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Abstract— In this article, we proposed a novel current cycle
feedback (CCF) iterative learning control (ILC) approach to
achieve high-speed imaging on atomic force microscope (AFM).
AFM-imaging requires precision positioning of the AFM probe
relative to the sample in 3-D (x-y-z) dimension. It has been
demonstrated that with advanced control techniques such as
the inversion-based iterative-control (IIC) technique, precision
positioning of the AFM probe in the lateral (x-y) direction can
be successfully achieved. Additional challenges, however, must
be overcome to achieve precision positioning of the AFM-probe
in the vertical direction. The main contribution of this article is
the developement of the CCF-ILC approach to the AFM z-axis
control. Particularly, the proposed CCF-ILC controller design
utilizes the recently-developed robust-inversion technique to
minimize the model uncertainty effect on the feedforward
control, and remove the causality constraints existing in other
CCF-ILC approaches. Experimental results for AFM imaging
are presented and discussed to illustrate the proposed method.

I. INTRODUCTION

In this article, we propose a current circle feedback (CCF)

iterative learning control (ILC) approach for tracking the

unknown sample topography during AFM imaging. The

nanoscale resolution of the AFM has made the AFM an

enabling tool to image as well as manipulate matters at the

nanoscale [1]. Current AFM system, however, is slow and

thereby AFM imaging is time consuming. Such slow speed of

AFM has hindered the use of AFM to interrogate nanoscale

dynamic phenomena. AFM imaging demands the precision

positioning of the AFM probe relative to the sample in all

x, y, z-axes 3-D dimension. It has been demonstrated that

with advanced control techniques [2] such as the inversion-

based iterative control (ILC) [2], precision positioning of the

AFM probe at high speed can be successfully achieved in

the lateral (x, y-axes) direction. Challenges, however, must

be overcome to achieve the precision positioning of the

AFM-probe in the vertical z-axis, because 1) the sample

topography is unknown in general, 2) the probe-sample

interaction is complicated due to the nonlinear dependence

of the interaction force on the probe-sample position as

well as the deformation/reaction of the sample [3], [4],

and 3) the relative probe-sample position is sensitive to the

probe-sample interaction [4]. Therefore, there exists need to

improve the z-axis AFM controller design to achieve high-

speed AFM imaging.

‡The work is supported by the NSF Grants CMS-0626417 and DUE-
0632908.

Various control approaches have been developed for the z-

axis precision positioning of the probe during the AFM

imaging. For example, PI-type of controllers have been

widely used in commercial AFM systems. Such ad-hoc

controllers, however, have severe bandwidth limitation and

poor robustness , because of the low gain margin of the piezo

actuators. Modern model-based feedback control approach

increases the system bandwidth and achieves better robust-

ness [5]. However, the bandwidth and robustness of these

feedback-based approaches are still limited by the funda-

mental limitations of closed-loop system — the performance

of all feedback control systems is governed by the well-

known Bode’s integral. Thus, in these advanced feedback

control approaches, large bandwidth has to be traded off

with the system robustness. Moreover, the performance of

feedback control is further limited for the nonminimum-

phase systems. These constraints of feedback approaches to

the z-axis control of AFM imaging, can be alleviated by

combining the feedback control with the feedforward control.

For example, in the two-degree-of-freedom (2DOF) design

approach presented in [5], the feedback and the feedforward

controllers were designed based on the H∞ robust control

theory. Although the AFM imaging speed can be increased,

limits still exists in such a 2DOF controller design. First,

the H∞-based feedforward controller is causal (i.e., stable),

therefore, as piezo actuators tend to be minimum-phase, the

performance of such feedforward controller can be limited.

Moreover, the “bandwidth” of the feedforward control is

restricted by the bandwidth of the feedback control, because

the current feedforward control signal is generated by using

the total control signal for the last scanline. Therefore, there

exists a need to better design the 2DOF control approach by

overcoming the causality and bandwidth limitations in the

z-axis control in the AFM imaging.

The main contribution of this article is the development of

a novel CCF-ILC approach to achieve z-axis precision posi-

tioning during the AFM imaging. Particularly, we decouple

the bandwidth requirement from the robustness requirement

in the proposed 2DOF control approach: the feedback con-

troller is designed mainly to enhance the robustness of the

entire system, and the feedforward control is designed to

enlarge the bandwidth by overcoming the minimum-phase

constraint of the piezo dynamics, and utilizing the noncausal-

ity through iterations to improve the tracking. Specifically,

the feedback controller is designed based on the H∞ robust
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Fig. 1. The block diagram of (a) a standard feedback loop, (b) the modified
feedback loop, and (c) the proposed CCF-ILC approach for the z-axis
positioning in AFM imaging.

control theory [6], and the robust-inverse [7] is introduced

into the ILC filter design to explicitly account for the dy-

namics uncertainty in the feedforward control. The proposed

CCF-ILC control approach is illustrated by implementing it

to the z-axis direction control in AFM imaging. Experimental

results show that the imaging speed can be significantly

increased by using the proposed approach.

II. PROBLEM FORMULATION AND ANALYSIS

In this section, we present the inversion-based CCF-ILC

approach to the vertical z-axis positioning of the AFM

probe during imaging. The key feature of the proposed

approach is that the feedforward control input is updated

online (through iterations) and applied, which is augmented

to the z-axis feedback control (see Fig. 1(c)). We start with

briefly describing the z-axis feedback control.

The feedback control system for z-axis AFM probe position-

ing is shown in Fig. 1(a), where Gz(s) denotes the dynamics

model of the piezo actuator for the z-axis positioning,

Gc(s) denotes the dynamics from z-axis piezo output to

the cantilever deflection (including the cantilever and the

mechanical linkage from the piezo actuator to the cantilever),

and Ks(s) denotes the photodiode sensitivity. The goal of

the z-axis AFM probe positioning is to maintain a constant

setpoint value (i.e., constant normal force between the tip and

the sample) during the scanning process. Then the image of

the sample topography can be estimated using the control

signal or the deflection error [8].

We note that the bandwidth of the cantilever and the pho-

todiode dynamics tends to be much higher (over 10 times)

than that of the z-axis piezo dynamics. Therefore, the sample

profile in the z-axis feedback control loop shown in Fig. 1 (a)

can be scaled by the DC-Gain of the cantilever-photodiode

dynamics, and then shifted right to close to the cantilever

deflection output, as in the block diagram in Fig. 1 (b). This

signal shifting is utilized in the proposed CCF-ILC approach

to simplify the presentation.

The proposed CCF-ILC design is shown in Fig. 1 (c).

Particularly, the objectives of the controller design are to:

1) Guarantee the convergence of the CCF-ILC approach,

i.e., the feedforward control input uk,FF (jω) remains

bounded during all iterations k, and the the residual

error ek(jω) converges to zero when the noise n(jω)
vanishes;

2) Improve the feedback tracking with the augmented

feedforward control, i.e., for the same feedback con-

troller, the tracking error e(jω) (e.g., the deflection

signal) is smaller when using the CCF-ILC approach

than that when using the feedback control alone;

3) Improve the imaging accuracy, i.e., the estimation of

the sample profile ds(jω) is more accurate than that

obtained by using current commercial AFMs.

We note that the proposed CCF-ILC approach aims at achiev-

ing high-speed imaging of samples with relatively smooth

topography. For these samples, the sample profile of two

adjacent scanlines are similar, and thereby such a similarity

can be exploited to improve imaging speed. As the first step,

this article focuses on the precision tracking of the sample

profile on one scanline.

In the proposed CCF-ILC technique, feedback controller is

designed first. It is noted that it is desirable that the feedback

controller should be robust against model uncertainties and

noise effects. Thus, the feedback controller is designed to

enhance the robustness of the entire control system. We

design the feedback controller by using the robust control

technique [6] (The readers are referred to [7] for details).

A. CCF-ILC Algorithm: Convergence Analysis

In the proposed CCF-ILC approach, the following general

form of linear iterative learning control law is employed [9]:

u0,FF (jω) = 0

uk+1,FF (jω) = Q(jω)(uk,FF (jω) + L(jω)ek(jω)),

for k ≥ 1

(1)

where Q(jω) and L(jω) are the ILC filters to be designed.

Note that in Eq. (1), the filter Q(jω) is factored out without

loss of generality. The conditions to guarantee the conver-

gence of the CCF-ILC algorithm (the first objective) is given

by the following lemma.

Lemma 1: Let GPD(jω) be the frequency response of a

linear time invariant plant, and let GFB(jω) be a stabilizing

feedback controller. Then for bounded measurement noise

nk(jw), i.e., |nk(jω)| ≤ δ(ω), in the CCF-ILC algorithm (1)

(see Fig. 1 (c)), the iterative control input uk(jω) is bounded

all the time and the residue error ek(jω) converges to zero

with small remaining error (which is called as ‘ultimate

ILC error’ in the following) , where the ultimate ILC error

e∞(jω) is an affine function of the sample profile d(jω) and
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the noise effect δ(ω).

|e∞(jω)| � lim
k→∞

|ek(jω)|

≤
∣

∣

r(ω)

1 − ρ(ω)

∣

∣ |d(jω)| + Eδ(jω)δ(ω) (2)

provided that the ILC filters L(jω) and Q(jω) are chosen

to render the following iteration coefficient ρ(jω) to be less

than one, i.e.,

ρ(ω) = |Q(jω) {1 − GPD(jω)S(jω)L(jω)}| < 1. (3)

In Eq. (2), the frequency dependent variable r(ω) and

Eδ(jω) is defined as

r(ω) � |(Q(jω) − 1)S(jω)| (4)

Eδ(ω) �
|Q(jω)GPD(jω)S(jω)L(jω)S(jω)| + |S(jω)|

|1 − ρ(ω)|

III. DESIGN OF THE ILC FILTERS

Next we discuss the design of the ILC filters, Q(jω) and

L(jω). In the following, Q(jω) is named as the ‘roll-off

ILC filter’ and L(jω) as the ‘inversion-based ILC filter’. We

propose a two-step approach to design the ILC filters Q(jω)
and L(jω). Note that Lemma 1 shows that the ultimate error

coefficient r(ω) (as defined in Eq. (4)) is independent to the

design of the inversion-based ILC filter L(jω). Thus, we

first design the inversion-based ILC filter L(jω) — based

on the recently-developed robust-inversion technique [7] —

to minimize the iteration coefficient ρ(ω), i.e., find L(jω)
such that the term |1 − GPD(jω)S(jω)L(jω)| is minimized

upon system dynamics uncertainties. Then secondly, the roll-

off ILC filter Q(jω) is designed to ensure the convergence of

the CCF-ILC algorithm, and to minimize the ultimate error

e∞(jω) (see Eq. (2))
A. Design of the inversion-based ILC filter L(jω)

The design objective of the ILC filter L(jω) is to minimize

the feedforward control error |1 − GPD(jω)S(jω)L(jω)|
while accounting for the system dynamics uncertainties, i.e.,

min
α(ω)

sup
∆G

∣

∣1 − GPD(jω)S(jω)L(jω)
∣

∣, (5)

where ∆G denotes the model uncertainties defined below

[7], [10]:

∆G(jω) =
GL(jω)

GL,m(jω)
= ∆r(ω) · ej∆θ(ω). (6)

In Eq. (6), GL(jω) denotes the true linear dynamics response

of the system, e.g.,
GL(jω) = GPD(jω)S(jω), (7)

and GL,m(jω) denotes the model of the linear dynamics

GL(jω). By the robust-inversion technique, a frequency-

dependent gain-modulation α(ω) is introduced in the

inversion-based ILC filter,

L(jω) = α(ω) · G−1
L,m(jω), (8)

and then the design objective is transformed to finding the

optimal gain modulation α(ω) against the model uncertainty,

min
α(ω)

sup
∆G

∣

∣1 − α(ω)∆G(jω)
∣

∣ (9)

The solution to the above minmax problem (9) is given in

the following Theorem [7].

Theorem 1: At any given frequency ω, let the magni-

tude variation of the system dynamics ∆r(ω) (defined in

(6)) be bounded from below and from above by constants

∆rmin(ω) ∈ (0, 1] and ∆rmax(ω) ≥ 1, respectively, then

1) The optimal value of the minmax problem (9) is less

than 1 if and only if

a) the size of the phase variation of the sys-

tem dynamics, ∆θm(ω), is less than π/2, i.e.,
∣

∣∆θm(ω)
∣

∣ < π/2; and

b) the gain coefficient α(ω) is chosen as

0 < α(ω) <
2 cos(∆θm(ω))

∆rmax(ω)
;

2) The optimal gain α(ω), upon any bounded dynamics

variation, is given by

αopt(ω) =
2 cos (∆θm(ω))

∆rmin(ω) + ∆rmax(ω)
. (10)

3) By using the optimal gain in (10), the solution to the

minmax problem (9) is,

min
α(ω)

sup
∆G

∣

∣1 − α(ω)∆G(jω)
∣

∣ (11)

=
cos (∆θm(ω))

√

2∆r2
min(ω) + ∆r2

max(ω)

∆rmin(ω) + ∆rmax(ω)
< 1

Corollary 1: The inversion-based ILC filter L(jω) has

no poles on the jω axis, provided that the original system

GL,m(jω) is hyperbolic (i.e., has no poles/zeros on the jω
axis).

Theorem 1 implies that when the phase variation is larger

than or equal to π/2 at frequency ω, the optimal gain

α(ω) should be chosen to be zero, i.e., L(jω) = 0. When

the model uncertainty is large, and the solution to the

minmax problem (Eq. (5)) equals to one at that frequency

ω. It is noted that the inversion-based filter L(jω) might

have poles on the open right half complex plan, thereby

becomes unstable. Thus its online implementation, as needed

in the proposed CCF-IlC algorithm, can be challenging. In

the paper, the filter L(jω) can be directly implemented in

frequency-domain using Fourier-transform (FFT).

B. Design of the roll-off ILC filter Q(jω)

Next, the roll-off ILC filter Q(jω) is designed to compensate
for the system model uncertainties and noise effect. By Eq.
(3), to guarantee the convergence of the CCF-ILC approach,
the roll-off filter Q(jω) must be chosen to render the
iteration coefficient ρ(jω) less than one (see Eq. (3)). Such
a requirement leads to the following upper bound of the roll-
off ILC filter Q(jω):

|Q(jω)| <
1

|(1 − L(jω)GPD(jω)S(jω))|
(12)

To reduce the ultimate error |e∞| (see Eq. (2)), the roll-off

filter Q(jω) should be close to one whenever it is possible.

Since in practices, precision tracking at low frequency is

usually needed, the roll-off filter Q(jω) = 1 should be
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chosen in the low frequency range. In the high frequency

range, however, model uncertainty tends to be significant

with the phase variation larger than π/2, for example,

around the resonant frequencies and/or lightly-damped zeros.

Moreover, the noise and the disturbance effects also tend to

be large–compared to the gain of the system—in the high

frequency range. Therefore, the filter Q(jω) should be rolled-

off as frequency increases. Hence, the roll-off filter Q(jω)
should have “low-pass” characteristics, and Eq.( 12) provides

the guild in designing such a low-pass filter.

The phase delay, associated with conventional low-pass fil-

ters, however, must be carefully addressed when implement-

ing the roll-off filter Q(jω). To remove such a detrimental

phase delay, a zero-phase low-pass filter is proposed to

implement the roll-off filter Q(jω). Particularly, a discrete-

time domain representation of the zero-phase low-pass filter

is presented here to facilitate its implementation [11]. The

2N order zero-phase FIR (finite impulse response) real filter

has the form

Q(z) = b0 +
N

∑

k=1

(bkzk) +
N

∑

k=1

(bkz−k) (13)

where the coefficients bk ∈ ℜ. It can be shown that the

frequency response of Q(ejωT ) is real. Thus, the phase of

Q(z) is zero. It is evident from Eq. (13) that the zero-phase

FIR filter is noncausal. Such a noncausal filter, however,

is implementable in the proposed CCF-ILC framework, be-

cause the signal to be filtered is the sample profile from the

previous scanline, thereby completed known ahead.

C. Design of the sample topography observer R(jω)

Finally, we present a model-based sample topography ob-

server R(jω). In commercial AFMs, sample profile is es-

timated simply by scaling the input voltage to the z-axis

piezo actuator with the DC-Gain of the piezo actuator. Large

imaging distortion can be generated with such a method

at high-speed scanning, because 1) the dynamics induced

probe vibration and 2) the x-to-z dynamics coupling become

significant at high-speed scanning. Therefore, new sample

estimation method must be developed for high-speed AFM

imaging. We estimate the sample profile by using the z-axis

dynamics model. Note that the x-to-z dynamics-coupling can

be regarded as an extra disturbance that effects the cantilever

deflection, thus it can be accounted-for by replacing the

sample topography d(jω) in Fig. 1 (c) with

d̂(jω) = d(jω) + dc(jω) (14)

where dc(jω) denotes the coupling caused disturbance in-

put. Therefore, from the block diagram in Fig. 1 (c), the

unknown sample topography (disturbance) signal d̂(ω) can

be represented as

d̂(jω) = −S−1(jω)ek(jω) − G−1
PD(jω)uk,FF (jω)

� R(jω)
[ ek(jω)

uk,FF (jω)

]

. (15)

Combining the above two Eqs. (14, 15), the sample topog-

raphy d(jω) can be estimated as
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d(jω) = R(jω)
[ ek(jω)

uk,FF (jω)

]

− dc(jω). (16)

Note that the cantilever deflection error, ek(jω), is utilized

in the above sample topography estimation method, which

implies that a good sample estimation can be obtained even

when the z-axis positioning errors is relatively large (we

note that precision positioning in the z-axis, however, is still

needed in many AFM imaging applications).

IV. EXPERIMENT EXAMPLE: AFM IMAGING

We illustrate the proposed CCF-ILC approach by implement-

ing it on an AFM system (DimensionTM 3100, Veeco Inc).

We start with describing the controller design.

A. Controller Design

First, the frequency response of the AFM vertical (z-axis)

dynamics, GPD(jω), was measured by using a data acqui-

sition system along with MATLAB toolboxes as discussed

in Ref. [7]. Then robust feedback controller was designed

to satisfy the performance requirement as well as robustness

requirement [7]. It is noted that a proportional-integral (PI)

feedback controller was also designed for comparison. At

last, the two ILC filters can be designed as follows.

Design of the inversion-based ILC filter L(jω) We

designed the inversion-based ILC filter L(jω) by using
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Fig. 4. Comparison of the deflection error (residual error) by using PI
controller with that by using the proposed CCF-ILC approach for the four
different scan rates of (a) 8Hz, (b) 16Hz, (c) 32Hz, and (d) 64Hz in one
scanline imaging, where total of 10 repeated scan results are shown, and
the feedforward control input was applied starting from the fourth scan;

the robust-inversion approach. As shown in Sec. III, the

closed-loop frequency response GL,m(jω) and its dynamics

uncertainty ∆G(jω) need to be obtained in order to design

the filter L(jω). Similar with the procedure discussed in

Ref. [7], the closed-loop frequency response used in the ILC

inversion-based filter design, GL,m(jω), was obtained by av-

eraging closed-loop frequency responses GL(jω); the upper

bound of the amplitude uncertainty and the phase uncertainty

were estimated by finding the maximum difference among

the experimental frequency responses; and finally the optimal

gain coefficient αopt(ω), as well as the ILC filter L(jω),
can be designed according to Theorem 1. The results are

shown in Fig. 3. In the experiments, the filter L(jω) was im-

plemented in frequency-domain using FFT/IFFT algorithm

online. Hence no transfer function model and/or state-space

time-domain model were needed.

Design of the roll-off ILC filter Q(jω) The design of

the ILC roll-off filter Q(jω) as a zero-phase, low-pass filter

is realized by combining a linear phase FIR low-pass filter

with linear phase lead, Q(z) = Ql(z) × zP where Ql(z)
is the linear-phase FIR low-pass filter (Matlab command

“firpm”). Note that the phase lead term zP is nothing but

a forward shift of P -step in discrete-time implementation.

Also the signal L(jω)ek(jw) and the feedforward control

signal uk,FF (jω) from the previous scanline was delayed

by one period of scan and then used as the input in the

CCF-ILC algorithm, i.e., residual error signal was delayed

by N -step (N : number of sampling points per scanline) in

implementations.
B. Experimental results and discussion

The experimental implementation was conducted in two

stages. First, the proposed method was used to repeatedly

image a calibration sample on one scanline. Then secondly

to show the efficiency of sample estimation, “One point

imaging” was conducted, where a trajectory that mimiced

a calibration sample profile on one scanline was injected as

a disturbance to the z-axis piezo actuator.
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Fig. 6. Dynamics-coupling caused disturbance dc(t) for four scan
frequencies (a) 8 Hz, (b) 16 Hz, (c) 32 Hz, and (d) 64Hz
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Fig. 7. Comparison of the estimated sample profile of PI controller and
CCF-ILC approach for the two scan frequencies (a) 8Hz, (b) 16 Hz, (c) 32
Hz, and (d) 64Hz in one scan line imaging.
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Fig. 8. Comparison of (a) the estimated ‘sample profile’, and (b) the
estimation error of PI controller and CCF-ILC approach for two equivalent
scan rates of (1) 8Hz (2) 64Hz in one point imaging.

One scanline imaging The proposed CCF-ILC technique

was implemented to repetitively scan a calibration sample

(TGZ02, MikroMasch, with a nominal pitch size of 3 µm

and nominal step height of 84 nm) on the same scanline. The

precision positioning in the lateral scanning was achieved by

the inversion-based iterative control(IIC) approach [2], with

the maximum relative tracking error < 1% of the scan range

(20 µm) for four different scanning rates in the experiments,

8 Hz, 16 Hz, 32 Hz, and 64 Hz. The obtained deflection

error signals are compared with those obtained by using the

PI control, as shown in Fig. 4 (for the total of 10 periods

scanning) and Fig. 5 (for the one period). The experimental

results show that by using the proposed CCF-ILC approach,

much smaller residual error was obtained than that by using

the feedback control only. As shown in Fig. 4 (a), for the scan

rate of 8 Hz, the maximum residual error under the CCF-

ILC approach was 3 times smaller than that under the robust

feedback control or under the PI control (The deflection error

for the first three periods scanning under the CCF-ILC was

obtained by using the robust feedback control only). Such

small residual error was almost maintained when the scan

rate was doubled and quadrupled (see Fig. 4 (b) and (c)).

Even at the scan rate of 64 Hz, the residual error by using

the CCF-ILC approach was still maintained as small as that

by using the feedback control only at 8 times lower scan

rate (compare Fig. 4 (a) with (d)). The proposed CCF-ILC

approach was also used to quantify the dynamics-coupling

caused disturbance (dc(jω) in Eq. 16), by scanning a flat

sample surface at the four different scan rates (as shown in

Fig. 6). Then the obtained dynamics-coupling disturbances

were removed in the estimated sample profile by using

the proposed sample estimator R(jω) (see Sec. III-C). As

shown in Fig. 7, good sample estimation was obtained by

using the proposed estimator even at high-speed (32 Hz
and 64 Hz), whereas the commercial DC-Gain estimation

resulted in large sample distortions.

One point imaging The simulation-generated sample pro-

file mimics a calibration sample on one scanline with sample

slope (which generally exists in real samples), and two

different scanning rates were used in the experiments, 8 Hz
and 64 Hz. Then the CCF-ILC approach was used to

account for such a disturbance trajectory and the ‘sample

profile’ can be estimated by using the observer R(jω) as

discussed in Sec. III-C. For comparison, a PI controller

was also implemented, and the control signals were used

to estimate the sample profile as in commercial AFM. The

experiment results (as shown in Fig. 8) demonstrate that

the proposed CCF-ILC approach can significantly lower the

sample estimation error during high-speed scanning than

what PI feedback control only can do.

V. CONCLUSION

A current cycle feedback iterative learning control approach

was proposed in this article for the z-axis precision posi-

tioning. First, The convergence of this CCF-ILC approach

was investigated. Then the controller design procedure was

proposed: 1) design robust feedback controller using H∞

method; 2) design inversion-based ILC filter using robust-

inversion-based feedforward method; and 3) design the com-

plementary roll-off ILC filter based on the already designed

feedback controller and the inversion-based ILC filter. Fi-

nally, the implementation of the CCF-ILC algorithm on an

AFM system were presented to show that smaller tracking

error and better sample estimation can be achieved by using

CCF-ILC algorithm than feedback only situation.
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