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1Abstract - Accurate modeling of the effects of nutrient and 
activity variables on blood glucose can make a major impact in 
reducing the complications of diabetes for insulin dependent 
type 1 and 2 diabetics. These models can be used to design 
feedforward controllers that can revolutionize blood glucose 
control. However, to achieve this objective, there are several 
critical issues in measurement, data collection, and modeling 
that need to be resolved. This work discusses and presents 
solutions to resolving these issues. 
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I.   INTRODUCTION 

The importance of tight glucose control in reducing the 
complications associated with diabetes is widely recognized 
[1]. The primary ways that glucose has been managed 
include diet and exercise, stress management, insulin 
injections, and different types of drugs. In most cases control 
has been open loop requiring diabetics to use test strip 
meters to monitor glucose behavior from just a few readings 
per day. However, recent technological advancements have 
produced accurate glucose monitors that measures as often 
as every five minutes, twenty four hours a day [2], and thus 
provide a critical component in the realization of continuous 
closed loop control for insulin dependent diabetic people. 
Therefore, recent research has focused on using this 
advancement in measurement technology in feedback 
control or in the development and exploitation of one-step 
ahead prediction (OSAP) in model predictive control 
(MPC). While earlier studies looked at standard feedback 
controllers [3], several recent studies have considered 
advanced control techniques like model based controllers 
[4], robust tracking [5], run-to-run control [6], and the feed 
forward control for carbohydrate content of the meals [7]. 
But a major limitation of all these studies is that the control 
strategies have been developed and tested only in simulation 
(i.e., not using real subjects). While such studies may lead to 
significant advancements in tightening glucose behavior in 
the years to come, accurate anticipatory understanding of the 
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complex effects of food as well as physical and emotional 
activity on blood glucose can pave the way for further 
tightening of blood glucose via feedforward control. Thus, 
this article discusses critical issues in model development for 
disturbance variables and presents results of a recently 
developed model involving 11 inputs for a type 2 diabetic 
(TTD) subject. 
 

II.   ISSUES AND BACKGROUND 

Our basic motivation for the promotion of feedforward 
control is a belief that feedback control and even MPC will 
not completely provide the necessary control performance to 
maintain adequate glucose levels in insulin dependent 
diabetic subjects. The ability to proactively compensate for 
variables that change glucose levels such as food 
consumption, physical activity and stress exists only in feed 
forward control. When precise models for the effects of all 
the variables on glucose are not available, a combination of 
feedback and feedforward control may be preferable. 
However, to implement feedforward control, these types of 
variables need to be measured or inferred from other 
measurements and accurately modeled in terms of their 
complex effects on blood glucose. To this end we have 
divided our discussion of the critical issues for successful 
feedforward control into two categories. These categories 
are the data requirements and the modeling requirements. 
 There are several attributes the data must have for 
accurate modeling for feedforward control. First, since this 
is dynamic modeling, it is necessary to have accurate and 
frequent measurements of the glucose concentration. This 
requirement suggests that lancet test strip sampling will not 
be practical since it cannot produce more than a few values 
daily. However, recent technology has produced accurate 
devices such as the MiniMed Continuous Glucose Monitor, 
MMT-7102® (Medtronic, Minneapolis, Minnesota), with 
sampling rates as often as every five minutes, which is 
adequate for dynamic glucose modeling, as we show later.   

Secondly, a set of noninvasive variables need to be 
defined that provides adequate information to explain a 
sufficient amount of the variation in glucose to be useful. 
Our experience tells us that nutrient components alone will 
not meet this requirement as we will demonstrate in the next 
section in a type 2 diabetic modeling case. While food 
consumption has a significant effect on blood glucose, it 
does not account for major behaviors particularly during 
times of low food consumption such as during sleep. 
Furthermore, stress and activity can have as great an impact 
on glucose levels as eating. Hence, an adequate data set must 
not only contain frequent and accurate sampling of food but 
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also variables that measure activity and stress levels. A 
device that has much promise in meeting this requirement 
for the latter two is the SenseWear® Pro3 body monitoring 
system (BodyMedia Inc., Pittsburgh, PA). This device 
utilizes pattern detection algorithms [8,9] that employ 
physiologic signals from a unique combination of sensors. 
The raw physiological data include movement, heat flux, 
skin temperature, near body temperature, and galvanic skin 
response (GSR). It collects data using five sensors: heat flux, 
skin temperature, near body temperature, GSR, and an 
accelerometer (2-axis). The heat flux sensor measures the 
amount of heat being dissipated from the body by measuring 
the heat loss along a thermally conductive path between the 
skin and a vent on the side of the armband.  Skin 
temperature and near-armband temperature are also 
measured by sensitive thermistors. The armband also 
measures GSR, which is the conductivity of the wearer’s 
skin that varies due to physical and emotional stimuli.  A 
two-axis accelerometer tracks the movement of the upper 
arm and provides information about body position [8, 9]. 
The study presented in the next section will demonstrate the 
effectiveness of this device to meet the requirements for 
activity and stress variables. 

Thirdly, to adequately cover the response space that a 
subject experiences, the input space must adequately cover 
the changes experienced by the subject. This means that data 
must be collected under free-living conditions and for a 
prolonged period of time. Our experience has suggested that 
this period is of the order of weeks and is another reason for 
supporting free-living data collection since it would be 
difficult for anyone to follow a rigid meal and activity 
protocol for weeks. Moreover, there are other inputs, such as 
stress, that are uncontrollable and thereby likely to have 
significant influence in a study involving weeks of data 
collection. Furthermore, a prescribed (i.e., experimentally 
designed) set of input changes may not adequately cover the 
experiences of the subject and thus,  further supporting our 
premise that a free-living study appears to be the only 
practical data collection approach over weeks.  

Finally, the modeling method must be able to achieve 
high cause and effect accuracy from free-living data with 
highly nonlinear and interactive behavior. Free-living data 
have the same nature as chemical plant data where inputs 
can be highly correlated (e.g., carbohydrates and fats) and 
the inputs contain limited ranges to keep the output under 
control, that is, as close to the target as possible. Thus, the 
signal-to-noise ratio is suppressed and kept to a minimum. In 
the world of nonlinear dynamic modeling (apart from 
theoretical modeling) there are really only a few general 
approaches. In applications with constant and frequent 
sampling rate, discrete-time (DT) modeling dominates. All 
of the DT approaches that we are aware of (except the one 
we will propose in this work) use lag variables which has a 
major limitation of large parameter sets. The approaches 
with the linear coefficients can be placed under the general 
class of nonlinear autoregressive moving average models 
with exogenous variables (NARMAX) [10]. This modeling 
approach has two severe drawbacks. First, because the 
model form is linear in parameters, the values of the fitted 

model coefficients are tied to the correlation structure of the 
input. Thus, any change in the input correlation structure can 
produce large prediction errors. Furthermore, the model can 
produce highly incorrect results for independent (i.e. 
uncorrelated) changes in the inputs, which makes it 
impractical for feedforward control. The second drawback is 
the strong natural correlation of common lag variables which 
causes ill conditioning and inflates estimation errors. 
Moreover, if linear dependencies are too high, lags are 
forced out of the model by computer packages to enable the 
determination of a solution. Thus, particularly for cases with 
a large number of inputs, it may not be possible to model all 
the dynamic behavior and thereby retain all critical 
components. We illustrate these limitations in an example 
shortly. 

 The popular empirical approach with nonlinear 
coefficients is the artificial neural network (ANN) [11]. The 
major limitation of ANN is the lack of phenomenological 
structure which is crucial when fitting nonlinear behavior. 
As far as mapping a set of input changes under adjustable 
parameterization (i.e., training) to a point on the response 
surface, ANN is excellent, as supported by its success in 
pattern recognition applications. However, for untrained 
input combinations, the use of highly nonlinear transfer 
functions can cause extremely large prediction errors caused 
by the extrapolation phenomenon of nonlinear models. Thus, 
there is no doubt that ANN can train well but it is highly 
doubtful that a trained ANN model could perform well for 
input combinations not used in training. We will illustrate 
this limitation of ANN in the example to be given later in 
this section. 

The only approach that we have found with cause and 
effect capability under free-living data collection is Wiener 
modeling as Rollins et al. [12] applied it using the method of 
Bhandari and Rollins [13] for continuous-time (CT) 
modeling and Rollins and Bhandari [14] for DT modeling. 
Wiener modeling falls under the general class of block-
oriented modeling and specifically is characterized by  each 
input passing through its own linear dynamic block (i.e., 
function) with the outputs from these blocks being collected 
and passing through a nonlinear static block [13]. We will 
use the following mathematical Wiener modeling process 
with two-inputs and one-output to illustrate the unique 
strengths of this approach and the weaknesses of NARMAX 
(and related methods) and ANN discussed above. 
   True Linear Dynamic Functions: 
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1 = 10; 2 = 20; 1 = 0.5; 2 = 0.9 1a = 3; 2a = -2;    and i2 = 
1 – i1 – i2 – i1 (see [10]), where t = 1 is the sampling 
time; and Corr(x1,t, x,2,t) = 0.994 is the correlation coefficient 
of input variables 1 and 2 at time t. Note that this true 
Wiener modeling process depends on only two inputs, x1 and 
x2, that are highly correlated. In Eq. 1, vi,t represents the 
response of a linear second order dynamic process in 
discrete form and Eqs. 3-5 give its parameters in terms of the 
dynamic parameters from a second order CT process using 
backward difference approximations for the derivative (see 
[12] for the derivation).  

Equations 1-5 are in a form that allows us to present our 
proposed cause and effect Wiener model development 
approach from free-living data. To obtain unique parameter 
estimates and thus, have cause and effect predictability, the 
parameter estimates for a model must be unaffected by the 
correlated dependence of inputs. This can only happen if the 
terms in a model are uncorrelated. Terms will be 
uncorrelated if they are uncorrelated with respect to changes 
in parameters or changes in variables. Our proposed 
approach uses non-linear regression to directly estimate the 
dynamic parameters and obtains Eq. 1 via Eqs. 3-5. Thus, in 
the way we estimate the dynamic parameters, the terms in 
Eq. 1 are uncorrelated because each of these terms have 
separate nonlinear dependence on these parameters. Also, in 
this approach, the coefficients in Eq. 2 are estimated 
simultaneously with the dynamic parameters. The terms in 
Eq. 2 are uncorrelated because the vi’s have their own 
independent (and often periodic) dynamic behavior.  
Consequently, our proposed approach is a powerful model 
building technique since it is uniquely able to obtain cause 
and effect models under conditions of highly correlated 
inputs. Moreover, our approach provides a uniquely 
powerful way to develop cause and effect models from 
highly correlated plant data in addition to this application of 
free-living data.   

In contrast, NARMAX models do not have this property 
of uncorrelated terms because the models are linear in 
parameters. This can be seen by substituting Eq. 1 into Eq. 2, 
to give the NARMAX form for the true model as: 
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In Eq. 6 the linear coefficient are estimated directly. As a 
result, these terms are correlated in two ways. First, since lag 
variables are inherently correlated with their family of lag 
variables, all the terms with the same letter for the 
coefficients (e.g., a1 and a2) in Eq. 6 will be correlated. 
Secondly, because the inputs are correlated, terms with 
common inputs will be correlated (e.g.,  and 

). Note that since Eq. 6 was derived from Eqs. 1-2 
(the derivation is not shown due to space constraints), its 
form is exact for this mathematical example and gives the 
parameterization and the lags under NARMAX modeling. 
This derivation reveals other severe drawbacks of 
NARMAX modeling. First, even for a small number of 
inputs (in this case two), the number of terms in a 
NARMAX model can be quite large (in this case 60). 
Secondly, since the terms can be significantly correlated, the 
potential for numerical instability due to linear dependencies 
is great which means that to reach a numerical result, some 
of the terms will likely have to be removed. Finally, in the 
usual way NARMAX modeling is applied, the number of 
lags for each set of variables is not known and usually 
determined by trial and error, which can be quite time 
consuming.  

111 t,xb
2

111 t,xd

In this study we also evaluated ANN with the same terms 
as we derived for the NARMAX model. The model is a 
feedforward ANN model with sixty input nodes (one for 
each lag in Eq. 6), one hidden layer, and logistic transfer 
functions [15] (the equations are not shown because of space 
limitations). 

To evaluate cause and effect capability of a model, it is 
important to test it with a sequence of data under a different 
input correlation structure. Since we are modeling under 
correlated inputs, we train the model under a highly 
correlated input structure (i.e., Corr(x1,t, x,2,t) = 0.994) and 
test it under a very weak correlation structure with Corr(x1,t, 
x,2,t) 0 to demonstrate how well the model has captured 
independent input behavior. We now present the results of 
this comparative study of the proposed Wiener approach and 
the NARMAX and ANN approaches. 

 
III.   RESULTS OF THE SIMULATED DATA STUDY 

The input sequence for this study is presented in Fig. 1. 
The changes mimic eating meals as their levels change for a 
period and then drop to zero a number of times where x1 and 
x2 are meant to mimic carbohydrates and fats, respectively. 
We also show the dynamic responses (i.e., the vi’s) that 
correspond to each input. These responses provide 
information on the periodicity of the inputs as well as their 
residence times. For example, Fig. 1 shows that x1 is more 
oscillatory but that x2 has the higher residence time. This is 
also revealed by the values of the parameters which are 
estimated very accurately by the proposed approach. The 
high correlation of the inputs for the training data is also 
very apparent as well as the lack of correlation for the test 
data. Note also the independent relationship of v1 and v2 due 
to their different dynamic behavior. All the models fit the 
training data well with the amount of explained variation 
(R2) equaling 100.0%, 100.0% and 99.9% for the proposed 
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method, NARMAX, and ANN, respectively. However, to 
obtain a solution using linear regression in the statistical 
program Minitab, 23 of 60 lags were removed from the 
model. 

 
 

Fig. 1. Training and testing input sequences for x1 (with v1) 
and x2 (with v2). Their correlation coefficient for training is 
0.994 and zero for testing. 

Fig. 2. Training and testing model performance. The 
proposed Wiener method fits the true process nearly 
perfectly but the testing performance of NARMAX and 
ANN is very poor. 

As shown by Fig. 2 for the test data, the proposed model 
fit the data nearly perfectly but the other two methods did 
very poorly, which supports our discussion above regarding 
the inability of these methods to predict well under an input 

correlation structure different than in training. Moreover, 
this study shows that our proposed Wiener modeling 
approach could estimate the coefficients accurately under 
high input correlation and predict accurately for independent 
changes in the inputs, supporting its ability to determine a 
cause and effect relationship between the inputs and the 
output. Thus, this approach appears to have much promise in 
modeling glucose using free living data. Next, we present 
results of the application of the proposed method in a 
glucose modeling study. 

-5

15

35

0 300 Time

 
IV.   MODELING REAL DATA 

We recently applied the proposed Wiener modeling 
method to data collected on a type 2 diabetic subject 
controlling blood glucose by diet and exercise only. The 
training data were collected over a period of 20 days and the 
next five days of data were the test data set. The MMT-
7102® monitor collected the glucose data at five minutes 
intervals over the 25 days of this study. The SenseWear® 
Pro3 body monitoring system collected activity and stress 
data that corresponded to the glucose data. Food data were 
collected and converted to carbohydrates (carbs), fats and 
protein using nutrient tables. We also developed an input 
variable to represent military time to assess the hypothesis 
that the body has an internal clock for glucose variation. In 
all there were 24 inputs but after the application of input 
reduction procedures the final model consisted of eleven 
(11) inputs. The linear dynamic blocks in the study were 
second-order-plus-lead-plus-dead-time and the static 
nonlinear function was a second order regression model with 
interaction terms similar to Eq. 2 except for the number of 
inputs. The inputs are given in Table 1 with the values of the 
dynamic parameters were determined by application of the 
proposed method. The values for the static parameters are 
not given here due to space limitation. For these values and 
for more details of this study see [12]. 

600
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Training Testing

-2

5

12

0 300 Time 600

x2
v2

Training Testing

R2 and rfit (the correlation coefficient for the observed 
and fitted values) for the training data were 64.0% and 0.80, 
respectively. For the five days of testing data, rfit was very 
good at 0.65. The twenty days of training data were too large 
to plot but a representative plot of the first four days is 
shown in Fig. 4. The five days of testing data are plotted in 
Fig. 5. As shown, the proposed method fits quite well but 
does not always at the extreme values. As Table 1 shows, of 
the nutrient components, carbs have the smallest period.  
Table 1 also gives approximate values for their residence 
times 1 2 2i i i

-60

30

120

0 300 600Time

True Process
The Proposed Method
NARMAX
ANN

Training Testing

i . From this table we see that the 
residence times of fats and proteins are more than 4 and 13 
times, respectively, greater than carbohydrates, which reflect 
the relative rates that these three nutrients impact the blood 
glucose for this subject.   

 Figure 5 plots the dynamic responses of carbs (v1) and 
fats (v2) over measured glucose for the five days of test data 
to visually contrast their dynamic behavior. As shown, the 
fats have a significantly larger residence time and overlaps 
very strongly with meals eaten on the same day. In contrasts, 
carbs have a faster residence time and is out of the system 
(i.e., the blood) typically before the next meal. Thus, fats 
appear to have more of a “storing” effect than carbs. One 
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implication is that fats will have a greater long term effect 
and affects more greatly, for example, the glucose behavior 
at night during sleep since food is not consumed for several 
hours. Dynamic plots for the other variables for both training 
and testing data are given in [12]. Thus, because our 
proposed Wiener approach is able to determine values with 
physical meaning, we are able to not only develop models 
for use in the development of feedforward control laws but 
also an understanding of the dynamic impact of the inputs. 
 
Table 2. Estimated dynamic parameters (in minutes) for the 
TTD Wiener model. 

Variable i  i i ai i i  = 
1i + 2i

Carbs 1     31 1.3 15 -2.8 79 
Fats 2 256 0.7 15 15 344 
Proteins 3 1621 0.3 15 -2.3 1087 
Trans. Accel 
 peaks 

4 25 0.06 0 -9. 2.7 

Heat flux 
average 

5 91.8 0.06 0 14 10.5 

Long. Accel 
average 

6 227 3.5 0 -6.8 1581 

Near-body  
temp 
average 

7 402 0.9 0 6 727 

Trans. Accel 
 MAD 

8 14 0.5 0 4.6 12.5 

GSR  
average 

9 900 0.04 0 7.6 75.6 

Energy  
Expenditure 

10 267 2.1 0 -14 1126 

Time of Day 11 98 2e-3 25 8 0.39 
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Fig. 3. The first four days of training showing measured 
glucose response and a representative fit of the proposed 
Wiener model.  
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Fig. 4. The five days of testing showing the performance of 
the proposed Wiener Model for glucose response. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Dynamic overlay plots for carbs (top) and fats 
(bottom). The scale on the right is for glucose (mg/dl) and 
the one on the left is for vi. 
 

V.   CONCLUDING REMARKS 

The purpose of this article was to demonstrate the unique 
and powerful ability of the proposed Wiener approach to 
develop cause and effect dynamic models of plasma glucose 
for changes in food, activity, and stress inputs with 
physically interpretable parameters under free-living 
conditions. Due to the length of time required to experience 
a broad enough range of input changes, free-living data 
collection appears to be the most practical. The main 
challenge in model development from free-living data is 
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high correlation of input variables. The proposed method is 
effective because the parameters are independent nonlinear 
functions for the terms in the linear dynamic functions and 
the terms in the static nonlinear functions depend on the 
variables from the dynamic blocks which are not strongly 
correlated due to their dynamic behavior. This effect was 
demonstrated on both simulated and real data in this work. 
The proposed method maintains its modeling strengths in the 
presence of noise but we did not show those cases for 
mathematical model due to space limitations. By application 
of the proposed method, the successful development of 
feedforward control appears promising which necessitates 
cause and effect prediction to make accurate changes in 
insulin.  

NARMAX modeling, a linear empirical approach that uses 
lags variables, has serious drawbacks due to the strong 
correlation of lag variables as well as the correlation of 
terms due to dependence on the same inputs. In addition, it 
also has the drawback of linear dependencies which requires 
the elimination of terms to reach a solution as well as the 
drawback of determining the number and types of lags. For a 
method to demonstrate cause and effect modeling ability, it 
must be developed under a strong correlation of inputs and 
predict well under a very different correlation structure for a 
set of test data. In a simulation example, this work 
demonstrated this inability of  NARMAX modeling.  

ANN modeling, a nonlinear empirical approach that also 
uses lag variables, has serious drawbacks due to the lack of 
phenomenological structures and parameters and its strong 
nonlinear mapping to specific cases of input changes. Input 
combinations different from the ones in training can predict 
poorly due to highly nonlinear behavior of models that are 
not phenomenologically correct. This work demonstrated 
this drawback of ANN on the simulated mathematical 
example where it predicted poorly for test data with different 
input changes than the training data. 
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NOMENCLATURE 

x Input variable 
v Intermediate variable, the output from the dynamic 

block, in a Wiener model  
y Output variable 

t Sampling time 
 True response 
 Static gain parameter  
 ,  Discrete-time dynamic parameters  
 , a Time constants, continuous-time dynamic parameter 
 Damping factor, continuous-time dynamic parameter 
 Dead time, continuous-time dynamic parameter 

a-f Linear parameters in  NARMAX model 
i as subscript denotes a particular input 
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