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Abstract— Global asymptotic stability conditions for vector
nonlinear stochastic systems with multiple state delays are
obtained based on the convergence theorem for semimartingale
inequalities, without assuming the Lipschitz conditions for non-
linear drift functions. The Lyapunov-Krasovskii and degenerate
functionals techniques are used. The derived stability conditions
are directly expressed in terms of the system coefficients.
Nontrivial examples of nonlinear systems satisfying the obtained
stability conditions are given.

I. INTRODUCTION

The stability and stabilizabilty problems for time-delay

systems have been extensively studied in recent years due to

direct applicability of the obtained results to various technical

problems ([1], [2], [3]). Initiated in the background works

[4], [5], [6], the stability theory for linear time-delay systems

is now actively being developed. To prove stability results for

a selected class of linear time-delay systems, the Lyapunov-

Krasovskii or Lyapunov-Razumikhin functionals are applied

in the framework of the Lyapunov direct method. Two types

of stability conditions can be obtained: delay-independent,

establishing stability for all possible delay values, or delay-

dependent, corresponding to some restricted values of delay

shifts. While the first type of conditions is comprehensive

but conservative, the second one is more selective, flexible,

and, as a consequence, preferable. Some examples of delay-

dependent stability conditions can be found in ([7], [8], [9],

[10], [11], [12], [13], [14]) for various deterministic linear

time-delay systems and in [15], [16], [17], [18], [19] for

stochastic ones. Note that it is frequently needed to make

a special transformation of an original time-delay system to

obtain such stability conditions. Virtually all known results

involving delay-dependent stability conditions have been

obtained for linear time-delay systems, with certain or even

uncertain coefficients.

This paper concentrates on design of the stability condi-

tions for vector nonlinear stochastic time-delay systems gov-

erned by multidimensional nonlinear Ito differential equa-

tions with multiple state delays and a nontrivial diffusion

term. To obtain the results, a modified Lyapunov-Krasovskii

functional, known as degenerate functional, is employed,

which was introduced and described in details in [4], [5].

Applications of degenerate functionals for various classes of

deterministic functional-differential equations can be found
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in [4], [5], [6]. In [20], the degenerate functionals are used

for obtaining delay-dependent stability conditions for deter-

ministic scalar delay-differential equations. This paper gen-

eralizes the result of [20] to vector stochastic nonlinear time-

delay systems. The convergence theorem for semimartingale

inequalities [21] serves as a key tool for obtaining stability

conditions in terms of stochastic system coefficients, without

any transformation of the original system itself. However,

some conditions in this paper are more restrictive than those

in [20], because of the nature of the solutions of stochastic

Ito equations. Even small initial values cannot guarantee that

solutions to stochastic Ito equation with nontrivial diffusion

will be almost surely (a.s.) bounded on a finite interval.

Therefore, a global linear growth condition for nonlinear drift

functions is used in this paper instead of a local one in [20].

Nonetheless, a significant advance reached in this paper in

comparison to [20] is elimination of the Lipschitz condition

for nonlinear drift functions. Similar delay-dependent sta-

bility conditions for discrete-time systems can be found in

[22]. Finally note that design of a stabilizing controller for a

class of nonlinear stochastic systems, based on the stability

conditions given in this paper, would be a direct application

of the obtained results (see [10] for a similar scheme of

stabilizing controller design for linear systems).

II. BASIC DEFINITIONS AND RESULTS

In this section, some basic definitions and results from

the theory of stochastic processes are briefly reviewed (see

([23], [24] for details). All stochastic variables or processes

are allowed to be multi-dimensional (stochastic vector or

vector processes), for which equalities and inequalities are

regarded component-wisely. The following notation is used:

xT means the transpose of a vector x, |x| =
√

(xT x) denotes

the Euclidean 2-norm of a vector x, and |σ | denotes the

Euclidean 2-norm of a matrix σ , i.e., the sum of squares of

all matrix entries.

Let (Ω,F,P) be a complete probability space with a non-

decreasing right-continuous family of σ -algebras (filtrations)

F = {Ft}t≥t0 . A stochastic process Mt is said to be an Ft -

martingale, if E|Mt | < ∞ and E
(

Mt

∣

∣Fs

)

= Ms for all t >
s ≥ t0. A stochastic process is called a semimartingale if it

admits the representation Xt = Xt0 + Mt + At , where Mt is a

martingale, Mt0 = 0, and At is a process with almost surely

(a.s.) bounded variation, At0 = 0, Xt0 is a random variable.

The following lemma, originally proved in [21], presents

a modification of the martingale convergence theorems (cf.

[23]) in terms of inequalities, which plays a key role in

establishing the asymptotic stability conditions.
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Lemma 1. Let A1, A2, B1, B2 be almost sure (a.s.) non-

decreasing processes with B1≤A1, B2≥A2 and A = B1−B2.

Let also Z = Zt0 +A+M be a non-negative semimartingale.

Then, a.s.
{

ω : A1
∞ < ∞

}

⊆ {Z →}∩
{

ω : A2
∞ < ∞

}

, (1)

where {Z →} denotes the set of all ω ∈ Ω for which Z∞ =
lim
t→∞

Zt exists and is finite.

Remark 1. In this paper, the notation x(t) is used for

a value of any stochastic process (other than a Wiener

process wt ) at a moment t, although the notation xt is

commonly accepted for this purpose in the literature on

stochastic processes. This enables one to distinguish between

the pointwise value x(t) of a stochastic process and its history

up to the moment t, which is denoted by xt , xt(s) = x(s),
s ≤ t, as commonly accepted in the literature on time delay

systems.

The space C[a,b] of continuous vector functions u(s) ∈ Rn

in the interval [a,b] is defined as

C[a,b] = {u : [a,b] → Rn | u(s) is continuous for any s ∈ [a,b],

with the norm ‖u‖C[a,b]
= sup

1≤k≤n

sup
a≤s≤b

|uk(s)| < ∞}.

III. STABILITY CONDITIONS

In this section, the asymptotic stability problem is consid-

ered for a state x(t)∈Rn satisfying a system of Ito stochastic

nonlinear differential equations with several nonlinear func-

tions Ni(u) ∈ Rn, i = 1, . . . ,m, and multiple discrete delays

hi > 0

dx(t) = −
m

∑
i=1

aiNi(x(t))dt −
m

∑
i=1

biNi(x(t −hi))dt +

σ(t,xt)dwt , t ≥ t0, x(t) = φ(t), t ∈ [t0 −h, t0], (2)

where φ(t) ∈ Rn is an initial continuous function defined

on [t0 − h, t0], h = max(h1, . . . ,hm), and wt ∈ Rp is a vec-

tor Wiener process with independent components, i.e., a

stochastic process whose components are scalar independent

standard Wiener processes. The diffusion matrix σ(t,xt) is

of dimension n× p, and coefficients ai and bi, i = 1, . . . ,m,

are scalar constants.

The equation (2) is equivalent to the following equation

d[x(t)−
m

∑
i=1

bi

∫ t

t−hi

Ni(x(θ))dθ ]

= −
m

∑
i=1

(ai +bi)Ni(x(t))dt +σ(t,xt)dwt , t ≥ t0,

x(t) = φ(t), t ∈ [t0 −h, t0]. (3)

Sometimes, the equation (3) is called a neutral type equation,

since it contains the unknown function evaluated in some

points θ ≤ t under the sign of differential.

The functions Ni(u), i = 1, . . . ,m, in the equations (2),(3)

are assumed to satisfy the sector-like condition

uT Ni(u) > 0, for any u ∈ Rn, u 6= 0, Ni(0) = 0. (4)

The first part of this condition, which should hold for any

real nonzero value u = x(t) or u = x(t − hi), i = 1, . . . ,m,

rules out some unstable (for a nonzero initial function)

systems, such as dx(t) = x(t)dt, dx(t) = x(t − h)xT (t −
h)x(t − h)dt, or not asymptotically stable systems, such as

dx(t) = sin(x(t)xT (t)x(t))dt. Nonetheless, a modified sin

function would satisfy the condition (4), as shown further

in Example 5.

Next, assume that there exist such constants Ki,γ
(i)
1 ,γ

(i)
2 >

0, i = 1, . . . ,m, and a function γ : [t0,∞) → R+ that the

following conditions are satisfied

|Ni(u)|2 ≤ Kiu
T Ni(u), for any u ∈ Rn; (5)

tr(σ(t,xt)σ
T (t,xt)) ≤

m

∑
k=1

γ
(k)
1 |Nk(x(t))|2

+
m

∑
k=1

γ
(k)
2 |Nk(x(t −hk))|2 + γ(t) (6)

for any xt ∈C[t0−h,t];

ai +bi > 0; (7)

α2 =
m

∑
i=1

|bi|hiKi < 1; (8)

βk = (
|bk|hk

2(ak +bk)
(

m

∑
i=1

(ai +bi))

+
1

2

m

∑
i=1

|bi|hi +
γ

(k)
1 + γ

(k)
2

2(ak +bk)
)Kk < 1; (9)

∫ ∞

t0

γ(s)ds < ∞. (10)

Discussing the conditions (5)-(10), note that the deter-

ministic system obtained by setting σ(t,xt) = 0 would be

asymptotically stable in view of Theorem 1. The conditions

(6) and (10) imply that the diffusion term σ(t,xt) converges

to zero as time tends to infinity, i.e., the system (2) becomes

deterministic at the infinity, although remains stochastic for

any fixed large t. The condition (7) indicates that the ”total”

summarized coefficient of the current and delayed values for

each function Ni should have a strictly negative value, which

assures asymptotic stability of the corresponding system

mode. Note that ai and bi cannot be simultaneously equal

to zeros, since the corresponding mode could be stable but

not asymptotically stable, as for the system dx(t) = 0, or

even unstable, as for the system dx(t) = K(t)dw(t), where

K(t) = 1 for t0 ≤ t ≤ T , T is a sufficiently large time moment,

and K(t) = 0 for t > T .

Remark 2. If Ki ≡ K, γ
(i)
1 = γ

(i)
2 = 0 for all i = 1, . . . ,m,

it is not difficult to show that the condition (9) implies (8).

Indeed, the condition (9) gives

|bk|hkK

2(ak +bk)

(

m

∑
i=1

(ai +bi)

)

+
1

2

m

∑
i=1

|bi|hiK < 1,

|bk|hkK

(

m

∑
i=1

(ai +bi)

)

+

(

m

∑
i=1

|bi|hiK

)

(ak +bk)

< 2(ak +bk), and

m

∑
k=1

|bk|hkK

(

m

∑
I=1

(ai +bi)

)

+

(

m

∑
i=1

|bi|hiK

)

m

∑
k=1

(ak +bk)
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< 2
m

∑
k=1

(ak +bk).

Dividing the latter by ∑m
i=1(ai +bi) yields

m

∑
k=1

|bk|hkK +
m

∑
i=1

|bi|hiK < 2.

For all t ≥ t0 and xt ∈C[t0−h,t], x(s) = φ(s), s ∈ [t0 −h, t0],
the degenerate functional is defined

Ȳ (t,xt) = x(t)−
m

∑
i=1

bi

∫ t

t−hi

Ni(x(θ))dθ . (11)

The functional Y (t,xt) is not negative but also is not positive

definite. However, for every t ≥ t0, the norm ‖Y (•,x•)‖C[t0,t]

can be bounded from the below by the norm ‖x‖C[t0−h,t]
, as

shown in the following Lemma 2.

The next lemma and following theorem establish asymp-

totic stability conditions for solutions of the equation (3).

Lemma 2. Let conditions (5), (9) be satisfied and α2 =

∑m
i=1 |bi|hiKi < 1. Then, for t ≥ t0 and xt ∈ C[t0−h,t], x(s) =

φ(s), s ∈ [t0 − h, t0], the state trajectory norm satisfies the

inequality

‖x‖C[t0−h,t]
≤ 1

1−α2

[

‖Ȳ (•,x•)‖C[t0,t]
+‖φ‖C[t0−h,t0 ]

]

. (12)

Proof.

‖x(s)‖C[t0 ,t]
= ‖x(s)−

m

∑
i=1

bi

∫ t

t−hi

Ni(x(θ))dθ

+
m

∑
i=1

bi

∫ t

t−hi

Ni(x(θ))dθ‖C[t0 ,t]

≤ ‖Ȳ (s,xs)‖C[t0 ,t]
+

m

∑
i=1

|bi|‖
∫ t

t−hi

N(x(θ))dθ‖C[t0 ,t]

≤ ‖Ȳ (•,x•)‖C[t0 ,t]
+

m

∑
i=1

|bi|hiKi‖x‖C[t0−hi,t]
.

Then,

‖x‖C[t0−h,t]
≤ ‖x‖C[t0,t]

+‖φ‖C[t0−h,t0 ]

≤ ‖Ȳ (•,x•)‖C[t0 ,t]
+α2‖x‖C[t0−h,t]

+‖φ‖C[t0−h,t0 ]
,

which implies (12).

Theorem 1. Let conditions (4)-(10) be satisfied. Then,

lim
t→+∞

x(t) = 0 holds a.s. for all solutions x of the equation

(2).

Proof. Define functional V = V (x(t), t) by the formula

V = |Ȳ |2 +V1 +V2,

V1 =

(

m

∑
i=1

(ai +bi)

)

m

∑
k=1

|bk|
∫ t

t−hk

ds

∫ t

s
|Nk(x(θ))|2dθ ,

V2 =
m

∑
k=1

γ
(k)
2

∫ t

t−hk

|Nk(x(θ))|2dθ ,

where Ȳ is given by (11).

Applying Ito formula to the V (x(t), t) along the trajectories

of solutions of the equation (3) yields

V (x(t), t) = V (0, t0)+
∫ t

t0

F̄sds+ M̄t ,

with V (0, t0) = 0,

F̄t = −2[xT (t)−
m

∑
i=1

bi

∫ t

t−hi

NT
i (x(θ))dθ ]

×
m

∑
k=1

(ak +bk)Nk(x(t))+ tr(σ(t,xt)σ
T (t,xt))

+
m

∑
i=1

(ai +bi)(
m

∑
k=1

|bk|[hk|Nk(x(t))|2

−
∫ t

t−hk

|Nk(x(θ))|2dθ ])

+
m

∑
k=1

γ
(k)
2 [|Nk(x(t))|2 −|Nk(x(t −hk))|2] (13)

and

dM̄(t) = 2

[

xT (t)−
m

∑
i=1

bi

∫ t

t−hi

NT
i (x(θ))dθ

]

σ(t,xt)dwt .

Applying the Minkowski’s inequality yields

2(
m

∑
i=1

|bi|
∫ t

t−hi

NT
i (x(θ))dθ)(

m

∑
k=1

(ak +bk)Nk(x(t)))

≤
m

∑
i=1

m

∑
k=1

(ak +bk)|bi|[hi|Nk(x(t))|2

+
∫ t

t−hi

|Ni(x(θ))|2dθ ]. (14)

Using (14) in (13) leads to

Ft ≤−2
m

∑
k=1

(ak +bk)x
T (t)Nk(x(t))

+
m

∑
i=1

|bi|hi

m

∑
k=1

(ak +bk)|Nk(x(t))|2

+
m

∑
i=1

m

∑
k=1

(ak +bk)|bi|
∫ t

t−hi

|Ni(x(θ))|2dθ

+(
m

∑
i=1

(ai +bi))
m

∑
k=1

|bk|hk|Nk(x(t))|2

−
m

∑
i=1

(ai +bi)
m

∑
k=1

|bk|
∫ t

t−hk

|Nk(x(θ))|2dθ

+
m

∑
k=1

γ
(k)
1 |Nk(x(t))|2 +

m

∑
k=1

γ
(k)
2 |Nk(x(t −hk))|2

+γ(t)+
m

∑
k=1

γ
(k)
2 [|Nk(x(t))|2 −|Nk(x(t −hk))|2]

≤−2
m

∑
k=1

(ak +bk)x
T (t)Nk(x(t))

+(
m

∑
i=1

(ai +bi))
m

∑
k=1

|bk|hk|Nk(x(t))|2

+
m

∑
i=1

|bi|hi

m

∑
k=1

(ak +bk)|Nk(x(t))|2

+
m

∑
k=1

(γ
(k)
1 + γ

(k)
2 )|Nk(x(t))|2 + γ(t)

≤−2
m

∑
k=1

(ak +bk)[1− (
|bk|hk

2(ak +bk)

m

∑
i=1

(ai +bi)
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+
1

2

m

∑
i=1

|bi|hi +
γ

(k)
1 + γ

(k)
2

2(ak +bk)
)]KkxT (t)Nk(x(t))+ γ(t)

≤−2
m

∑
k=1

(ak +bk)[1− (
|bk|hk

2(ak +bk)
(

m

∑
i=1

(ai +bi))

+
1

2

m

∑
i=1

|bi|hi +
γ

(k)
1 + γ

(k)
2

2(ak +bk)
)]KkxT (t)Nk(x(t))+ γ(t)

≤−2
m

∑
k=1

(ak +bk)[1−βk]x
T (t)Nk(x(t))+ γ(t). (15)

Then,

V (x(t), t) = V (0, t0)+
∫ t

t0

[

F̄s +2
m

∑
k=1

(ak +bk)

×[1−βk]x
T (s)Nk(x(s))

]

ds−2
m

∑
k=1

(ak +bk)[1−βk]

×
∫ t

t0

xT (s)Nk(x(s))ds+ M̄t = V (0, t0)+ B̄1
t − B̄2

t + M̄t ,

where

B̄1
t =

∫ t

t0

max{0, F̄s +2
m

∑
k=1

(ak +bk)[1−βk]x
T (s)Nk(x(s))}ds,

B̄2
t =

∫ t

t0

[2
m

∑
k=1

(ak +bk)[1−βk]x
T (s)Nk(x(s)) (16)

+max{0,−F̄s −2
m

∑
k=1

(ak +bk)[1−βk]x
T (s)Nk(x(s))}]ds.

It is easy to see from (15) and (16) that

B̄1
t ≤ Ā1

t =
∫ t

t0

γ(s)ds,

B̄2
t ≥ Ā2

t = 2
m

∑
k=1

(ak +bk)[1−βk]
∫ t

t0

xT (t)Nk(x(t))dt.

Now, applying Lemma 1 and the inequalities (1) and (10)

implies that P{V →} = 1 and, therefore, P{supt≥t0
Vt <

H} = 1 almost surely for a certain random variable H =
H(ω) < ∞. Next, the definition (13) of the functional V

yields P{supt≥t0
|Yt |2 < H}= 1, P{supt≥t0

(V1)t < H}= 1 and

P{supt≥t0
(V2)t < H} = 1. Finally, applying Lemma 2 (see

(12)) and the inequality (5) implies that a.s.

‖xt‖ ≤
1

1−α2
[‖Y (•,x•)‖C[t0,t]

+‖φ‖C[t0−h,t0 ]
]

≤ 1

1−α2
[H +‖φ‖C[t0−h,t0]

] = H1,

∣

∣Ni(x(t))
∣

∣

2 ≤ Kix
T (t)Ni(x(t)) ≤ Ki‖x(t)‖‖Ni(x(t))‖,

therefore, ‖Ni(x(t))‖ ≤ Ki‖x(t)‖ ≤ KiH1.

Thus,

P{sup
t≥t0

|x|2(t) ≤ H2
1} = 1, P{sup

t≥t0

‖Ni(x(t))‖ ≤ KiH1} = 1.

From (13), V = |Y |2 +V ∗, where V ∗ = V1 +V2. Almost sure

convergence of Vt = V (xt , t), as t → ∞, implies, in particular,

that Vt is a.s. uniformly continuous on [t0,∞). Let us show

now that V ∗
t is also a.s. uniformly continuous on [t0,∞).

Indeed,

(V1)t − (V1)θ = (V1)
′
κ(t −θ),

where κ is a point between t and θ , and

∣

∣(V1)
′
κ

∣

∣ = (
m

∑
i=1

(ai +bi))
m

∑
k=1

|bk||hk||Nk(x(κ))|2

−
∫ κ

κ−hk

|Nk(x(θ))|2dθ | ≤ (
m

∑
i=1

(ai +bi))

×
m

∑
k=1

|bk||
∫ κ

κ−hk

(|Nk(x(κ))|2 −|Nk(x(θ))|2)dθ |

≤ (
m

∑
i=1

(ai +bi))
m

∑
k=1

|bk||
∫ κ

κ−hk

K2
k

∣

∣x(κ)− x(θ)
∣

∣

2
dθ |

≤ 4H2
1 (

m

∑
i=1

(ai +bi))(
m

∑
k=1

|bk|hkK2
k ).

Then, a.s.

∣

∣(V1)t − (V1)θ

∣

∣ ≤ 4H2
1

(

m

∑
i=1

(ai +bi)

)(

m

∑
k=1

|bk|hkK2
k

)

|t −θ |.

It means that (V1)t is a.s. uniformly continuous on [t0,∞). To

prove that (V2)t is also a.s. uniformly continuous on [t0,∞),
note that

|(V2)t − (V2)θ | =
m

∑
k=1

γ
(k)
2

×|
∫ t

t−hk

|Nk(x(θ))|2dθ −
∫ θ

θ−hk

|Nk(x(τ))|2dτ|

≤
m

∑
k=1

γ
(k)
2 |

∫ t

t0

|Nk(x(θ))|2dθ −
∫ θ

t0

|Nk(x(τ))|2dτ

−
∫ t−hk

t0

|Nk(x(θ))|2dθ +
∫ θ−hk

t0

|Nk(x(τ))|2dτ|

=
m

∑
k=1

γ
(k)
2 [

θ
∫

t

|Nk(x(τ))|2dτ +

θ−hk
∫

t−hk

|Nk(x(τ))|2dτ]

≤ 2H2
1

m

∑
k=1

γ
(k)
2 K2

k |t −θ |.

Thus, Y 2
t = Vt −V ∗

t has also to be a.s. uniformly continuous

on [t0,∞). The a.s. uniform continuity of x(t) on [t0,∞) can

be obtained from the following inequalities

|x(t)− x(s)| =
∣

∣

∣
x(t)−

m

∑
k=1

[bk

∫ t

t−hk

Nk(x(τ))dτ]− x(s)

+
m

∑
k=1

[bk

∫ s

s−hk

Nk(x(θ))dθ ]+
m

∑
k=1

[bk

∫ t

t−hk

Nk(x(τ))dτ]

−
m

∑
k=1

[bk

∫ s

s−hk

Nk(x(θ))dθ ]
∣

∣

∣
≤ |Y (x(t), t)−Y (x(s),s)|

+
m

∑
k=1

|bk||
∫ t

s
Nk(x(τ))dτ|+

m

∑
k=1

|bk||
∫ t−hk

s−hk

N(x(τ))dτ|

≤ |Y (x(t), t)−Y (x(s),s)|+2H1

m

∑
k=1

[|bk|Kk]|t − s|.
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Moreover, xT (t)Nk(x(t)) is also a.s. uniformly continuous on

[t0,∞) for any k = 1, . . . ,m. Indeed, for any t,θ ≥ t0, a.s.

|xT (t)Nk(x(t))− xT (θ)Nk(x(θ))| ≤ |Nk(x(t))||x(t)− x(θ)|
+|x(θ)||Nk(x(t))−Nk(x(θ))| ≤ 2H1Kk|x(t)− x(θ)|.

Suppose now that P

{

lim sup
t→∞

|x(t)| = ζ0(ω) > 0

}

= p0 >

0. In view of continuity of a function Ni, i = 1, . . . ,m,

and the condition (4), there exist a.s. such a finite random

variable ζ1(ω) > 0 and a sequence of random moments

tk = tk(ω)→ ∞, as k → ∞, that P(Ω1) = p0 > 0, where Ω1 =
{ω: |xT (tk)Ni(x(tk))|(ω) > ζ1(ω) > 0}. Since xT (t)Ni(x(t)) is

a.s. uniformly continuous on [t0,∞), for ε = ε(ω) = ζ1(ω)/2,

there exists δ = δ (ω) such that

|xT (tk)Ni(x(tk))− xT (s)Ni(x(s))| ≤ ε = ζ1(ω)/2,

for ω ∈ Ω1 and |s− tk| ≤ δ . Then, for ω ∈ Ω1 and s ∈ [tk −
δ , tk +δ ], the following inequality is obtained

|xT (s)Ni(x(s))| ≥ |xT (tk)Ni(x(tk))|
−|xT (tk)Ni(x(tk))− xT (s)Ni(x(s))| ≥ ζ1(ω)/2.

Without loss of generality, suppose that tk+1(ω)− tk(ω) >
2δ (ω) for any ω ∈ Ω1. Let k(n) be the number of elements

in the sequence {tk} belonging to the interval [t0,n]. Applying

inequality (17) implies, for ω ∈ Ω1, that

∫ n

t0

xT (s)Ni(x(s))ds ≥ ∑
k: t0≤tk+δ≤n

∫ tk+δ

tk−δ
xT (s)Ni(x(s))ds

≥ ζ1

2
∑

k: t0≤tk+δ≤n

∫ tk+δ

tk−δ
ds = δζ1 ∑

k≤k(n)

1 = k(n)δζ1 → ∞,

as n → ∞, since k(n) → ∞ as n → ∞. Hence, P{A2
∞ = ∞} ≥

p0 > 0, which contradicts (1). Theorem 1 is proved.

The following examples illustrate applicability of the

Theorem 1. The state equation in Example 1 contains two

different nonlinear functions and two delays, as well as

the linear term with a positive coefficient. Examples 2–4

present various nonlinear vector functions N(x), satisfying

the condition (5). This illustrates viability of the condition

(5) in the multi-dimensional case.

Example 1. Consider the nonlinear system (t0 = 0)

dx(t) = −b1
x5(t −h1)

1+ x4(t −h1)
dt −b2x(t −h2)dt

+0.3x(t)dt +

√

(1+ x2(t))

1+ t
dwt . (17)

For a sufficiently large T and all t > T , the conditions of

Theorem 1 can be satisfied. Indeed, the conditions (4)-(5)

and (7) are satisfied for N1(u) = u5

1+u4 , N2(u) = u, K1 =
K2 = 1, b1 = b2 = 0.5, a1 = 0, a2 = −0.3, h1 = h2 = 0.4.

The condition (8) is satisfied, since K1b1h1 +K2b2h2 = 0.4.

Finally, taking into account that

β1 =

(

|b1|h1

2(a1 +b1)

(

2

∑
i=1

(ai +bi)

)

+
1

2

2

∑
i=1

|bi|hi

)

K1 = 0.55

and

β2 =

(

|b2|h2

2(a2 +b2)

(

2

∑
i=1

(ai +bi)

)

+
1

2

2

∑
i=1

|bi|hi

)

K2 = 0.34,

the conditions (6) and (9) are also satisfied for γ
(1)
2 = γ

(2)
2 =

γ
(1)
1 = 0, γ(t) = 1

(1+t)2 and γ
(2)
1 = 1

(1+t)2 . Since the equation

(17) has a unique solution on [−h,∞), all the conditions, in

particular, (6) and (9), can be verified only for sufficiently

large t > T . Then, the coefficient γ
(2)
1 can be taken arbitrarily

small.

Example 2. Let constants C,A > 0 be such that for all

x ∈ Rn, N(x) ∈ Rn, n ≥ 2,

|N(x)|2 ≤C|x|2 and xT N(x) ≥ A|x|2. (18)

Then, the condition (5) holds for K = C
A

.

Example 3. Let (Ni)
2
k(x) ≤ Kikx2

k , and xkNk(x) > 0 for all

xk 6= 0, x ∈ Rn, k = 1,2, . . . ,n, for any i = 1,2, . . . ,m, where

Ki > 0 are positive constants. Then, for k = 1,2 . . .n and i =
1,2, . . . ,m,

(Ni)
2
k(x) = (Ni)k(Ni)k ≤

√

Kikxk(Ni)k(x) and

|Ni(x)|2 ≤
n

∑
k=1

√

Kikxk(Ni)k(x)≤Ki

n

∑
k=1

xk(Ni)k(x)= KxT Ni(x),

where Ki = maxk=1,2,...,n{
√

Kik}. Thus, the condition (5)

holds.

Example 4. Let fi : R→R be scalar continuous functions,

i = 1,2, and

1

2
|u| ≤ | fi(u)| ≤ |u|, u fi(u) > 0, (19)

for all u 6= 0, u ∈ R, i = 1,2.

Let K = 3 and −0.36 < c < 0.224. For all x = (x1,x2) ∈ R2,

define

N(x) =

(

f1(x1)+ cx2

cx1 + f2(x2)

)

. (20)

Since

|N(x)|2 = f 2
1 (x1)+ c2x2

2 +2cx2 f1(x1)

+ f 2
2 (x2)+ c2x2

1 +2cx1 f2(x2)

≤
(

1+ c2
)(

x2
1 + x2

2

)

+2c
[

x2 f1(x1)+ x1 f2(x2)
]

and xT N(x) = x1 f1(x1)+2cx1x2 + x2 f2(x2)
≥ 1

2

(

x2
1 + x2

2

)

+2cx1x2, then

KxT N(x)−|N(x)|2 ≥ (
K

2
−1− c2)

(

x2
1 + x2

2

)

+2c
[

Kx1x2 − x2 f1(x1)− x1 f2(x2)
]

≥
{

(K
2
−1− c2)

(

x2
1 + x2

2

)

+2cx1x2(K −2), if x1x2 > 0;

(K
2
−1− c2)

(

x2
1 + x2

2

)

+2cx1x2(K −1), if x1x2 ≤ 0.

For K = 3, the last inequality takes the form

KxT N(x)−|N(x)|2

≥
{

( 1
2
− c2)

(

x2
1 + x2

2

)

+2cx1x2, if x1x2 > 0;

( 1
2
− c2)

(

x2
1 + x2

2

)

+4cx1x2, if x1x2 ≤ 0.
(21)
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It can be readily verified from (21) that the condition (5)

holds for the function N(x) defined by (20) and (19), if K = 3

and −0.36 < c < 0.224.

The following two examples are related to the case of one

state delay and one nonlinear function in the state equation.

In the second example, the proper dynamics of the system

does not depend on the current value of the state variable but

on its value at a certain previous point t −h, i.e., a = 0. In

the first example, the term N(x(t)) is present with positive

coefficient a = b
2
.

Example 5.

dx(t) = −bN(x(t −h))dt +
b

2
N(x(t))dt +

1

1+ t
dwt , t0 = 0,

where the function N is defined as follows

N(u) =







sinu, if |u| ≤ π
2
,

u− π
2

+1, when u ≥ π
2
,

u+ π
2
−1, when u ≤−π

2
.

It is easy to see that y = N(x) satisfies the conditions (4)-(5)

with K = 1. The conditions (6)-(10) are also satisfied with

b > 0, h ≥ 0, such that bh < 1, γ1 = γ2 = 0, γ(t) = 1
(1+t)2 .

Example 6.

dx(t) = −b
x5(t −h)

1+ x4(t −h)
dt +

1

1+ t
dwt , t0 = 0.

The function N(u) = u5

1+u4 satisfies conditions (4)-(5) with

K = 1. The conditions (6)-(7) are also satisfied with b > 0,

h ≥ 0, such that bh < 1, γ1 = γ2 = 0, γ(t) = 1
(1+t)2 .

Remark 3. In particular, Example 2 demonstrates that the

case of an essentially nonlinear function N(u) for the small u

is also covered by Theorem 1. In Example 3, N(u) behaviors

like u5 as u → 0, lim
u→0

N(u)

u5 = 1.

IV. CONCLUSIONS

The asymptotic stability problem has been considered for

a vector nonlinear stochastic system governed by a multidi-

mensional Ito differential equation with multiple drift terms,

with and without state delays, and a nontrivial diffusion. No

Lipshitz condition has been assumed for the nonlinear drift

terms in the system. The global almost sure asymptotic sta-

bility conditions have been obtained and directly expressed in

terms of the system coefficients. The Lyapunov-Krasovskii

and degenerate functionals techniques have been used for

establishing asymptotic stability in the framework of the

Lyapunov direct method. The convergence theorem for semi-

martingale inequalities has served as a key tool for obtaining

stability conditions in terms of stochastic system coefficients,

without any transformation of the original system itself. The

paper has introduced a systematic approach which would

be applicable to design of the stability conditions for other

classes of vector nonlinear stochastic systems with state

delays.
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