
Safety Verification of Fault Tolerant Goal-based Control Programs with
Estimation Uncertainty

Julia M. B. Braman and Richard M. Murray

Abstract— Fault tolerance and safety verification of control
systems that have state variable estimation uncertainty are
essential for the success of autonomous robotic systems. A
software control architecture called Mission Data System,
developed at the Jet Propulsion Laboratory, uses goal networks
as the control program for autonomous systems. Certain types
of goal networks can be converted into linear hybrid systems
and verified for safety using existing symbolic model checking
software. A process for calculating the probability of failure of
certain classes of verifiable goal networks due to state estimation
uncertainty is presented. A verifiable example task is presented
and the failure probability of the control program based on
estimation uncertainty is found.

I. INTRODUCTION

Autonomous robotic missions by nature have complex
control systems. The necessary fault detection, isolation and
recovery software for these systems is often cumbersome
and added on as failure cases are encountered in simulation.
One way to systematically incorporate fault tolerance in
autonomous robotic control systems is to create a flexible
control system that can reconfigure itself in the presence
of faults. However, if the control system cannot be verified
for safety, even in the presence of state variable estimation
uncertainty, the added complexity of the reconfigurability of
a system could reduce the system’s effective fault tolerance.

A great deal of work to date has focused on detecting and
recovering from sensor failures in the control of autonomous
systems [1]. One particularly useful way to model a fault
tolerant control system is as a hybrid system. The control
of hybrid systems has been well studied [2]. When the
continuous dynamics of these systems are sufficiently simple,
it is possible to verify that the execution of the hybrid
control system will not fall into an unsafe regime [3]. There
are several software packages available that can be used
for this analysis, including HyTech [4], UPPAAL [5], and
PHAVer [6], all of which are symbolic model checkers.
PHAVer, the symbolic model checker used in this paper, is
able to exactly verify linear hybrid systems with piecewise
constant bounds on continuous state derivatives and is able
to handle arbitrarily large numbers due to the use of the
Parma Polyhedra Library. Safety verification for fault tolerant
hybrid control systems ensures that the occurrence of certain
faults will not cause the system to reach an unsafe state.

However, these verification software packages cannot
verify linear hybrid systems that have uncertainty in the
estimated state variables involved in transition condition

J. Braman and R. Murray are with the Dept. of Mech. Eng.,
California Institute of Technology, Pasadena, CA 91125, USA
braman@caltech.edu

logic. For autonomous systems, none of the state variables
used in the control system are known perfectly, and these
uncertainties can affect the safety of the system. Stochastic
hybrid systems include uncertainty in the transitions of
the hybrid automaton as probabilistic transition conditions.
Much work has been done on the verification of stochastic
hybrid systems. Prajna et al [7] use barrier certificates to
bound the upper limit of the probability of failure of the
stochastic hybrid system; Kwiatkowska et al [8] discuss
a probabilistic symbolic model checking software called
PRISM; and Amin et al [9] describe stochastic reachability
and maximal probabilistic safe set computations for discrete
time stochastic hybrid systems. However, purely probabilistic
transition conditions do not model estimation uncertainty
well; deterministic transitions with probabilistic components
may be a better model.

In this paper, Mission Data System (MDS), developed
at the Jet Propulsion Laboratory, is the goal-based control
architecture. The structure of this paper is as follows. Section
II summarizes important concepts of MDS that pertain
to this work and describes the goal network conversion
and verification procedure. Section III describes the major
contribution of this work, the process for calculating the
probability of entering the unsafe set due to estimation
uncertainty for certain classes of verifiable goal networks.
Section IV describes an example verification and failure
probability calculation. Finally, Section V concludes the
paper and discusses future directions of research.

II. BACKGROUND INFORMATION

A. State Analysis and Mission Data System

State Analysis is a systems engineering methodology that
focuses on a state-based approach to the design of a system
[10]. Models of state effects in the system to be controlled
are used for such things as the estimation of state variables,
control of the system, planning, and goal scheduling. State
variables are representations of states or properties of the
system that are controlled or that affect a controlled state.
Examples of state variables could include the position of a
robot, the temperature of the environment, the health of a
sensor, or the position of a switch.

Goals and goal elaborations are created based on the
models. Goals are specific statements of intent used to
control a system by constraining a state variable in time.
Goals are elaborated from a parent goal based on the intent
and type of goal, the state models, and several intuitive rules,
described in [10]. A core concept of State Analysis is that the
language used to design the control system should be nearly

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

WeAI01.6

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 27

the same as the language used to implement the control
system. Therefore, the software architecture, MDS, is closely
related to State Analysis.

Goal networks replace command sequences as the control
input to the system. A goal network consists of a set of
goals with their associated starting and ending time points
and temporal constraints. A goal may cause other constraints
to be elaborated on the same state variable and/or on other
causally related state variables. The goals in the goal network
and their elaborations are scheduled by the scheduler soft-
ware component so that there are no conflicts in time, goal
order or intent. Each scheduled goal is then achieved by the
estimator or controller of the state variable constrained.

Elaboration allows MDS to handle tasks more flexibly
than control architectures based on command sequences. One
example is fault tolerance. Re-elaboration of failed goals is
an option if there are physical redundancies in the system,
many ways to accomplish the same task, or degraded modes
of operation that are acceptable for a task. The elaboration
class for a goal can include several pre-defined tactics. These
tactics are simply different ways to accomplish the intent
of the goal, and tactics may be logically chosen by the
elaborator based on programmer-defined conditions. This
capability allows for many common types and combinations
of faults to be accommodated automatically by the control
system [11].

B. Goal Network Conversion and Verification Procedure

Hybrid system analysis tools can be used to verify the
safe behavior of a hybrid system; therefore, a procedure to
convert goal networks into hybrid systems is an important
tool for goal network verification. A process for converting
certain types of goal networks is described in [12]. These
goal networks can have several state variables and several
layers of goal elaborations, however time points must be
well-ordered, which means that the time points fire in the
order they are listed in the elaboration.

Each state variable in the goal network is labeled as either
controllable, uncontrollable, or dependent. A controllable
state variable (CSV) is directly associated with a command
class. An uncontrollable state variable (USV) is not as-
sociated with a command class in any way. A dependent
state variable (DSV) has model dependencies on at least
one controllable state variable. Different hybrid automata are
created from goals on and states of these different types of
state variables.

An outline of the conversion procedure for the goals on
CSVs and DSVs is as follows:

1) Create elaboration and transition logic tables for each
goal that elaborates any constraints on CSVs and
for each CSV and continuous DSV, respectively. List
transition conditions between states for each discrete
DSV.

2) Place goals between consecutive time points into
groups.

3) In each group, create locations (modes) by combining
branch goals (goals on CSVs that are not ancestors

of other goals on CSVs in the group) with all parent
and sibling goals (goals in the same tactic or other
root goals) that constrain CSVs. Label each location
with the dynamical update equations for all CSVs and
continuous DSVs constrained in the location. Create
Success and Safing locations.

4) Create transitions between locations and groups using
the elaboration and transition logic tables found above.
Elaboration logic controls transitions into groups and
failure transitions between locations in a group, and
transition logic controls the transitions out of a group
to the next group or to the Success location.

5) Add exit and failure transitions based on time to
locations in groups that have time constraints. Add
entry actions that reset the time variable to zero when
transitions from the group connector into locations in
these groups are taken.

6) Remove unnecessary locations, groups, and transitions.

For each each USV, a separate hybrid automaton is created
by making locations from the discrete states or discrete
sets of states of the variable. The transition conditions
are stochastic rates or are based on the state models. For
safety verification, the hybrid automata are converted into
PHAVer code and the appropriate transitions are synchro-
nized between the automata. The unsafe (or incorrect) set
is determined and conditions that would cause the hybrid
automata to enter the unsafe set are searched for using the
verification software. If no such conditions are found, the
goal network is said to be verified.

III. FAILURE PROBABILITY DERIVATION

An important assumption for the verification of the control
programs described in the previous section is that the values
of the state variables are known exactly. This is unrealistic
in autonomous systems, where the estimation of the states
of the system are bound to have some uncertainty. In this
section, a method for calculating the probability of failure
of a verifiable goal network is described for a subset of the
goal networks allowed in the previous section.

In addition to a goal network being verifiable without
estimation uncertainty, some restrictions must be placed on
the state variables that can be uncertain. Any uncontrollable
state variable may have bounded estimation uncertainty.
All uncontrollable state variables take values that fall into
discrete sets. In this work, each combination of discrete
values that the uncertain state variables can take must be
unambiguously associated with only one location in each
group of the hybrid automaton. Stated another way, the
location in a group that the automaton transitions into after
the initial transition into the group must only depend on the
values that the uncertain state variables take. Finally, it is
assumed that the probability of transitions of the uncertain
state variable from one value to another (or the same) value
only depends on the previous value of that state variable,
and therefore can be modeled as a stationary Markov process.
The probability that the estimated value of an uncertain state

28

variable is derived from the estimation uncertainty, and only
depends on the actual value of the state variable.

Several pieces of information that characterize the un-
certain state variables are assumed to be known. First, the
number of state variables that are uncertain is n and the
number of discrete states or sets of states that each uncertain
state variable can take is mi, where i = 1, ..., n. Let ji

represent the jth possible value of the ith uncertain state
variable, where ji = 1, ...,mi,∀i = 1, ..., n. Let vei represent
the estimated value of the ith uncertain state variable and
let vai represent the actual value of each uncertain state
variable. The Markov transition probabilities for the actual
values of the uncertain state variables are also given, and the
stationary probabilities represent the probability that each
state variable’s actual value is each of its possible values.
Finally, the estimation uncertainty of each state variable is
the probability distribution of the estimated value of the state
variable being ji,e given that the actual value of the state
variable is ji,a.

A. Problem Set-up

Let S be the set of all possible combinations of ac-
tual and estimated values that each uncertain state vari-
able can take; in Fig. 1, S is the overall closed set. S
has

∏n
i=1 m2

i elements, and each element takes the form
va1ve1va2ve2...vanven. For each group gk, where k =
1, ..., N and N is the number of groups in the automaton,
there are sets Ωk ⊂ S, where the elements of Ωk cause the
automaton to enter the unsafe set from gk and are called “un-
safe” elements. Since the goal network is verifiable, entrance
into this set is always due to estimation uncertainty, and
the probability of entering this set is the failure probability.
Entrance into the unsafe set for each group is dictated by
the actual values of the uncertain state variables, while the
transition conditions within the group are dependent on the
estimated value of the uncertain state variable. There also are
sets Fk ⊂ S in which each element causes the automaton to
leave gk and enter the Safing location without also entering
the unsafe set. A set Fk may be empty. Finally, there are
sets

Ξk ≡ S − (Ωk + Fk) (1)

to which the remainder of elements in S belong. Elements
in Ξk, called “non-failing” elements, allow operation to
continue in the group or allow a successful transition out
of the group to the next one. These sets are represented
graphically in Fig. 1.

Some groups may be broken into two or more subgroups.
A subgroup of locations is a proper subset of locations in
the group that, once entered from the previous group (or
initially), is not exited until a transition out of the group is
taken (to Safing or to the next group). Subgroups are treated
like groups; adjustments to the numbering of the groups are
needed to account for them.

For each location lh, h = 1, ..., λk, where λk is the number
of locations in each group (or subgroup), there is a set Ikh

that contains all of the initial conditions that will cause

Fig. 1. A representation of sets of uncertain state variable elements. Set S
is the sum of the set of unsafe elements, Ωk , the set of “Safing” elements,
Fk , and the set of non-failing elements, Ξk . The set of initial conditions,
Ik ⊆ S\Fk , is the union of the sets of initial conditions for each of the
locations in the group, Ikh, h = 1, 2, 3 in this case. Set Ak = Ik∩Ωk is the
set of unsafe initial conditions. A representative path starting at s(0) = p
that the automaton takes through the sets in this group, with completion
time ck = 5, is shown.

the automaton to enter that location when entering gk. The
intersection of Ikh for any two locations in gk is the empty
set and the set of initial conditions of gk is the union of all
the sets of initial conditions for each of its locations,

Ik =
λk⋃

h=1

Ikh. (2)

If gk is a subgroup, Ik will be a proper subset of set
S\Fk; however if gk is a group, Ik will equal S\Fk. A
representation of set Ik ⊂ S\Fk with λk = 3 is shown in
Fig. 1.

For each group, the initial conditions that would cause
immediate failure of the group due to estimation uncertainty
can be found in set Ak = Ik ∩ Ωk, which is shown
graphically in Fig. 1. The probability of failing due to the
initial condition can be found by summing the probability of
each element of Ak occurring, ak =

∑bk

b=1 P (s(0) = xb),
where bk be the number of elements in set Ak and xb is the
bth element in Ak.

ak =
bk∑

b=1

n∏
i=1

P (vai = ji,ab)P (vei = ji,eb|vai = ji,ab) (3)

For the elements in Ik\Ak for each group, the vector Wk

contains the probability of starting in each non-failing initial
condition. Let pk be the number of elements in Ik\Ak and
Wk(p) be the pth element of Wk, where p = 1, ..., pk and
Wk(p) = P (s(0) = xp).

Wk(p) =
n∏

i=1

P (vai = ji,ap)P (vei = ji,ep|vai = ji,ap) (4)

For each group, there is a qk × qk matrix, Qk, whose
elements are the probability of making a transition from
element q ∈ Ξk to element q′ ∈ Ξk, where q, q′ = 1, ..., qk,
and Qk(q, q′) = P (s(r + 1) = xq′ |s(r) = xq) and qk is the

29

number of elements in set Ξk.

Qk(q, q′) =
n∏

i=1

(P (vai = ji,aq′ |vai,p = ji,aq)×

P (vei = ji,eq′ |vai = ji,aq′)), (5)

where vai,p is the previous actual value of the ith uncertain
state variable.

For each group, there exists a qk × 1 vector, Wu,k, whose
elements are the sum of probabilities of the transitions from
the qth element in Ξk to each element yu in Ωk, which is
the transition from each non-failure state to any failure state,
or Wu,k(q) =

∑uk

u=1 P (s(r + 1) = yu|s(r) = xq). Let uk

be the number of unsafe elements in Ωk and q = 1, ..., qk,
then

Wu,k(q) =
uk∑

u=1

n∏
i=1

(P (vai = ji,au|vai,p = ji,aq)×

P (vei = ji,eu|vai = ji,au)). (6)

If set Ik\Ak ⊂ Ξk, then there are two more definitions to
make, WuI,k and QI,k, which have probabilities of transi-
tions from elements in Ik\Ak to every element in Ωk and
each element in Ξk, respectively. Let p = 1, ..., pk represent
the pth initial condition in Ik\Ak,

WuI,k(p) =
uk∑

u=1

n∏
i=1

(P (vai = ji,au|vai,p = ji,ap)×

P (vei = ji,eu|vai = ji,au)), (7)

and

QI,k(p, q) =
n∏

i=1

(P (vai = ji,aq|vai,p = ji,ap)×

P (vei = ji,eq|vai = ji,aq)). (8)

Each group gk has a minimum execution time that could
be due to the completion of the goal constraints or to a
specific time constraint applied to the group. This minimum
execution time is called the completion time and is labeled
ck. There are only three possible ways of leaving a group:

1) The completion time is reached, and the execution
moves normally into the next group.

2) A transition to the “Safing” set, s(r) ∈ Fk, is taken
before the completion time is reached.

3) A transition to the unsafe set, s(r) ∈ Ωk, is taken
before the completion time is reached.

Only the last condition is considered to be a failure case
that would contribute to the failure probability of that group.
There is a set of execution paths of a group, Uk, that end
with a transition into the unsafe set and each of these paths
has some probability of occurring. The failure probability of
the group, Ws(k), is the sum of the probabilities of all paths
σ ∈ Uk.

B. Uniform Completion Case

In the uniform completion case, the minimum execution
time of a group is also the maximum execution time; in other
words, all locations in the group contribute an equal amount
to the completion of the goals or to the time constraint placed
on the group. Therefore, a uniform completion time ck would
require exactly ck execution time steps before the group
would be exited normally. An example of this execution path
with ck = 5 is shown in Fig. 1. Therefore, there are only ck

paths in Uk, each consisting of a failure after each step up
until the completion time.

For ck = 1, the only way to reach the unsafe set is to
start in it, the probability of which is represented by ak. For
ck = 2, the probability of starting in the non-failure initial
conditions and then making the transition to the unsafe set
is added to the probability of starting in the unsafe set, and
so on. The equations for the failure probability for different
cases of ck, where k = 1, ..., N are

Ws(k) = ak, ck = 1, (9)
Ws(k) = ak + Wk ·WuI,k, ck = 2, (10)

and for ck ∈ [3,∞),

Ws(k) = ak + Wk ·

[
WuI,k +

ck−3∑
x=0

QI,kQx
kWu,k

]
. (11)

If QI,k = Qk and WuI,k = Wu,k, the ck ∈ [2,∞) equation
is

Ws(k) = ak + Wk ·

[
ck−2∑
x=0

Qx
kWu,k

]
. (12)

For the special case when ck = ∞, the equation for the
failure probability is

Ws(k) = ak +Wk ·
[
WuI,k + QI,k(I −Qk)−1Wu,k

]
, (13)

or, if WuI,k = Wu,k and QI,k = Qk,

Ws(k) = ak + Wk · (I −Qk)−1Wu,k, (14)

given that

(I −Qk)−1 =
∞∑

x=0

Qx
k. (15)

C. Non-Uniform Completion Case

In the non-uniform completion case, the minimum execu-
tion time of a group is not the same as the maximum exe-
cution time. Sets of locations contribute a different amount
to the completion of goals or time constraints on the group.
An example of this is a group that cannot be transitioned out
of normally until the robot covers some distance, however,
different locations in this group constrain the maximum
speed of the robot to different values. The set of locations
with the maximum speed limit have a contribution to the
goal completion of 1; that is, this set of locations dictates
the minimum execution time of the group. All other sets of
locations with lower speed limit constraints have contribution
values that are less than one. Paths in this group that exit
the group normally due to goal completion have location

30

Fig. 2. A representation of the sets of uncertain state variable elements
for the single uncertain state variable example.

contribution value sums that are equal to or exceed the
completion time.

While all normal completion paths in the uniform com-
pletion case had the same path length and the same contri-
bution value pattern (a sum of all ones), in the non-uniform
completion case, the normal completion paths have different
lengths and location contribution value patterns. Therefore,
the number of ways to reach group completion, and likewise
the unsafe set, is much greater in this case than in the uniform
completion case. The failure probability, Ws(k), for this
problem is calculated in the same way as in the uniform
completion case, by summing the path probabilities of each
path σ ∈ Uk, however the determination of these paths is
a more difficult problem. This problem is solvable and is
addressed in [13].

IV. EXAMPLES

A. Single Uncertain State Variable Example
Consider a verifiable goal network that has one uncer-

tain state variable that can take on two discrete values,
GOOD and POOR (G and P, respectively). The set S
consists of four elements that all have the form va1ve1,
S = {GG, GP, PG, PP}; one element is in the “Safing”
set F1 = {PP}, two are in the unsafe set Ω1 = {GP,PG},
and one is in the non-failing completion set Ξ1 = {GG}. As
shown in Fig. 2, the set of initial conditions is I1 = S\F1 =
{GG, GP, PG}.

The set of unsafe initial conditions is the intersection of the
set of initial conditions and the unsafe set, A1 = I1 ∩Ω1 =
{GP,PG}. Therefore, the calculation of the probability of
failure due to starting in the unsafe set is

a1 = P (s(0) = GP) + P (s(0) = PG). (16)

The initial condition that is non-failing is I1\A1 = {GG},
so the vector of the probabilities of starting in a non-failing
state is a scalar in this case, and is

W1 = P (s(0) = GG). (17)

Likewise, since there is only one element in Ξ1, the vector
of transition probabilities from non-failing elements in Ξ1 to
any of the unsafe elements in Ω1 is also a scalar in this case,
and is

Wu,1 = P (s(r + 1) = GP |s(r) = GG)+
P (s(r + 1) = PG|s(r) = GG). (18)

Fig. 3. Goal network for precision orientation device example; S1 = sensor
1, S2 = sensor 2, S1H = sensor 1 health, S2H = sensor 2 health. The dashed
line indicates that the goals below it are elaborated from the goal above the
line. The curved arrow indicates a time constraint.

The transition matrix between non-failing elements in Ξ1 is
again a scalar in this case, and is

Q1 = P (s(r + 1) = GG|s(r) = GG). (19)

Since there is only one element in Ξ1, this is a uniform
completion case. Once given the value of c1, an equation can
be chosen (either (9) or (12)) and used to find the probability
of reaching the unsafe set due to estimation uncertainty in
this group.

B. Precision Orientation Device Example

An example for the uniform completion case involves
two sensors that are used to estimate the orientation for
a precision orientation device. The first sensor is more
accurate, reliable, and has less estimation uncertainty than
the second sensor; therefore, when turning, the first sensor
is used if its health is estimated to be ‘GOOD.’ If the first
sensor’s health is estimated to be ‘FAIR’ or lower and the
second sensor’s health is estimated to be ‘GOOD,’ the second
sensor is used to estimate the orientation. If both sensors’
healths are estimated to be ‘FAIR,’ both are used to estimate
the orientation. Otherwise, the goal network safes, stopping
the turning mechanism.

It takes five time steps in any combination of the turning
goal’s tactics, shown in Fig. 3, to complete the turn. The
goal network then transitions into a maintenance goal on
the orientation that is also active for five time steps before
moving onto the next goal.

The breakdown of state variable types is one controllable
state variable, the orientation state variable; two uncontrol-
lable state variables, the sensor health state variables; and
no dependent state variables. The hybrid automaton created
from the goals on the orientation state variable is shown
in Fig. 4 and the automata created from Sensor 1 Health
and Sensor 2 Health state variables are shown in Fig. 5. The
unsafe set for this system is the union of several states, listed
as follows:

31

Fig. 4. Hybrid automaton for the CSV, orientation; S1HG = sensor 1
health is GOOD, S1HF = sensor 1 health is FAIR, S1HP = sensor 1 health
is POOR, and likewise for sensor 2.

Fig. 5. Hybrid automaton for Sensor 1 Health (Sensor 2 Health) state
variable.

1) Orientation in TurnS1 and S1 > α
2) Orientation in TurnS2 and S2 > γ
3) Orientation in TurnS12 and S1 > α + β or S1 < α or

S2 > γ + δ or S2 < γ
4) Orientation in Maintain and S1 > α+β and S2 > γ+δ.

The hybrid system was successfully verified for safety over
all values of α, β, γ, and δ.

The failure probabilities for each group were calculated
for several values of estimation uncertainty and one choice
of stationary Markov transition probabilities, and the results
can be found in Fig. 6.

V. CONCLUSIONS AND FUTURE WORK

This paper derives the failure probability of certain veri-
fiable goal networks due to state variable estimation uncer-
tainty. An example goal network was verified and its failure
probability given the estimation uncertainty was calculated.
The calculation of the failure probability for the different
groups of a goal network can be used as a verification of the

Fig. 6. Calculated group failure probabilities vs. sensor health uncertainty
values

goal network in the presence of estimation uncertainty as
well as a design tool to drive the design of goal networks or
the choice of sensors and estimators to reduce the probability
of failure.

Future work includes extending the calculation of a failure
probability to include other types of uncertainty. Uncertainty
in group transitions, controllable state variables, completion
times, and the given probability distributions are all examples
of possible types of uncertainty to include. The verification
of goal networks in the presence of different forms of
uncertainty, including estimation uncertainty, is an important
problem, and this approach seems promising, at least for
certain types of goal networks.

VI. ACKNOWLEDGEMENTS

The authors would like to gratefully acknowledge Michel
Ingham, David Wagner, Robert Rasmussen, and the MDS
team at JPL for feedback, suggestions, answered questions,
and MDS and State Analysis instruction. This work was
funded in part by an NSF graduate fellowship and an AFOSR
MURI grant, FA9550-06-1-0303.

REFERENCES

[1] Z.-H. Duan, Z.-X. Cai, and J.-X. Yu, “Fault diagnosis and fault tolerant
control for wheeled mobile robots under unknown environments: A
survey,” IEEE Int’l Conference on Robotics and Automation, pp. 3428–
3433, 2005.

[2] G. Labinaz, M. M. Bayoumi, and K. Rudie, “A survey of modeling
and control of hybrid systems,” Annual Reviews of Control, 1997.

[3] R. Alur, T. Henzinger, and P.-H. Ho, “Automatic symbolic verification
of embedded systems,” IEEE Transactions on Software Engineering,
vol. 22, no. 3, pp. 181–201, 1996.

[4] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi, “HyTech: A model
checker for hybrid systems,” International Journal on Software Tools
for Technology Transfer, 1997.

[5] K. Larsen, P. Pettersson, and W. Yi, “UPPAAL in a nutshell,” Inter-
national Journal on Software Tools for Technology Transfer, vol. 1,
no. 1-2, pp. 134–152, 1997.

[6] G. Frehse, “PHAVer: Algorithmic verification of hybrid systems past
HyTech,” International Conference on Hybrid Systems: Computation
and Control, 2005.

[7] S. Prajna, A. Jadbabaie, and G. J. Pappas, “Stochastic safety verifi-
cation using barrier certificates,” IEEE Conference on Decision and
Control, 2004.

[8] M. Kwiatkowska, G. Norman, and D. Parker, “Probabilistic symbolic
model checking with PRISM: a hybrid approach,” Int J Software Tools
Technology Transfer, vol. 6, pp. 128–142, 2004.

[9] S. Amin, A. Abate, M. Prandini, J. Lygeros, and S. Sastry, “Reacha-
bility analysis for controlled discrete time stochastic systems,” Inter-
national Conference on Hybrid Systems: Computation and Control,
pp. 49–63, 2006.

[10] M. Ingham, R. Rasmussen, M. Bennett, and A. Moncada, “Engineering
complex embedded systems with State Analysis and the Mission Data
System,” AIAA Journal of Aerospace Computing, Information and
Communication, vol. 2, pp. 507–536, December 2005.

[11] R. D. Rasmussen, “Goal-based fault tolerance for space systems using
the Mission Data System,” IEEE Aerospace Conference Proceedings,
vol. 5, pp. 2401–2410, March 2001.

[12] J. M. Braman, R. M. Murray, and D. A. Wagner, “Safety verification of
a fault tolerant reconfigurable autonomous goal-based robotic control
system,” IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2007.

[13] J. M. Braman and R. M. Murray, “Failure probability of verifiable
goal-based control programs due to state estimation uncertainty.”
Submitted, IEEE Conference on Decision and Control, 2008.

32

