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Abstract— Precision linear stages can exhibit two markedly
different dynamic behaviors during a single move as the lubrica-
tion condition of the bearings changes from elastohydrodynamic
lubrication to boundary lubrication. For robustness purposes
it is desirable to design a single compensator which provides

stable behavior for both dynamic modes and transitions be-
tween them. One approach is to design a compensator for the
elastohydrodynamic lubrication dynamics and then to cascade
a lag compensator with that controller to accommodate the
boundary lubrication dynamics. The lag compensator trades
off phase margin of the loop in the elastohydrodynamic mode
for increased performance when operating in the boundary
lubrication mode. This paper demonstrates the superior per-
formance of the complex lag compensator compared with a real
lag compensator for simultaneous control of the two operating
modes.

I. INTRODUCTION

Precision positioning systems operate over a wide range

of velocities as they move distances on the order of tens of

centimeters to precision positions. The velocity is high dur-

ing point to point movements, and the bearing operates in the

elastohydrodynamic lubrication (EHL) regime characterized

by a relatively high DC gain and a relatively low frequency

first resonance with modest damping, [1], [2], [3]. As the

stage approaches the target position, the velocity decreases

dramatically, and the bearing most likely operates in the

boundary lubrication (BL) regime characterized by a low DC

gain and a relatively high frequency first resonance having

low damping.

For robustness purposes it is desirable to design a single

compensator that stabilizes both modes. This is the simulta-

neous stabilization problem. Simultaneous stabilization itself,

for the system considered in this paper, is straightforward.

The challenging part of the design problem is to make

the performance as good as possible in both modes. The

approach taken in this paper is to design the controller for

a 0 dB open-loop crossover above the first resonance in the

EHL mode. The design then proceeds by cascading a lag

compensator with the controller to trade off the phase margin

in the EHL mode while making the 0 dB crossover for the

BL mode as high as possible.

This paper demonstrates the superior performance

achieved when employing a complex lag compensator for

simultaneous control of the two operating modes compared

with using a double real lag compensator. The complex lag

is a second order bi-proper transfer function with a common

damping ratio 0 ≤ ζ ≤ 1 in the numerator and denominator

polynomials. The real double lag compensator is a complex

lag when the damping ratio is 1. Compared with a double

real lag compensator, the complex lag’s frequency response

has a narrower phase notch, a steeper magnitude slope at the

frequency of maximum phase lead, and a smaller difference

between the high-frequency and low-frequency gain. Using

the complex lag compensator, more aggressive control is

possible without sacrificing controller robustness.

The complex lag with ζ < 1 is not yet widely used in spite

of a number of desirable characteristics. The continuous-time

complex lead compensator, the reciprocal of the complex lag,

was introduced in [4]. The first application of the discrete-

time complex lead compensator appeared in [5]. Oboe and

Messner demonstrated the application of the complex lag

compensator for phase stabilization in [6]. In [7] Messner et

al. employed the complex lag compensator for trading off

phase margin for increased gain margin.

This paper is organized as follows. Section II briefly

reviews the properties of the complex lag compensator.

Section III covers some of the basic tribology important

to this paper. Section IV describes the positioning system.

Section V shows the controller design. Concluding remarks

appear in Section VI.

II. COMPLEX LAG COMPENSATOR PROPERTIES

The complex lag compensator provides an additional de-

sign degree of freedom through selection of the damping

ratio ζ , while the only degrees of freedom available in double

real lag compensators are the frequency of maximum phase

lag, ωm, and the amount of lag at the point of implementa-

tion, 2φm. The formulas for the real lag compensator with

a single pole and a single zero are referenced in numerous

undergraduate text books on control, e.g. [8].

Important properties of a complex lag compensator are the

ratio of high frequency to low frequency gain, width of the

phase notch, and slope of the magnitude at the frequency of

maximum phase lag. The transfer function of a complex lag

compensator having maximum phase lag 2φm and unity gain
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Bode Diagram

Frequency  (rad/sec)

ζ = 1

ζ = 0.5

ζ = 0.1

Fig. 1. Comparison of complex and real lag compensators achieving 100
degrees phase lag at 50 rad/sec. As the damping ratio decreases, the phase
notch narrows, the slope of the magnitude plot in the transition region
increases, and the ratio of low-frequency to high-frequency gain decreases.
For ζ = 1 the complex lag compensator is a real double lag compensator.

at ωm is

Ccomplex(s) =
Kωp

ωz

(

s2 + 2ζωzs+ ω2
z

s2 + 2ζωps+ ω2
p

)

. (1)

The parameter ωp is the undamped natural frequency of the

poles. ωz is the undamped natural frequency of the zeros,

and ζ is the common damping ratio of the poles and zeros.

The relationships between ωm, ωp, ωz, ζ , and φm are

ωp = ωm

(

−ζ tanφm +
√

ζ 2 tan2 φm + 1

)

(2)

and

ωz = ωm

(

ζ tanφm +
√

ζ 2 tan2 φm + 1

)

(3)

The common damping ratio ζ in the numerator and denom-

inator provides a symmetric phase notch.

Figure 1 shows the frequency responses of complex lag

compensators each having maximum phase change of 100

degrees with several different ζ values. Holding the maxi-

mum phase lag constant at 2φm several properties are clear.

As the damping ratio decreases the phase notch narrows

and the slope of the magnitude plot at ωm increases. Both

of these features are advantages compared to the real lag

compensator.

However, the ratio of the low-frequency gain asymptote

to the high-frequency gain asymptote also decreases with

decreasing ζ , which is often a disadvantage compared to

the real lag. Furthermore as the damping ratio decreases

below 0.7 the frequency response increasingly resembles a

lightly damped resonance/anti-resonance pair, as the ζ =
0.1 example clearly shows. The use of the complex lag

compensator requires balancing these design trade-offs.

III. BASIC TRIBOLOGY

During normal operations a linear stage will transition

through multiple friction regimes as the velocity changes

Fig. 2. The basic form of the Stribeck friction curve where friction force
is the Y axis, and steady state velocity is the X axis. The modes of Static,
Boundary Lubrication, EHD, and Hydrodynamic Lubrication are included
in their general locations of the Stribeck Curve.

Fig. 3. Dry friction contact as viewed at the asperity level. Forces are
carried directly by the asperities, and the asperities have a large deflection
due to this contact.

(Fig. 2). Additional details on these lubrication regimes and

the implications of these modes on bearings are found in [1],

[2], [3]. In contrast to these references, boundary lubrication

in this paper refers to the regime where boundary lubricant

effects dominate.

The Stribeck Curve encompasses several modes of friction

dependent on the steady state travel velocities. Beginning at

zero velocity, static friction has no separation between the

two surfaces. An illustration of static friction is found in

Fig. 3. Any available lubricant is squeezed into the gaps or

out of the contact region. Static friction has very high wear

and friction forces. The effective spring constant during static

friction is much higher.

At very low velocities, the friction force is very similar to

static friction, but the effect of boundary lubricants becomes

very important. Boundary lubricants often take the form of

long molecular chains attached to the surfaces as shown in

Fig. 4. Much of the load is still carried by the asperities, but

the molecular chains distribute some of the load to a larger

area. During these low velocity movements the shear stress

of the molecular chains becomes an important factor of the

friction force. Often this regime is referred to as pre-rolling

because it occurs at the beginning of all movements from a

stopped position.

At very high velocities the surfaces will completely sep-

arate due to the forces of the entrained lube, and the drag

forces dominate. Hydrodynamic lubrication is able to use

standard Newtonian assumptions on the surfaces and lube.

Elastohydrodynamic lubrication is similar to hydrodynamic

lubrication because of the full surface separation, but EHD

2829



Fig. 4. Illustration of boundary lube effects on low velocities. Some
boundary lubes can be diagrammed as long chain molecules attached to
the surface. The boundary lube chain molecules share some of the force
transmitted between surfaces, and friction forces show a dependence on the
shear strength of the boundary lube molecules.

Fig. 5. Illustration of the system experiencing EHD lubrication with
direction of spin labeled. Approximate lube velocity is shown.

has non-negligible elastic reaction of one or both surfaces

paired with non-newtonian fluid flow. Figure 5 shows the

ball and race in EHD lubrication. Hydrodynamic lubrication

is similar but with negligible ball and race deformation.

Friction is lowest in the EHD regime. The effective

damping of EHD is related to the damping of the fluid, and

it is expected to be much higher damping than the BL mode.

The friction mode between EHD and BL is often called

partial EHD. It has properties of both EHD and BL, but

the changes are dependent on the system. This work does

not address partial EHD in detail.

The linear positioning stage transitions from zero to a peak

velocity and back to zero for every movement. The position

stage transitions through several velocity and friction regimes

during a sinusoidal frequency response experiment. We as-

sume that lower input amplitudes translate to lower peak

velocities for which the corresponding lubrication regimes

are BL and partial EHD lube. We also assume that EHD

lubrication dominates during larger faster movements. This

assumption is supported by [2]. Beyond these broad regime

definitions, the effects of transient velocities are not fully

addressed in the tribology literature.

IV. SYSTEM DESCRIPTION

The problem considered here is the control of one axis

on a multiple stage positioning system built by a leading

manufacturer of precision positioning equipment. The axis of

interest consists of a stage supported by several recirculating

ball bearings and driven by a linear actuator. The mechanical

design is proprietary and therefore not shown here. During

point to point movements, which may be tens of centimeters

long, the dynamics of the system change as the lubrication

regime of the ball bearing changes from EHL toward BL

when the stage approaches its target position.

Figure 6 shows two frequency responses obtained by swept

sine measurements. The frequency response for the high

amplitude input is representative of the dynamics of the

stage during high speed movements and the EHL regime.

Conversely, the frequency response for the low amplitude

input is representative of the dynamics of the stage during

the precision low speed movements at the end of a point to

point movement and the BL regime.

The large amplitude swept sine measurements show sig-

nificant variability at the lower frequencies, with both the

frequency and the damping of the lowest resonance decreas-

ing as the input amplitude increases. (These other responses

are not shown at the request of the manufacturer.) However,

all of the large amplitude responses are essentially identical

above 300 rad/sec, which enables the servo engineer to

design a single controller for the high speed operation of

the stage using the high amplitude frequency response of

Fig. 6.

The low amplitude swept sine measurements are also

very similar. (Again, these other responses are not shown

at the request of the manufacturer.) The similarity of the

responses indicate that the bearing “locks-in” to the pre-

rolling behavior characteristic of BL. Pre-rolling behavior

resembles that of a lightly damped mass-spring system where

the balls of the bearings are merely deforming rather than

rolling. The important characteristics of this operating regime

are the low DC gain due to high stiffness and low phase loss

up to the first resonance at about 1200 rad/sec. The gain of

the dynamics at low speed is significantly lower than the

gain of the high speed movements up to 900 rad/sec.

For the purposes of loop shaping the variability at low

frequencies of the frequency responses for high input ampli-

tudes can be ignored because those frequency responses are

essentially identical at 480 rad/sec where the open-loop 0

dB crossover will occur. For the same reason the variability

of the frequency responses of the low input amplitudes can

be ignored. The controller design can proceed with the two

representative frequency responses of Fig. 6.

V. CONTROLLER DESIGN

There are many potential approaches for controlling sys-

tems subject to rapidly changing system behavior. Stiff

controllers frequently resolve friction difficulties, but the

actuator could not produce sufficient output to implement

a stiff controller. Dithering is an approach used in many

applications, but this linear stage application does not allow

dithering because it can excite resonance modes adversely

affecting the motion control and other machinery in the envi-

ronment. Also, for this system the controller hardware limits

the compensator to a PID controller and eight second order

filters. Therefore, nonlinear and mode-switching controllers

were not considered.
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Bode Diagram

Frequency  (rad/sec)

EHL

BL

Fig. 6. The representative frequency responses for controller design. The
solid line is representative of the high velocity/EHL determined from large
amplitude swept sine measurements. The dotted line s representative of the
low velocity/BL determined from low amplitude swept sine measurements.

Within these constraints, we chose to design a controller to

simultaneously stabilize the two dynamic modes maximizing

the open-loop crossover frequency in each mode. In each

mode the minimum acceptable performance objectives are

the following.

• Zero steady state error for a constant disturbance.

• Phase margin of at least 40 degrees.

• Gain margin of at least 6 dB.

The design approach is to design a nominal controller for

achieving these objectives for the high velocity/EHL mode

with phase margin to spare. Then a lag controller is cascaded

with the nominal controller to increase the low frequency

gain for the low velocity/BL mode with some loss of phase

margin in the high velocity/EHL mode. The loop shaping is

done in continuous-time and then converted to discrete-time

with a sampling time of 125 microseconds.

The nominal controller consists of a PID compensator, a

cascade of five notch filters, a complex lag, and a second

order low pass filter. The controller transfer function is

Cnominal(s) = CPID(s)
7

∏
i=1

Ci(s) (4)

CPID(s) =
KDs2 + KPs+ Ki

s
(5)

Ci(s) =
s2 + 2ζniωni + ω2

ni

s2 + 2ζdiωdi + ω2
di

(6)

The values for CPID(s) are KD = 3.63e−8, KP = 4.36e−6,

and Ki = 1.31e−4. The other constants are defined in Table

I.

The complex lag of the nominal controller provides 50

degrees of phase lag at 730 rad/sec with the low damping

ratio ζ = 0.05. It is used to reduce the amplitude of the peak

at 730 rad/sec without the significant phase loss at lower

frequencies that a notch would cause.

Figure 7 shows the frequency response of compensated

open-loop for both the EHL (high velocity) mode and the

i Type ζni ωni ζdi ωdi

1 Complex Lag 0.05 747 0.05 713

2 Notch 0.05 1300 0.3 1300

3 Notch 0.06 2050 .15 2050

4 Notch 0.022 2670 0.1 2670

5 Notch 0.056 3280 0.1 3280

6 Notch 0.39 6000 0.7 6000

7 Low Pass 0.476 1.92e4 0.356 7120

TABLE I

NOMINAL CONTROLLER PARAMETERS
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Bode Diagram

Frequency  (rad/sec)

EHL

BL

Fig. 7. Bode plot of the open-loop systems with the nominal compensator.
Both the EHL mode and BL mode are stable.

BL (low velocity) mode. The phase margin is 50 degrees at

480 rad/sec for the EHL mode with a gain margin of 6.1 dB.

The BL mode is also stable, because its magnitude remains

less than unity.

The phase margin at the 480 rad/sec crossover in the EHL

mode is larger than required. Thus there is an opportunity to

increase the low frequency gain of both open-loop responses

with a lag compensator at the expense of a reduced phase

margin in the EHL mode. The BL mode will benefit the

most, because increasing gain increases the 0 dB crossover.

There are three constraints on the lag compensator.

1) It can reduce the phase by no more than 9 degrees

at 480 rad/sec to retain the desired phase margin and

robust performance.

2) The phase must be greater than -180 degrees for the

EHL mode from DC to 4000 rad/sec where the gain

margin is measured for robust performance.

3) The effects of the lag on magnitude cannot be too wide.

To further quantify the second constraint there can be no

more than 100 degrees of phase loss at 60 rad/sec. The

third constraint may be clarified with respect to this system

by stating that the transition from the low frequency gain

asymptote to the high frequency gain asymptote of the

lag compensator should occur between the 0 dB crossover

frequency of the BL mode loop and the 0 dB crossover

frequency of the EHL mode.

Figure 8 shows the Bode plots of the best double lag and

the best complex lag found by experimentation that satisfy

2831
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Bode Diagram

Frequency  (rad/sec)

Complex Lag

Real Lag

Fig. 8. Comparison of lags satisfying the phase loss constraints. The
complex lag has a damping ratio of 0.5 and provides 100 degrees of lag at
60 rad/sec. Both lags provide only 9 degrees of phase loss at 480 rad/sec.
The much narrower phase notch of the complex lag allows a larger ratio of
low frequency gain to high frequency gain.

Real Lag Complex Lag

Gain 0.964 1.033

ζ 1 0.5

ωm 81.8 107.3

2φm 37◦ 100◦

Low Freq. to High Freq Ratio 10.8dB 19.6dB

TABLE II

PARAMETERS OF THE TWO LAG COMPENSATORS

the phase constraints. Both provide 9 degrees of phase loss

with a gain of 0 dB at 480 rad/sec. The real lag provides a

phase notch of 37 degrees at 60 rad/sec.

Crlag(s) = 1.86

(

0.5183s2 + 86.39s+ 3600

s2 + 86.39s+ 1866

)

. (7)

The parameters can be found in Table II. The ratio of low

frequency to high frequency gain is 10.8 dB. Figure 9 shows

that the 0 dB crossover of the BL loop is 5.5 rad/sec when

Ctotal(s) =Cnominal(s)Crlag(s) where Cnominal is given by Eqn.

4. The EHL mode phase margin is 41 degrees and the EHL

gain margin is at least 6.1 dB in the region of the -180 degree

crossover when using the real lag.

Implementing double real lag compensators at a lower ωm

frequency and a larger maximum phase φm has undesirable

effects on the sensitivity function. The sensitivity function of

the BL mode exhibits a large peak after the open-loop 0 dB

crossover frequency if the phase lag increases significantly.

Additionally, disturbance rejection in the EHL mode is not

as good above the reduced ωm.

The complex lag of Fig. 8 has a damping ratio of 0.5 and

provides a phase notch of 100 degrees at 60 rad/sec. It has

the transfer function

Cclag2(s) = 3.20

(

0.3228s2 + 34.09s+ 3600

s2 + 34.09s+ 1162

)

. (8)

Both the complex lag and the double real lag have essentially

the same phase lag below 15 rad/sec and above 480 rad/sec.
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Bode Diagram

Frequency  (rad/sec)

EHL + Real Lag

BL + Real Lag

Fig. 9. Open loop frequency responses with the real lag compensator
applied. The blue line is the high velocity/EHL mode response and the
green line is the low velocity/BL mode response.
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Bode Diagram

Frequency  (rad/sec)

EHL + Complex Lag

BL + Complex Lag

Fig. 10. Open loop frequency responses with the complex lag compensator
applied. The blue line is the high velocity/EHL mode response and the green
line is the low velocity/BL mode response.

The big difference in phase occurs between those frequen-

cies. The ratio of low frequency to high frequency gain is

19.6 dB, which is 8.8 dB more than provided by the real lag.

Figure 10 shows the 0 dB crossover of the BL loop is 20.8

rad/sec when Ctotal(s) = Cnominal(s)Cclag2(s). The EHL mode

phase margin is 41 degrees and the EHL gain margin is at

least 6.1 dB in the region of the -180 degree crossover when

using the complex lag. Table III shows a comparision of the

open-loop and closed-loop results of using the two different

lag compensators.

Sensitivity Functions

Table III summarizes the simulated performance of the

two controllers based on experimental frequency response

data acquired prior to the application of the controls. Im-

provements in the time response of the system were noted.

However, permission was not given to show this data. Figures

11 and 12 show frequency responses of the closed-loop

sensitivity functions. The system employing the nominal
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Fig. 11. Sensitivity function of the closed-loop systems with the complex
lag applied. The blue curve is the sensitivity function for the EHL mode.
The green line are the sensitivity functions for the BL mode.
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Bode Diagram

Frequency  (rad/sec)

EHL + Complex Lag

BL + Complex Lag

Fig. 12. Sensitivity function of the closed-loop systems with the complex
lag applied. The blue curve is the sensitivity function for the EHL mode.
The green line is the sensitivity function for the BL mode.

Real Lag Complex Lag

0dB crossover of BL 5.5 rad
sec

20.8 rad
sec

Minimum EHL Phase Margin 6.1 dB 6.1 dB

EHL Sensitivity Peak 4.9 dB 5.1 dB

EHL Rejection of 100 rad
sec

-13.6 dB -9.7 dB

EHL Rejection of 10 rad
sec

-11.8 dB -21.3 dB

BL Sensitivity -3 dB Crossing 5.5 rad
sec

18 rad
sec

TABLE III

SUMMARY OF OPEN-LOOP AND CLOSED-LOOP RESULTS

controller and real double lag compensator in Fig. 11 has

less disturbance rejection overall. There is more disturbance

rejection in the frequency range of 3 to 70 rad/sec in the

EHL mode when employing the complex lag compensator,

although the 0 dB crossover frequency of the sensitivity

function is essentially the same as with the real double lag

compensator. This is expected because the lag compensator

designs have the same open-loop 0 dB crossover frequency

and the same phase margin in the EHL mode.

The sensitivity functions for the BL mode show a large

difference in the 0 dB crossover frequency, however. Em-

ploying the complex lag compensator results in significantly

more disturbance rejection below 20 rad/sec. At 3 rad/sec dis-

turbance rejection provided by the complex lag compensator

exceeds the disturbance rejection provided by the real double

lag compensator by more than 6 dB. The -3 dB point is about

20 rad/sec when using the complex lag compensator and only

6 rad/sec when using the real double lag compensator.

VI. CONCLUSIONS

The complex lag compensator in this work has several

desirable characteristics for trading off phase margin for

performance. This paper showed the application of the

complex lag for a simultaneous stabilization and control

problem for a precision positioning system operating in a

low velocity/boundary lubrication mode and a high veloc-

ity/elastohydrodynamic lubrication mode. The use of this

compensator provided more than a factor of three improve-

ment in bandwidth for the low velocity mode compared to

a real lag compensator. The disturbance rejection at lower

frequencies was more than twice as large when employing

the complex lag compensator for both the low velocity

and the high velocity modes with good robustness. Other

precision positioning and pointing systems with bearings

and similar constraints could benefit from the simultaneous

stabilization application of the complex lag.
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