modified
by GA vs. measured battery voltage; average error = 0.020 V
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Fig. 10. OCV curves modified by GA in this identification

software structure with the computing cluster provides a

viable platform for solving similar large scale problems.
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