
 
 

 

  

Abstract—This paper develops a new algorithm for the 
dynamic scheduling of multiple receding horizon controllers 
running on a single processor. The subsystems are coupled and 
the formulation is adapted for decentralized RHC. The 
proposed formulation accounts for bounded model uncertainty, 
sensor noise and computation delay. A cost function 
appropriate for control of multiple vehicle systems is proposed 
and an upper bound on the cost as a function of the execution 
horizon is developed. The upper bound is optimized to obtain 
the execution horizon of all subsystems subject to the 
computation constraints. To study computational delay, two 
methods that applied on experimental apparatus, are used and 
compared theoretically. Based on this comparison, the method 
called retarded actuation with prediction presented better 
performance and the dynamic scheduling algorithm was 
updated based on this method to overcome computational 
delay. The new approach is illustrated through formation 
control of three radio controlled hovercraft system.  

I. INTRODUCTION  
ECEDING horizon control (RHC) is a repeated online 
solution of a finite horizon open-loop optimal control 

problem [1].  
Application of RHC to control problems with multiple 

subsystems is considered in this paper, which is addressed 
by applying RHC to the individual subsystems. These 
subsystems are dynamically decoupled. However, they are 
coupled in their cost index. This approach, results in 
multiple RHC processes that must be scheduled in an 
appropriate manner to achieve optimal performance in the 
presence of computing resource limitations. 

In real-time implementation of control applications, 
normally each control task is considered as a periodic 
function [2]. Therefore, closed-loop implementation of RHC 
can be regarded as a periodic function with the period equal 
to the execution horizon of the system. Besides, it should be 
selected carefully to obtain a suitable trade-off between 
computational expense and controller performance. 

In real-time implementation of a single RHC system, the 
execution horizon, which is equal to the sampling period, is 
selected based on the worst-case execution (computation) 
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time. However, the computation time is highly varying [4], 
so considering worst-case computation time, leads to a 
conservative design, which requires high computational 
capacity. Besides, when multiple RHC systems are 
processed on the limited and shared computational resources 
(i.e., a single processor or a cluster of finite number of 
processors), distributing the computational resources 
between different systems (computational scheduling) is not 
a trivial task and needs careful considerations.  

In recent years, some attempts have been made to use 
control theories in scheduling of computational systems [7]. 
However, systematic methods for scheduling multiple RHC 
systems are rarely discussed in the literature (See [9] for a 
review on this field).  

In the present paper, we consider the problem of 
controlling multiple uncertain nonlinear systems by means 
of concurrent decentralized RHC schemes. A new 
scheduling approach is proposed by combining the results 
from continuous time nonlinear systems theory and the 
concept of scheduling theory like Rate Monotonic Priority 
Assignment (RM) [3], [2]. The problem of multiple 
subsystems on a single processor without any coupling 
between different subsystems was studied by the authors in 
[9]. The approach was further extended to multiple 
processors with coupling between subsystems [10]. Here, 
the approach is extended to the case of coupled RHC 
systems while considering computational delay on a single 
processor.   

Franz et al. [6] and Milam et al. [5] studied the application 
of RHC to Caltech Ducted Fan experimental setup. To 
compensate computational delay, they used two retarded 
actuation methods (with and without state prediction). Their 
experimental studies presented the effectiveness of this 
approach. However, based on the study presented here, this 
method with prediction has better performance than the 
method without prediction, and is used in this paper.  

II. PROBLEM STATEMENT 
Consider a network of n dynamically decoupled 

subsystems using the RHC approach. The subsystems are 
supposed to have connection with each other by exchanging 
their information. Furthermore, consider the following 
nominal equation for the ith subsystem:  

( ) nittt iiii ,...,1,),(),( == uxfx  (1) 
which serves as a model for the actual subsystem described 
by: 
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( )ˆ ˆ ˆ( ), ( ), ( ( ), ( ), ), 1, ,i i i i i i it t t t t t i n= + =x f x u g x u …  (2) 

where n
i t ℜ∈)(x  and ˆ ( ) n

i t ∈ℜx  are the nominal and actual 
states of the ith system, respectively. The input vector 

m
i t ℜ∈)(u  satisfies the constraints ii Ut ∈)(u  ( 0≥∀t ), 

where iU  is the allowable set of inputs for system i.  
Definition 1. The set iA  is called the neighboring set of 
subsystem i, and consists of any subsystem in the network 
that has direct interconnection with subsystem i. 

 
The finite horizon cost associated to ith subsystem is 

defined as follows:  
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where ix~  is a vector containing the states of all neighbors of 
the ith subsystem. ijg  is a function which defines the 

interaction between two nodes of the overall system ix  and 

jx . T is the optimization horizon of the RHC controller. 

The optimal cost is given by: 
( ) ( )iiiiiiii TtJTtJ
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xuxxux
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The optimized trajectory resulting from (4) is defined as 
],(,));(),;(( *

,
*

, Ttttt iTiT +∈τττ ux . In the closed loop RHC 

the calculated input );(*
, tiT τu  is applied to the actual system 

(2), and ],( itt δτ +∈ , while iδ  is called the Execution 
Horizon of system i ( Ti <δ ). 
Remark 1. In the presented decentralized RHC 
formulations, the estimated trajectories of neighbors are 
communicated and the ith subsystem is only estimating its 
own trajectory [8]. Therefore, the dimension of the 
optimization problem associated to each subsystem is 
reduced, which decreases the computation expenses, as well.  

A. Real-time scheduling of multiple RHC systems with 
coupling on a single processor 

Suppose that the systems described in (1) and (2) are 
connected to a single computer for feedback control. From a 
computer control point of view, each control system can be 
handled as a periodic task in the real-time programming. 
The period of each periodic task is equal to the execution 
horizon of its related subsystem.  

For the proposed approach, the execution horizons of all 
subsystems should be defined such that the overall 
performance of the system is maximized. In order to 
evaluate the performance of the system, the following cost 
function is proposed as the cost of the closed loop system 
from time t to sct T+ , where scT  is the period that calculated 
execution horizons would be applied to. 
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where  

( ) ( ) ( )( ) ( ) ( )( )* *
, ,ˆ ˆ, , ; , ;

i

i i i T i ij i T j
j A

t q t g tη τ τ τ τ τ
∈
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In addition, /i sc id T δ= ⎢ ⎥⎣ ⎦ , i
i
k ktt δ)1( −+= , and ( )i

kiT t;*
, τu  

is the optimal input applied to subsystem i.  
The idea is to find the execution horizon of each 

subsystem, such that ˆ
scJ  is minimized.  

Remark 2. as stated in Remark 1, the estimated trajectories 
of neighbors are used in the optimization of ith system; 
therefore, the optimized neighbor trajectory is used in (6) 
instead of actual neighbor trajectory.  

For computation scheduling algorithm, which is presented 
in this paper, the concept of Rate Monotonic Priority 
Assignment (RM) is used [3]. However, RM is useful in 
static scheduling only; it is adapted for schedulability 
condition in our dynamic scheduling algorithm. The system 
is schedulable using RM, for a set of n tasks, if the following 
inequality is valid [3]: 

)12(
1

1

, −≤=∑
=

n
n

i i

ic n
p

δ
μ  (7) 

where μ  is CPU Utilization factor, ic,δ  is the computation 

time of subsystem i, and ip  is the period of task i, which is 
equal to the execution horizon of subsystem i ( iip δ= ). 

III. REAL-TIME IMPLEMENTATION OF A SINGLE RHC 
In the case of real-time implementation of RHC, an 

optimization problem must be solved online. The time 
required to solve this optimization problem, should be 
considered in the problems with fast dynamics. Thereby, 
retarded actuation method [5] is used in this paper.  

In this section, a discussion is presented in the 
performance of retarded actuation method with both 
approaches of with and without state prediction and it is 
shown that this method with prediction has a better 
performance. Besides, the result of this analysis is used in 
the dynamic scheduling approach.  

In the case of dynamic scheduling, the execution horizons 
are not constant. This concept is depicted in Figure 1 for one 
subsystem and (1)δ , (2)δ , and (3)δ  present the change in 
execution horizon.  

Timet

δ(1) δ δ(2) (3)

s  
Figure 1- schematic diagram for dynamic scheduling; ts is the start time of 
optimization and is equal to the sampling time. 
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We discuss both cases of without prediction and with 
prediction, in the dynamic scheduling case, by finding upper 
bounds on the state estimation errors. Furthermore, these 
upper bounds will be used in proposing the dynamic 
scheduling cost index. Besides, based on the upper bounds 
on the state estimation errors, the performance of both 
methods can be discussed considering the fact that smaller 
upper bound on the state estimation error, indicates more 
chances of gaining better performance. 
Lemma 1. Consider the assumptions A.1 to A.4 of [11, 
Theorem 1] hold true, along with the following assumption: 

A.5. 1 2( ) ( )t t ε− ≤u u   
where ε  is a constant scalar. Then  

( )0 0( ) ( )ˆ ( ) ( ) 1x xL t t L t tu
s

x

b L
t t b e e

L
ε− −+

− ≤ + −x x  (8) 

where b and bs represent the upper bounds on uncertainty 
and measurement error, respectively. Lu and Lx are Lipschitz 
constants. (See A.1 to A.4 of [11, Theorem 1] for details)  
Proof: Taking integration from the result of [11, Theorem 
1], results in (8).   
 
Lemma 2. If RHC method applies without prediction, in the 
case of dynamic scheduling (Figure 1), the optimization 
starts at time st  and calculates the optimized input (which 

referred to as u2). This input is applied from (2)
st δ+  to 

(2) (3)
st δ δ+ + . Since the new optimized input (u2) is 

different from the applied input to the actual system from st  

to (2)
st δ+  (which is u1 and is the result of previous 

optimizations), the following relations are valid for the 
actual and nominal systems: 
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where u1 is the result of previous optimizations. In addition, 
consider the assumptions of Lemma 1 hold true; then:  
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where )(2) (2) (3),s st tτ δ δ δ⎡∈ + + +⎣ .  

Remark 3. sb  presents the bound on initial condition and 
initial conditions are the state of the systems at the sampling 
time. Therefore, ˆ ( ) ( )s s st t b− ≤x x .  
Proof: See [11].  

Lemma 3. Consider RHC method applies with prediction, in 
the case of dynamic scheduling (Figure 1). The procedure 
for calculating new inputs starts at time st and the following 
steps are done: 
• From st  to (1)

st δ+ , the prediction of states are done 
based on the input u1 which is known from previous 
optimizations. 

• The predicted states (1)( )p
st δ+x  are used as initial 

condition of optimization and the new input u2 is 
calculated. It is assumed that at time ts, the new execution 
horizon is not known and the last execution horizon 
( (1)δ ) is used for prediction.  

• The new input u2 is applied to the system from (2)
st δ+  

to (2) (3)
st δ δ+ +   

Therefore, if (1) (2)δ δ≤ , from (1)
st δ+  to (2)

st δ+ , in the 
nominal model (x) that is used in the controller, new input 
(u2) is applied but in the actual system ( x̂ ) the previous 
input (u1) was applied. This procedure is explained in the 
following: 
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where (1) (2)δ δ≤ . In addition, consider the assumptions of 
Lemma 1 hold true. The state estimation error can be 
bounded as follows: 
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where ( (2) (2) (3),s st tτ δ δ δ ⎤∈ + + + ⎦ .  

Proof: From (12) and Lemma 1:  
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In addition, using Lemma 1 and (13) result in: 
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Combination of (16) and (17) results in: 
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which leads to: 
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Furthermore, using Lemma 1 and (14) result in: 
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From combination of (19) and (20): 
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Rearranging right side of (21) results in (15) that completes 
the proof.  
Discussion 1. For the case of (1) (2)δ δ> , the upper bound 
on the state estimation error is smaller than (15). Therefore, 
for the case of general changing in the execution horizon, 
the following inequality can be used: 
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Besides, comparing (11) and (22) shows that using with 
prediction method, the error on the state estimation will be 
limited by a smaller bound, which means more chance of 
gaining better performance. Therefore, this method is used 
in real-time application of RHC systems in this paper.  

IV. DYNAMIC SCHEDULING OF MULTIPLE RHC SYSTEMS 
WITH COUPLING AND COMPUTATIONAL DELAY 

Equation (5) required some data for evaluation, which are 
not available at time t. It needs the future states of the actual 
subsystems and the future optimized inputs (from time t to 

sct T+ ) for calculating ˆ
scJ  which are not available at 

current time (t). Therefore, instead of calculating ˆ
scJ , the 

following cost is proposed which is an estimation of the cost 
in (5): 
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Corollary 1. Consider (22) which is the result of Section III. 
If the dynamic scheduling method is applied such a way that 

(2) (3)δ δ δ= ≡  and (1) pδ δ≡ , where pδ  is the previous 
execution horizon and δ  is the new one, (22) can be 
presented in the following, if i indicates subsystem number: 
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where it  represents the time that new inputs are applied to 

subsystem i and ( ,i i it tτ δ∈ + ⎤⎦ . 
Lemma 4. Consider the following assumptions: 

1- If ix  and jx  are two 1×r  column vectors, ijx  is a 

12 ×r  column vector such that [ ]TT
j

T
iij xxx ,= .   

2- Let ( ) ( )jiijij gy xxx ,=  be Lipschitz continuous 

with constant g
ijL , and ( )ijy x  be a positive scalar.  

3- Retarded actuation method is used with prediction 
as explained in the Section III.  

Then: 
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where ( )*
, ,;T i s itτx  is the optimal trajectory of subsystem i 

resulted from optimization index presented in (3) and the 
sampled data at time ,s it . Similarly, ( )*

, ,;T j s jtτx  is for 

subsystem j.  
Proof: From Lipschitz continuity of positive scalar ( ).y : 
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Using Corollary 1, equation (24) results in the following:  
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Therefore, combination of (26) and (27) results in (25) 
which completes the proof.   

Lemma 5. Suppose the following assumptions hold true: 
1- iq  is quadratic, so: ( ) ii

T
iii

T
iiii RQq uuxxux +=,  

2- ii
T
iii QQ xxx =)(  is Lipschitz continuous with 

constant iP . 

3- ( ), ,i i itf x u  in (1) is piecewise continuous in t and 
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Lipschitz in ix  and iu  with Lipschitz constants ,x iL  

and ,u iL , respectively. 

4- ( ), ,i i itg x u  in (2) is bounded and ( ), ,i i i it b≤g x u . 

5- Retarded actuation method is used with prediction as 
explained in the Section III. 

6- Assumptions of Corollary 1 are valid. 
Using [9, Proposition 1], Corollary 1, and Lemma 4, it is 

straightforward to find the following upper bound for the 
overall closed loop cost, expressed in (23): 

( ) ( )( )
( ) ( )( )

( ) ( )( )
( )

( ) ( )( )

*
, ,

*
1 , ,

* *
, , , ,

(1) (2)1

* *
, , , ,

ˆ , ;

ˆ , ;

; , ;

; , ;

i i

i

i

i i

i

i

i i T i s in tsc

t
i i ij i T j s j

j A

t
n i T i s i T i s itsc

i i
i i i

t

ij T i s i T j s jtsc

i

q t
T

d
g t

q t t dT

P B B

g t t dT

δ

δ

τ τ
τ

δ τ τ

τ τ τ

δ

τ τ τ

δ

+

=
∈

+

=

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟+⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟≤ ⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟+ +⎝ ⎠⎝ ⎠

+

∑ ∫ ∑

∫∑

x u

x x

x u

x x

( )(1) (2)1

i i

i

n

gi j A
ij i iL B B

δ+

= ∈

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟+ +⎝ ⎠⎝ ⎠

∫∑ ∑

 (28) 
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Remark 4. For proof of this Lemma, see [11].  
 
Proposition 1: Consider n dynamically decoupled 
subsystems with equations presented in (1) and (2), 
controlled by RHC using only one processor. In addition, 
the subsystems may be coupled due to state information 
exchanging that was presented in (3). Besides, the 
assumptions of Lemma 5 are valid. Since uncertainties in the 
subsystems are different and the measurements are 
performed with bounded sensor noise, show that the 
following constraint optimization problem can be used to 
determine the execution horizons of all subsystems, 
optimally:  
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where iub,δ  and iub,δ  are the maximum and minimum 

acceptable execution horizons for subsystem i, respectively; 
(1)
iB  and (2)

iB  are defined in (29), iα  and ijβ are weighting 

parameters.  
Proof: Lemma 5 presented an upper bound on the overall 
closed loop cost of (23). If iδ  determined such that result in 
the reduction of the foresaid overall cost, the performance of 
the overall system should be improved. Instead of directly 
minimization of overall cost, which we do not have access to 
that, our proposed scheduling algorithm is to minimize its 
upper bound. In addition, as explained before, equation (7) 
must hold to guarantee schedulability of the system using 
RM method. Therefore, it is a straightforward to propose 
(30) for scheduling algorithm, considering iα  and ijβ  as 

the weighting parameters.   
Based on Proposition 1, the dynamic scheduling 

algorithm can be expressed. Note that this algorithm must be 
updated every scT .  

1- Calculate the scheduler parameters (i.e., iP ), as 
explained in [10].  

2- Estimate ic,δ  from previous computational time of 
each RHC calculation (See [9]) or use the worst-case 
computational time. 

3- Solve (30) and calculate iδ  for all subsystems. 
4- Update the next execution horizons by the calculated 

iδ  from step 4.  
5- Wait for the next scT  seconds and repeat the 

procedure from step 1. 

V. APPLICATION TO HOVERCRAFT PROBLEM 
The proposed scheduling algorithm is applied to the 

concurrent control of multiple unmanned radio controlled 
(RC) hovercrafts on multiple computers. Modeling of the 
RC hovercraft is presented in [9].  

A. Simulation results  
The simulation results obtained by applying the proposed 

dynamic scheduling algorithm to formation control of three 
RC hovercrafts on a single processor are presented. 
Subsystem 1 is following the trajectory (leader) while the 
others maintain the formation (followers). The followers 
check their position with the leader. In addition, subsystem 2 
has more uncertainty than the others do. The proposed 
dynamic scheduling algorithm is compared to the result of 
no-scheduling case. This means using similar execution 
horizons for all subsystems resulted from worst-case 
analysis.  

The simulations are performed using a 3.2 GHz Intel 
Pentium IV processor, Microsoft Visual C++ 6.0, and the 
RHC Object Oriented Library (RHCOOL) [9]. In addition, 
we used Venturcom RTX 6.0.1 to implement the approach 
in a hard real-time environment.  

For the RC hovercraft example with model parameters 
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presented in [9], the scheduling parameters are found offline 
for different values of states. These parameters are used later 
in the dynamic scheduling. In addition, the uncertainties in 
the system are modeled using white noise.  

The paths followed by systems in dynamic scheduling and 
no-scheduling cases are presented in Figure 2 and Figure 3, 
respectively. The computation time of each subsystem 
needed in (30) was selected based on the worst-case 
computation, and used for both dynamic and static 
scheduling cases. In addition, for no-scheduling (static 
scheduling) case, the execution horizon of all subsystems 
were equal to 0.8 seconds and calculated from (7).  
Remark 5. As explained in [9], one can estimate the 
computation time and use the processor more effectively. 
However, in this paper worst-case computation is used for 
both static and dynamic schedulers to compare the presented 
dynamic scheduling method to a common static scheduler. If 
the computation time is estimated properly, the dynamic 
scheduler will be more effective. 

-10 0 10 20 30 40 50 60 70
-10

-8

-6

-4

-2

0

2

yc (m)

x c (m
)

2

1
3

 
Figure 2- Paths followed by three hovercrafts in dynamic scheduling using 
the proposed algorithm 
 

As presented in these two figures, in dynamic scheduling 
case, the second subsystem maintain the formation better 
than the static scheduling case and there is no difference for 
the other two hovercrafts.  
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Figure 3- Paths followed by three hovercrafts in no scheduling case  

VI. CONCLUSION AND FUTURE WORK 
In this paper, a new method was developed for dynamic 

scheduling of multiple decentralized RHC systems on a 
single processor. The problems studied in this paper, have 

nonlinear dynamics subject to computation delay and 
uncertainties in the model and sensor noise. In addition, the 
subsystems were coupled due to the information exchange 
between deferent subsystems. Execution horizons of all 
subsystems were determined dynamically using the 
proposed method. The proposed algorithm was applied to 
formation control of three RC hovercrafts simulations to 
illustrate the new approach. For future work, the scheduling 
method will be applied to an experimental apparatus for 
multiple RC hovercrafts with an overhead vision system for 
feedback. Extensions to computer clusters will also be 
investigated.  
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