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Abstract— In this paper an initial study is presented regard-
ing a new combined robust and adaptive control approach to
fault-tolerant flight control. The approach is based on designing
a suitable tracking-error feedback (TEF) term such that the
plant is stabilized over the entire uncertainty set. If such a
term can be found, the adaptive control part depends only
on the reference model state and the reference input. Hence,
instead of dealing with a nonlinear time-varying system arising
in the context of standard adaptive control, the designer needs
to analyze a stable linear time-varying system. This is an
important step toward the development of effective analysis
tools for performance of adaptive systems. In the case when
the tracking error feedback term stabilizes the plant only over
a subset of the uncertainty set, the TEF term can still be used
to minimize the tracking error so that a linear time-varying
approximation is close to the original system. The proposed
approach is illustrated on an example system through analytic
development and simulations.

I. INTRODUCTION

Over the past two decades, there has been increased

interest in the applications of adaptive control to aerospace

systems to enhance their performance and safety. This is

primarily due to the fact that it was long recognized that

adaptive control has a potential to solve difficult problems

associated with control design to handle modeling uncertain-

ties resulting from imprecise knowledge of plant parameters

in different flight regimes, modeling simplifications, unantic-

ipated events, faults, failures, and changes due to structural

damage.

Adaptive systems are inherently nonlinear, time-varying,

and difficult to tune, and often need to be retuned with

each change of the operating regime. Such systems exhibit

bursting, and also inconsistent transient performance in the

sense that different changes of a single uncertain plant

parameter can cause very different transient response of the

overall adaptive control system.

Due to their nonlinear nature and complex transient perfor-

mance, stability and performance guarantees similar to those

for linear feedback systems are not available in the context

of adaptive systems. For these reasons, it is very difficult

to expect flight control systems to be flight certified if the

existing adaptive control strategies are used. Hence there is

a great need for new adaptive control designs that achieve

guaranteed transient performance and are flight certifiable.

In order to improve flight safety, adaptive systems with

guaranteed performance need to be designed for situations

characterized by the presence of large uncertainties such as

those arising due to severe flight-critical failures, faults, and

aircraft structural damage.

State-of-the-Art: In the last several years there has been

increased interest in the use of adaptive control techniques in

the context of fault-tolerant and reconfigurable flight control

in the presence of faults and failures of aircraft subsystems

and components [1], [20], [5], [19], [9], [10]. Most of

the techniques are derived from standard direct or indirect

adaptive control (see e.g. [11]). However, in all cases very

little can be said about transient performance of any of the

proposed techniques even in the ideal case (i.e. in the case

without noise, external disturbances and/or unmodeled dy-

namics). Hence flight control systems employing the existing

techniques cannot be expected to be flight certified.

One of the features of standard adaptive control systems

is that their stability analysis results in guaranteed (uniform)

stability and asymptotic convergence of the tracking error to

zero. In addition, if the signals in the system are Persistently

Exciting (P.E.), asymptotic convergence of the parametric

errors to zero is also guaranteed. However, in both cases non-

conservative error bounds are highly difficult to calculate. As

a result, at present very little is known about the transient

performance of adaptive systems.

It is well known that both transient and steady-state

performance of adaptive control systems depend critically

on many factors including:

• Command signals and their level of excitation.

• Size of parametric uncertainty, and generally unknown
initial conditions of the parameter estimates.

• Choice of the adaptive algorithm for parameter adjustment
(for instance, response obtained using the ”pure” gradient

algorithm can be very different from that obtained using the

gradient algorithm with projection; response obtained using

Recursive Least Squares (RLS) is different than that using

gradient adaptation, etc.).

• Tuning parameters such as adaptive gains, estimator gains
in the case of indirect adaptive control, or Lyapunov matrix
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P in the case of direct adaptive control.

• Control objective (as, for instance, specified by a suitably
chosen reference model)

• Control input constraints, including position and rate lim-
its, and actuator dynamics.

• Signal delay, and

• External disturbances, unmodeled dynamics and noise.

One of the well known features of adaptive control systems

is that, in a few cases, tuning procedures can be made more

sophisticated than those based on trial and error. This is due

to the fact that the response of adaptive control systems is

very difficult to calculate, and the effect of tuning parameters,

initial conditions and signal excitation cannot be predicted in

advance.

Adaptive Control Metrics: In the adaptive control field,

there are virtually no results related to the performance of

general adaptive systems, and to the related metrics. One

of the reasons is that, from the Lyapunov analysis, mainly

highly conservative bounds can be derived assuming that

the parametric error is maximum at all time. In addition,

in the case of P.E. signals, exponential convergence is

assured [11], however non-conservative bounds and rate of

convergence are extremely difficult to calculate. This is even

more pronounced in the case when the P.E. signals are a

part of the closed-loop. Even when the signals are P.E., it

is well known that the convergence of the parametric errors

to zero is generally very slow due to the stiffness of the

corresponding set of differential equations [11].

A relevant recent reference that deals with stability mar-

gins for adaptive controllers is [14]. In that paper, it is

proposed that the analysis be carried out on a Reduced Linear

Asymptotic System (RLAS) in cases when the reference

input is constant. The approach from [14] has two major

shortcomings: (i) It assumes that the reference input is

constant, which makes RLAS linear and time-invariant. How-

ever, it is not clear at all as to how to extend the approach

to the cases when the reference input is time-varying. In

such a case the meaning of the stability margin calculated

for the linear time-invariant RLAS in the context of the true

nonlinear time-varying adaptive system becomes obscure; (ii)

The RLAS does not, in general, capture main features of the

transient behavior of the adaptive system. Since the adaptive

system will converge to RLAS asymptotically, the latter is

a valid approximation only at the steady state (for constant

reference inputs), while its transient response may be very far

from that of the original adaptive system. Keeping in mind

that it is the transient response of the adaptive system that

could lead to excitation of unmodeled dynamics or control

input saturation, only using the steady-state analysis fails

to accurately predict transient performance. Hence alternate

methods are needed to arrive at meaningful performance

metrics for adaptive systems.

Flight control systems have several favorable features that

could potentially be used in gaining better understanding of

the transitent performance of adaptive systems:

• System states are measurable so that simpler adaptive
control techniques for such systems can be used;

• Sometimes accelerations are also measurable. A question
that arises in this context is as to how could this be used

in improving the transient performance and arriving at the

related metrics.

• Flight control commands belong to a relatively small set
(ramped step, ramped pulse, doublet, etc.).

• Linear models of aircraft dynamics in fixed flight regimes
are fairly well known, and can be scheduled with the flight

regime.

Regarding the latter, if there is fault/failure/damage, the

models may be no longer valid. In addition, unmodeled

dynamics may become non-negligible (e.g. aeroservoelastic

modes can be excited). Damaged aircraft also exhibits loss of

symmetry, and coupling between the longitudinal and lateral

dynamics. This may result in the loss of control leading to

a crash. Hence nonlinear adaptive control strategies are of

great interest in practice.

Proposed Approach: The proposed approach is shown in a

flowchart in Figure 1 and described below:

Adaptive ControllerRobust Controller

Constrained Robust
Adaptive ControllerConstraints

Control Input

LTV Adaptive System
Specifications

Performance
Tuning

Guaranteed Performance
Adaptive Controller

Performance EvaluationNoise
Unmodeled dynamics

External disturbances

Fig. 1. Flowchart of the Proposed Approach

• The proposed approach combines robust control with adap-
tive control. The latter can be direct, indirect, or combined

direct and indirect. The resulting robust adaptive control

system should achieve good tracking performance and result

in a small tracking error.
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• Based on the small tracking error, the adaptive system can
now be approximated by a linear time-varying (LTV) system.

If a robust controller can be found that stabilizes the plant

over the entire parametric set, the LTV system is the exact

model of the adaptive control system.

• The linear time-varying system can now be tuned over a
set of reference inputs and initial conditions based on its

analytic response using a suitable technique such as Genetic

Algorithms or Monte-Carlo simulations. The tuning contin-

ues until a performance criterion, based on the Adaptive

Control Metrics specifications, is minimized.

As a result, a Guaranteed Performance Adaptive Control

(GPAC) system is obtained that satisfies performance speci-

fications.

In the paper we carry out an initial study of the combined

robust and adaptive control approach as described below.

II. PROBLEM STATEMENT

As it is well known, major problems related to the per-

formance of adaptive systems are due to the fact that the

resulting closed-loop system is nonlinear and time-varying.

To alleviate these problems, a new adaptive control structure

is proposed that results in a linear time-varying closed-loop

system. The main idea of the approach is described below.

Let the model of the plant dynamics be of the form:

ẋ = A(p)x + BK(p)u, (1)

where x ∈ IRn and u ∈ IRm denote respectively the

system state and control input vectors, A and B are matrices
of appropriate dimensions, K = diag[k1 k2 ... km], ki >
0, i = 1, 2, ..., m, p ∈ IRl is a vector of uncertain parameters

such that p ∈∈ Sp = {p : (pi)min ≤ pi ≤ (pi)max, i =
1, 2, ..., l}, where (pi)min and (pi)max are known. Last m
elements of p are elements of the diagonal matrix K . In the
above equation, matrices A and K are uncertain while B is
assumed known.

The objective is to design a control input u(t) so that
the output of the uncertain plant follows asymptotically the

output of the following reference model:

ẋm = Amxm + Bmr, (2)

where Am is an a.s. matrix, and r is a vector of bounded
piecewise continuous reference input.

III. COMBINED ROBUST AND ADAPTIVE CONTROL

The approach proposed in this paper is based on specifying

u as:

u = ua + utef , (3)

where ua is the adaptive control input of the form:

ua = Θxm + Kcr, (4)

while utef denotes the tracking error feedback. The latter is

chosen as:

utef = Λ(x − xm), (5)

where Λ is an a.s. matrix. From (1), (2), and (3)-(5) it follows
that:

ẋ=(A(p)+BK(p)Λ)e+(A(p) + BK(p)Θ)xm+BK(p)Kcr,

where e = x − xm denotes the tracking error.

The adaptive control design proceeds by defining Θ∗ and

K∗

c such that:

A + BKΘ∗ = Am, BKK∗

c = Bm. (6)

Let Φ = [(Θ − Θ∗)T (Kc − K∗

c )T ]T and ω(xm, r) =
[xT

m rT ]T . Then the Error Equation for the above system
is of the form:

ė = Āe + BKΦω(xm, r),

where Ā = A(p) + BK(p)Λ.

We note that, in contrast to the error equations in standard

adaptive control that are nonlinear and time-varying [11], the

latter equation is linear and time-varying since ω depends on
xm(t) and r(t).

However, unlike the standard adaptive control case [11],

matrix Ā(p) = A(p) + BK(p)Λ is unknown. This is an
important issue in direct adaptive control since: (i) This

matrix needs to be stable in order to prove the overall system

stability; and (ii) Lyapunov matrix P related to Ā(p) is
needed to implement the adaptive control laws.

To address this problem, we propose the following:

1. Choose the matrix Λ such that Ā(p) is a.s. for all p ∈
S̄p ⊆ Sp, and some performance specifications are met (e.g.

H∞ or H2);

2. Use the tools from Robust Stability to arrive at a matrix

P such that the Lyapunov Matrix Inequality is satisfied over
the parametric set, i.e.

ĀT (p)P + PĀ(p) ≤ −Q, ∀p ∈ S̄p, (7)

3. If S̄p = Sp, express the resulting adaptive control system

as a linear time-varying system.

4. If S̄p ⊂ Sp, approximate the resulting adaptive control

system by a linear time-varying system.

In this paper we will consider two cases:

Case 1 (Exact LTV Solution): There exists a matrix Λ such
that A(p) + B(p)Λ is asymptotically stable for all p ∈ Sp;

and

Case 2 (Approximate LTV Solution): Λ stabilizes A(p) +
B(p)Λ over a subset of Sp, i.e. when p ∈ S̄p ⊂ Sp.
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We will illustrate the proposed approach on an example

of a second-order plant.

A. Example of Exact LTV Solution

Let the plant be of the form:

ẋ1 = x2 (8)

ẋ2 = a1x1 + a2x2 + bu (9)

where x = [x1 x2]
T denotes the state, u is the control input,

and p = [a1 a2 b]T ∈ Sp where

Sp = {(a1, a2, b) : −2 ≤ ai ≤ 2, i = 1, 2; 0.2 ≤ b ≤ 1}.

In this case the reference model is of the form:

ẋm1 = xm2 (10)

ẋm2 = −k1xm1 − k2xm2 + k1r, (11)

where ki > 0, while the control law is of the form:

u = θ1xm1 + θ2xm2 + kcr − λT (x − xm), (12)

where λ = [λ1 λ2]
T and λi > 0.

Upon substituting the control law into the plant equation

and subtracting the reference model one obtains:

ẋ1 = x2 (13)

ẋ2 = (a1 − bλ1)e1 + (a2 − bλ2)e2

+(a1 + bθ1)xm1 + (a2 + bθ2)xm2 + bkcr, (14)

where ei = xi − xmi, i = 1, 2.

By noting that θ∗i and k∗

c exist such that

a1 + bθ∗
1

= −k1, a2 + bθ∗
2

= −k2, bk∗

c = k1,

and defining φ = [θ1 − θ∗
1

θ2 − θ∗
2

kc − k∗

c ] and ω =
[xm1 xm2 r]T , the above equation can be expressed as:

ė =

[

0 1
a1 − bλ1 a2 − bλ2

]

e +

[

0
b

]

φT ω(xm, r).

Choice of matrix Λ: We note that the closed-loop system
will be stable for all λ1 ≥ (a1)max/bmin = 10 and all
λ2 ≥ (a2)max/bmin = 10.

Let us assume that an additional performance specifica-

tions are that: (i) λ1b − a1 ≥ 1, and (ii) λ2b − a2 ≥ 1.4.
Then:

λ1 ≥
a1 + 1

b
≥ 15, λ2 ≥

a2 + 1.4

b
≥ 17.

We now choose λ2 = 25, and λ1 = 15.

Finding matrix P : We next express Ā as:

Ā(p) =

[

0 1
0 0

]

+

[

0 0
1 0

]

a1 +

[

0 0
0 1

]

a2

+

[

0 0
−λ1 −λ2

]

b

and use the function quadstab from the Matlab LMI

Toolbox [3] to obtain:

P =

[

567.1302 154.0955
154.0955 278.3873

]

. (15)

This is the matrix P that will be used in the adaptive laws.

Adaptive laws: Let P̄ = P [0 1]T , and θ = [θ1 θ2 kc]
T .

Adaptive laws are chosen in the form:

θ̇ = φ̇ = −sign(b)ΓωP̄T e, (16)

where Γ = ΓT > 0.

Stability Analysis: The following tentative Lyapunov func-

tion is chosen:

V (e, φ) =
1

2
[eT P (p)e + |b|φT Γ−1φ]. (17)

Its first derivative along the solutions of (15), (16) yields:

V̇ (e, φ) ≤ −
1

2
qmin(Q)‖e‖2 ≤ 0,

where Q = P−1, and qmin(Q) is the minimum eigenvalue
of Q. It follows that e and φ are bounded. Since xm is

bounded, this implies that x is bounded as well, and that
u is also bounded. Upon integrating V̇ from 0 to ∞ one

obtains:

V (0) − V (∞) ≥
1

2
qmin(Q)

∫

∞

0

‖e(τ)‖2dτ.

Hence e ∈ L2. Since ė can be readily shown to be bounded,
it follows that limt→∞ e(t) = 0.

Let z = [eT φT ]T . Then the origin of

ż = M(t)z,

is uniformly stable, and limt→∞ z1(t) = 0. Let also b̄ =
[0 b]T . Matrix M(t) is defined as:

M(t) =

[

Ā b̄ωT (xm(t), r(t))
−sign(b)Γω(xm(t), r(t))P̄T 0

]

Hence the adaptive control system is expressed as a linear

time-varying system. This parameterization is important for

arriving at the perfromance metrics for adaptive control

systems.

Simulation:We next simulated the above adaptive system for

the reference input of the form of a doublet. The following

initial conditions are chosen: θ(0) = [0 0 0]T , and Γ =
diag([4 4 0.4]). The simulation result for a1 = 2, a2 = 2
and b = 0.2 is shown in Figure 2.

It is seen that all the signals are bounded, tracking error

tends to zero asymptotically, and the overall response is

excellent despite the uncertainty that makes the open-loop

plant highly unstable and weakly controllable. The response

of the controller parameters indicates that there is not enough

P.E. in the reference input. However, despite the fact that the

controller parameters do not converge to their true values, the
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Fig. 2. Response of the Combined Adaptive Control Systems from the

Example

system is stable and the tracking performance is excellent.

B. Example of an Approximate Solution

We next note that, in Case 2, the plant can be stabilized

only over a subset of the parametric set. In that case standard

adaptive control needs to be used. However, it would still

be beneficial to somehow keep the Tracking Error Feedback

(TEF) term. The main motivation is to assure that, by joint

work of the adaptive controller and the TEF, the tracking

error will be small over the entire time interval. In such

a case, a linear time-varying (LTV) approximation of the

adaptive system may be adequate.

However, the issue here is that the TEF term will be mul-

tiplied by unknown vector b and will, therefore be unknown.
For this reason we present an approach that assures that the

TEF term is known by adjusting an additional parameter.

Now that term can be chosen as a tradeoff between tracking

accuracy and undesired high-gain effects.

The main idea is to modify the control law as follows:

u = θT x + lλT e + kcr, (18)

i.e. a term containing a product of an adjustable parameter

and TEF is added to the control law.

The resulting closed-loop system is now of the form:

ẋ=
(

A + b̄θ∗T+ b̄l∗λT
)

e + b̄φT ω +
(

A + b̄θ∗T
)

xm + b̄k∗

c r,

resulting in the following matching conditions:

A + b̄θ∗T = Am, b̄k∗

c = bm,

[

0
1

]

= b̄l∗ (19)

Upon defining φ = [θ−θ∗ l− l∗ kc −k∗

c ]T , we obtain the
following error equation:

ė = Āe + b̄φT ω, (20)

where ω = [x1 x2 λT e r]T , φ = [φθ φl φkc
]T , and

Ā = Am +

[

0
1

]

λT . (21)

The adaptive law is now of the exact same from as (16). The

stability of the overall system can be demonstrated along the

same lines as in the previous section.

We next show that, in the simple example below, the LTV

approximation captures dominant response during transients,

while a linear time-invariant approximation results in large

transient errors.

We use the same plant from the previous section and

implement the above adaptive control procedure resulting in:

ż =

[

Ā b̄ωT (x, r)
−sign(b)Γω(x, r)P̄T 0

]

z. (22)

The response of the system is shown in Figure 3, and that

of the tracking error from the nonlinear adaptive system is

shown in Figure 4 in blue. Linear time-varying approxima-

Fig. 3. Response of the Adaptive Control Systems from the Example

tion is obtained when x is replaced by xm in the ω term
above. The resulting response of the tracking error is shown

in the same figure in red. We also simulated a linear system

obtained when fixed controller parameters are used based

on values to which the adaptive controller parameters have

converged. It is seen that the LTI approximation completely

fails to to capture main transient response properties. We

also note that it was found that, in most cases, the LTV

system accurately predicts the values to which the controller

parameters converge, and achieves response close to that of

the original system.

Hence, even in the case when we cannot find a matrix

Λ to stabilize all plants from a given set, using the TEF
compensator can reduce the tracking error and assure that the

LTV approximation is close to the original adaptive system.
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Fig. 4. Response of the tracking error of the original adaptive system and
its LTV and LTI approximations

IV. CONCLUSIONS AND FUTURE WORK

In this paper an initial study is presented regarding a

new combined robust and adaptive control approach to fault-

tolerant flight control. The approach is based on designing

a suitable tracking-error feedback (TEF) term such that the

plant is stabilized over the entire uncertainty set. If such a

term can be found, the adaptive control part depends only

on the reference model state and the reference input. Hence,

instead of having to deal with a nonlinear time-varying

system arising in the context of standard adaptive control,

the designer needs to analyze a stable linear time-varying

system. This is an important step toward the development of

effective analysis tools for performance of adaptive systems.

In the case when the tracking error feedback term stabilizes

the plant only over a subset of the uncertainty set, the TEF

term can still be used to minimize the tracking error so that

a linear time-varying approximation is close to the original

system. The proposed approach is illustrated on an example

system through analytic development and simulations.

While in the paper the proposed approach is illustrated

on a second-order example, future work will include the

extensions to MIMO uncertain plants, and actual study

of the (exact or approximate) linear time-varying systems

arising from the combined approach, to find the performance

bounds and the relationship between the system response

and free-design parameters, level of persistent excitation, and

reference inputs.
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