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Abstract— A novel online identification algorithm is pro-
posed, which addresses the problem of convergence rate in
dynamic parameter estimation in the presence of abrupt vari-
ations as well as noise in time-varying systems. The proposed
identification technique optimizes a mean fourth error cost
function by virtue of steepest descent (SD) method. It is proven
that a unique solution for the optimal correcting gain of the
SD update law exists and a closed-form solution is derived. To
obtain high sensitivity to parameter variations, a block-wise
version of the proposed technique, that incorporates only a
finite length window of data, is developed. The performance of
the proposed method is compared to those of two benchmark
identification techniques.

I. INTRODUCTION

In many applications the dynamic behaviour of plants go

under gradual or drastic change. This can be due to the aging

process, change in the plant configuration or the loading

effect. For instance due to the high degree of dynamic

nonlinearity, the inertia matrix of a hydraulic excavator

changes throughout its workspace [16], or the dynamics of a

robot, once becomes in contact with hard environment, goes

under abrupt changes [17]. If the estimation of the parameters

of such systems are inaccurate, e.g. within a few milliseconds

after contact for the latter application, either instability and/or

performance degradation occurs. There has been a variety of

online estimation methods proposed for the identification of

such time-varying systems.

Least squares (LS) minimizes mean square error (MSE)

between the observed system output and the output of

the estimated system. Many variations of LS have been

developed since it was first proposed by Karl Gauss in 1795

[1]-[4]. Since LS is a batch method, for online applications

all data from the beginning should be included in each time

iteration. Recursive Least Squares (RLS) was proposed in

1950 using matrix inversion lemma to overcome the problem

of computational complexity of running LS algorithm in

every time step [2], [3].

With the recent advancements in computer technology the

computational complexity of batch methods such as Batch

Least Squares (BLS) with sliding window have become less

and less an issue. Therefore, these methods have been used

and shown to be of significant advantage in their tracking

ability and convergence rates in the presence of parameter

jumps [5]. BLS method has been shown to be sensitive to
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measurement noise when the window of data is short and

it becomes slow when larger window size is chosen. As a

result, there should be a compromise between sensitivity to

noise and convergence rate. In [5] a variable window length

is chosen and the length is resized whenever a change is

detected. This requires a mechanism for parameter change

detection.

Considerable effort has been put towards the development

of modified versions of RLS for tracking changes in system

dynamic parameters. Among these, RLS methods with For-

getting Factor and Covariance Resetting or Perturbing [7]

are the most common ones [3]. Selective weighting RLS

has also been proposed that minimizes the mean weighted

squares of error. A limited list of weight selection methods

can be found in [6]. Other than LS-based methods, Steepest

Descent (SD) optimization method is also used to minimize

MSE cost function [10], [11]. These methods tend to offer

faster initial convergence rates as reported in [11]. In these

cases an optimal correcting gain for steepest descent update

law can be calculated explicitly.

For time-varying systems with abrupt changes in their dy-

namic parameters, considering higher power rather than

two for error in the cost function causes the optimization

algorithm to better capture sudden changes. As a result, a

number of researchers have studied the problem of Least

Mean Pth (LMP) optimization in various applications of

communications such as filter design [12], adaptive FIR

filters [8], [9] and sinusoidal frequency estimation [13]. Since

LS-based techniques cannot be used when the power “P”

is greater than two, to date only SD-based optimization

methods have been used to minimize Mean Pth Error (MPE)

[8], [9], [10], [14]. However, the SD correcting gains that

have been used are not optimal and are obtained by trial

and error. In fact, a closed-form solution for an optimal SD

correcting gain when power is larger than two has not been

proposed before. In this paper, we will develop a closed-form

solution for an optimal SD correcting gain for P=4 and will

prove the uniqueness of such gain. We will also propose a

block-wise version of SD-based Least Mean Fourth (LMF)

identification technique, so-called BLMF, in which a block

window of data is used for online identification.

This paper is organized as follows. In Section II, MPE cost

function is defined and the convex property of this function

is studied. Section III discusses the use of SD method in the

Least Mean Square (LMS) problem. It further presents the

optimal correcting gain for LMF and proves the uniqueness

of this gain. Section IV compares BLMF with two bench-

mark methods SD-based Block-wise LMS and RLS with
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forgetting factor, in terms of convergence and computational

load as well as sensitivity to noise. Conclusions are drawn

in Section V.

II. MPE COST FUNCTION

The system to identify should be linearly parameterizable

in terms of its unknown parameters. We consider the fol-

lowing single-input single-output difference model for the

system dynamics

y(k) = φT (k)θ(k) + n(k) (1)

where y(k) is the system output, θ(k) is an m × 1 vector

of parameters, φ(k) is the regressors vector, n(k) denotes

the measurement noise, and m is the number of unknown

parameters. The output prediction error e(k) is defined as

e(k) := y(k) − ŷ(k) (2)

where ŷ(k) = φT (k)θ̂(k) is the estimated output using the

estimated parameters θ̂(k). The goal of Least Mean Pth

optimization is to estimate the parameters at each time step

such that the MPE cost function

J [θ̂(k)] =
1

p

k∑
j=1

[y(j) − φT (j)θ̂(k)]p (3)

is minimized, where p is an even number. The convexity of

MPE cost function in parameter space Rm has been proven

in [8] and [14]. Thus, every minimum of the corresponding

function is a global minimum [8]. This fact shows that the

iterative algorithm will converge to its true value given rich

enough inputs.

In order to have fast parameter convergence rate, we

propose the use of a window of data as opposed to the use

of entire data so that the effect of recent parameter change

is emphasized in the cost function. Therefore, the above cost

function is modified to

J [θ̂(k)] =
1

p

k∑
j=k−L+1

[y(j) − φT (j)θ̂(k)]p (4)

In this paper, the identification method using the above cost

function is called Block Least Mean Pth method. For p = 4
the method is called Block Least Mean Fourth (BLMF).

III. LMP METHOD USING STEEPEST DESCENT

OPTIMIZATION

The LMS optimization method (p = 2) updates the system

parameters along the SD of the MSE cost function. This

method can be generalized to the LMP iterative identification

method. Although, there exists a closed-form solution for

optimal correcting gain for LMS optimization, there is no

such solution for LMP when p > 2. In this section, we

will develop an analytical solution for the optimal LMF op-

timization (p = 4). However, the LMS iterative identification

method is first introduced.

A. BLMS Online Identification with Optimal Correcting

Gain

In this section, the SD-based Block Least Mean Squares

(BLMS) online identification method with optimal correcting

gain is presented. The block-wise MSE cost function is

defined as

J [θ̂(k)] =
1

2

k∑
j=k−L+1

[y(j) − φT (j)θ̂(k)]2 (5)

In the sequel, for simplicity we will show the argument of

variables in time step time “k” with a subscript “k”, e.g.

J(θ̂k) as Jk, Φ(k) as Φk and θ̂(k) as θ̂k. By defining the

regressor matrix Φk and the output vector Yk as

Φk =

⎛
⎜⎜⎜⎜⎜⎜⎝

φT
k

φT
k−1

.

.

.

φT
k−L+1

⎞
⎟⎟⎟⎟⎟⎟⎠

,Yk =

⎛
⎜⎜⎜⎜⎜⎜⎝

yk

yk−1

.

.

.
yk−L+1,

⎞
⎟⎟⎟⎟⎟⎟⎠

(6)

we can rewrite the MSE cost function as

Jk =
1

2
(Yk − Φkθ̂k)T (Yk − Φkθ̂k)

=
1

2
(YT

k Yk − 2θ̂
T

k ΦT
k Yk + θ̂

T

k ΦT
k Φkθ̂k).

In SD method at each iteration, we calculate the parameter

vector for the next time step according to the update law

θ̂k+1 = θ̂k + λkuk (7)

where uk is a unit vector in the opposite direction of the

gradient vector, that is

uk = −
gk

‖gk‖
, (8)

and

gk =
∂Jk

∂θ̂k

= −ΦT
k Yk + ΦT

k Φkθ̂k = −ΦT
k Ek. (9)

is the gradient vector and Ek := Yk − Φkθ̂k is the output

prediction error. An optimal value for the correcting gain λk

should satisfy

∂Jk+1

∂λk

= 0, (10)

which yields to the following analytical solution

λk =
uT

k ΦT
k Ek

uT
k ΦT

k Φkuk

. (11)

Deriving closed-form solution for the optimal gain for

MPE optimization with powers greater than two has not

been proposed before. In the next section, we will find a

closed-form solution for the LMF (LMP for p = 4) optimal

correcting gain, prove its uniqueness and propose the BLMF

online identification method.
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B. BLMF Online Identification with Optimal Correcting

Gain

The LMF cost function is defined as

Jk =
1

4

k∑
j=k−L+1

[yj − φT
j θ̂k]4. (12)

As compared to the LMS cost function in (5), LMF imposes a

larger cost associated with jumps in system dynamics. There-

fore, this method is believed to display faster convergence

in the presence of parameter jumps when error takes a large

value. The gradient of cost function is derived as

gk =
∂Jk

∂θ̂k

= −

k∑
j=k−L+1

φj [yj − φT
j θ̂k]3. (13)

As mentioned in the introduction, SD-based optimization

methods have been used in communication applications to

minimize Mean Pth Error (MPE), including when “p = 4”

[8], [9], [10], [14]. In these cases, the correcting gain is

chosen proportional to the gradient norm, that is λk =
μk‖gk‖, where the scale factor μk is a constant obtained

by trial and error. This update law that is based on “scaled

gradient norm” (SGN) correcting gain is not optimal.

Below we propose an optimal closed-form solution for the

correcting gain λk. The optimization algorithm is performed

via analytical minimization of the cost function. Thus, there

is no numerical optimization involved to cause any delay

in the estimation process. Using update law (7), the cost

function is optimized for correcting gain λk when

∂Jk+1

∂λk

=

k∑
j=k−L+1

(φT
j uk[yj − φT

j θ̂k − λkφT
j uk]3) = 0 (14)

where uk is defined in (8). Replacing for uk from (8) and

rearranging (14) the following cubic polynomial in terms of

the optimal correcting gain is found that needs to be solved

at every time step

Gk = Akλ3
k + Bkλ2

k + Ckλk + Dk = 0, (15)

where

Ak =

k∑
j=k−L+1

(φT
j uk)4

Bk = − 3
k∑

j=k−L+1

(φT
j uk)3(yj − φT

j θ̂k)

Ck = 3

k∑
j=k−L+1

(φT
j uk)2(yj − φT

j θ̂k)2

Dk = −
k∑

j=k−L+1

(φT
j uk)(yj − φT

j θ̂k)3 = ‖gk‖.

It is important to note that no approximation and no

numerical method have been used in deriving the above

equation, unlike many nonlinear optimization methods that

have been used for system identification [1]. An important

question that remains to be answered is: whether there

exists a real root for the above third-order polynomial, and

if it does, is it unique or multiple?

Theorem - Roots of Gk: There exists one and only one

optimal real correcting gain for the BLMF problem.

Proof: We have to prove that the function Gk has

one and only one real root λk. The function Gk is a 3rd-

order polynomial; thus, the existence of at least one real root

is guaranteed. Therefore, if Gk is monotonically increasing

(decreasing) it has always one and only one real root. In

order to show the monotonic behavior, the derivative of Gk

derived as

∂Gk

∂λk

= 3Akλ2
k + 2Bkλk + Ck (16)

has to always be positive. Since Ak is always positive, if

B2
k − 3AkCk ≤ 0, then Gk is a monotonically increasing

function. By defining aj = φT
j uk and ej = yj − φT

j θ̂k, the

two terms 3AkCk and B2
k can be written as

3AkCk = 9(

k∑
j=k−L+1

a4
j )(

k∑
i=k−L+1

e2
i a

2
i ) (17)

B2
k = 9(

k∑
j=k−L+1

eja
3
j )(

k∑
i=k−L+1

eia
3
i ). (18)

Since 3AkCk = B2
k for i = j, we can say

B2
k − 3AkCk =9(

k∑
i,j=k−L+1,i �=j

a3
jeja

3
i ei−

k∑
i,j=k−L+1,i �=j

a4
je

2
i a

2
i ).

Therefore, we have

B2
k − 3AkCk

9
≤

∑
i �=j

|aj |
3|ej ||ai|

3|ei| −
∑
i �=j

a4
je

2
i a

2
i

=
∑
i<j

2|aj |
3|ej ||ai|

3|ei| − (
∑
i<j

a4
je

2
i a

2
i + a4

i e
2
ja

2
j )

=
∑
i<j

a2
ja

2
i (2|ej ||ei||aj ||ai|) −

∑
i<j

a2
ja

2
i (e

2
ja

2
i + e2

i a
2
j )

=
∑
i<j

−a2
ja

2
i (|ej ||ai| − |ei||aj |)

2 ≤ 0.
�

In order to find the optimal correcting gain λk from Gk,

either numerical or analytical methods can be used. The

analytical roots of this cubic polynomial can be obtained

using Cardano’s equations [15]

λk =
pk

3mk

− mk − (
Bk

3Ak

),

mk =
3

√
qk

2
±

√
q2
k

4
+

p3
k

27
,

pk =
3AkCk − B2

k

3A2
k

=
Ck

Ak

− 3(
Bk

3Ak

)2,

qk =
Dk

Ak

+
2B3

k − 9AkBkCk

27A3
k

=
Dk

Ak

+ 2(
Bk

3Ak

)3 −
Ck

Ak

(
Bk

3Ak

).
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Fig. 1. Comparison between the proposed method (BLMF) and BLMS
with optimal gain, L = 10.

Since there are two solutions to the square root, and three

complex solutions to the cubic root, six possibilities exist

in computing mk. However, only one solution is real and

can be used for identification. Therefore, using the principal

solution of the cubic root, the real λk can be calculated.

IV. NUMERICAL EVALUATION

Consider the following nonlinear time-varying system with

input uk and “measurement noise” nk.

yk=θ1k + θ2kuk−1 + θ3ku2
k−1 + θ4kyk−1 + nk (19)

This system is linear in its parameters and can be reformu-

lated as in (1). For our simulations, the system parameters

are chosen in a way that the system remains stable during

the entire process in the input domain range. By defining

the time periods K1 = {k|k < 100, k > 600} and K2 =
{k|100 ≤ k ≤ 600}, the system parameters are defined as:

θ1k =

{
2 k ∈ K1

5 k ∈ K2

, θ2k =

{
2 k ∈ K1

10 k ∈ K2

θ3k =

{
2 k ∈ K1

20 k ∈ K2

, θ4k = −0.1 ∀k .
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|e
(t

)|

Number of iterations
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)|
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Fig. 2. Absolute Prediction error for BLMF and BLMS with optimal gain,
L = 10. Right column shows the zoomed plots.
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Fig. 3. Correcting gain λk in the BLMF and BLMS methods.

The above parameters show a sudden drastic change in the

system dynamics at k = 100 and a sudden return to the

original form at k = 600. All the parameters are initialized

to zero in this paper, otherwise stated.

A. Comparison of BLMF and BLMS

Using (7), (11) and (15) we can simulate BLMS and

BLMF algorithms with optimal correcting gains. Here nk is a

Gaussian white noise with zero mean and standard deviation

0.3 and the input signal is a Gaussian white noise with zero

mean and standard deviation 1.

Figure 1 shows the parameter tracking performance for

BLMS and BLMF with optimal gain when the window

length is L = 10. For BLMF with SGN either the gain is nor-

mally chosen very small resulting in a very low convergence

rate compared to BLMF with optimal gain, or the algorithm

diverges. Thus, the results of BLMF with SGN is not

provided in this paper. It is clear from Figure 1 that BLMF

with optimal gain shows superior performance compared to

BLMS with optimal gain, when an abrupt change occurs in

the system parameters. The first parameter converges to 1.8
in about 10 time steps using BLMF method, whereas with
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Fig. 4. Comparison between the proposed method (BLMF) and EWRLS,
L = 10.

BLMS the convergence takes about 50 iterations. Although,

the rise time (the time for the estimate to reach 90 percent

of its final value) for both methods for θ1 is almost equal,

it is 8 to 18 times faster for BLMF considering θ2 and θ3.

As shown in Figure 1 all parameters are initialized to zero

and converge to 2. At k = 100 the change occurs and the

parameters approach their final values, 5, 10 and 20 for θ1,

θ2 and θ3, from 2 which was their latest estimate. As a

result BLMF performs well for different initial conditions,

including zero and non-zero values. Figure 2 shows the

absolute value of prediction error for both methods. As can

be seen, when the system parameters change (at k = 100 and

k = 600), the error increases. Following that the prediction

error drops down based on the convergence rate of the

estimation process. The results indicate that compared to

BLMS, BLMF with optimal gain provides faster convergence

rate. For BLMF, the error drops to less than 1 in about

50 time steps whereas for BLMS the convergence time is

about 200 iterations. It is observed that whenever a high

jump occurs in the system parameters, a high correcting

gain causes faster convergence rate. Figure 3 shows that

λ in BLMF is 25 times bigger than that of BLMS at the

beginning of the parameter change. This rate is almost 17 at

TABLE I

CONVERGENCE SPEED AND SENSITIVITY TO NOISE OF BLMF, BLMS

AND EWRLS METHODS

Convergence - θ2 STD of error
(Number of iterations) in θ2 estimate

L BLMF BLMS EWRLS BLMF BLMS EWRLS

10 10 180 21 0.107 0.105 0.071

50 32 226 121 0.069 0.058 0.039

100 185 251 230 0.054 0.039 0.015

the end of the change period.

B. Comparison with Exponentially Weighted Recursive Least

Squares (EWRLS)

In this part, the proposed method is compared with Re-

cursive Least Squares (RLS) method with Forgetting Factor,

known as Exponentially Weighted RLS (EWRLS). EWRLS

method has been widely employed for parameter estimation

of time-varying systems. Therefore, this method has also

been selected as a benchmark to evaluate BLMF. EWRLS

update equations can be written as

Lk+1 =
Pkφk+1

λ + φT
k+1Pkφk+1

Pk+1 =
1

λ
[Pk − Lk+1φ

T
k+1Pk]

θ̂k+1 = θ̂k + Lk+1[Fk+1 − φT
k+1θ̂k],

where matrix P is the covariance matrix and λ is the

forgetting factor, which effectively puts emphasis on the last
λ

1−λ
data points. Figure 4 shows the result of identification,

when L = 10 for BLMF and λ = 0.9091 for EWRLS. The

chosen forgetting factor causes EWRLS to put emphasis on

the last 10 samples; therefore, the two methods are compared

under similar conditions. As can be seen, although the long

term convergence rates of BLMF and EWRLS are similar or

even sometimes better for EWRLS depending on the input,

noise and the type of system, BLMF shows a faster initial

response to the abrupt changes with less fluctuations at k = 0
and k = 100, as shown in Figure 4. The quick response is of

high importance for preventing instability in online control

systems, such as adaptive control of robotic contact tasks.

C. The Effect of Window Length

In this part, we compare the performance of BLMF, BLMS

and EWRLS methods under various window lengths, L.

Window length can affect performance in three different

ways:

1) Convergence speed. As discussed, short window

lengths result in higher convergence rates for all block-

wise methods. This is intuitive, since lesser data points

collected before parameter change are included in the

identification process. The first three columns of Table

I show the convergence rates for θ2 for the three

methods with various window sizes. The table entries

are mean values of the corresponding data collected
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Fig. 5. Comparison between the proposed method (BLMF), the conven-
tional BLMS, and EWRLS, L = 50.

from 5 separate simulations when white noise with

the same standard deviation is the identification input

for all simulations. Although the convergence rate for

each parameter is different, increase in convergence

rate for decreased window length is experienced for

all parameters. Figures 5 and 6 show the results for

BLMF and BLMS methods when the window length

is 50 and 100, respectively. It is clear that although

in both cases the convergence speed becomes slower

as the window length increases, BLMF shows faster

initial convergence rate in all cases. Increasing window

length to 100 closes the gap between BLMF, BLMS

and EWRLS as can be seen in Figure 6 and Table

I. Here window length for EWRLS method refers to

the effect of lambda in creating an equivalent window

length 1/(1 − λ).
2) Effect of noise. The effect of noise on parameter esti-

mates is expected to increase with decrease in window

size. The last three columns of Table I show the stan-

dard deviation of error in θ2 after the convergence as

an indication of the effect of noise in the estimation of

θ2. It reveals that EWRLS has the minimum sensitivity

to noise; thus, it is more robust. This is due to the fact
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Fig. 6. Comparison between the proposed method (BLMF), the conven-
tional BLMS, and EWRLS, L = 100.

that all past collected data points with lower weights

are included in the estimation process.

It can be seen that the sensitivity to noise in BLMF

is more than that of EWRLS whereas, it is close to

BLMS. For window size of L = 10 the STD of error

in θ2 for BLMF is 0.107, which is a relatively small

number and is practically negligible. For larger window

sizes STD becomes even smaller. Similar patterns can

be derived for the other identified parameters of the

system.

3) Computational complexity. Increasing window size

makes computations more complex in BLMS and

BLMF. However, for applications, in which the input

signal is not persistently exciting for small window

lengths, or the measurement noise is very high, larger

window sizes are required. In such cases, compu-

tational complexity can become an issue in BLMF

which requires calculation of the cubic polynomial

coefficients in (15). Table II compares the performance

of BLMF, BLMS and EWRLS methods for various

window sizes in terms of computational load. The

“Elapsed Time” denotes the time it takes in seconds

for any of the algorithms to go through 1500 iterations.
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TABLE II

COMPUTATIONAL LOAD OF BLMF, BLMS AND EWRLS METHODS

Elapsed Time Maximum Sampling Rate
(sec./1500 iterations) (Hz)

L BLMF BLMS EWRLS BLMF BLMS EWRLS

10 0.6238 0.1760 0.1344 2439 8333 11110

50 1.4997 0.1924 0.1322 1000 7692 11110

100 2.5635 0.2160 0.1351 589 7143 11110

This value affects the minimum sampling time or max-

imum sampling frequency at which the identification

process can be implemented in real time.

As it can be seen from the right three columns of Table

II that BLMF can be implemented at the rate of 1
kHz for window sizes up to 50. For larger window

sizes, a slower sampling frequency should be utilized.

Although, BLMF is more computationally expensive

for small window sizes, the convergence speed can go

over 4 times higher than BLMS and EWRLS.

V. CONCLUSIONS

In this paper, the problems of convergence rate in dynamic

parameter estimation in the presence of abrupt changes as

well as noise in time-varying systems have been addressed.

To this end, we have first derived a unique closed-form

solution for the steepest descent correcting gain in the Least

Mean Fourth optimization problem. We have also proposed

a Block Least Mean Fourth (BLMF) iterative identification

method and numerically compared its performance with

those of the Block Least Mean Square and Exponentially

Weighted RLS (EWRLS) identification methods in the pres-

ence of measurement noise in terms of convergence rate,

computational load and sensitivity to noise.

Although the proposed BLMF method is computationally

more expensive than BLMS and EWRLS due to the cal-

culation of non-recursive cubic polynomial coefficients for

correcting gain, it produces faster convergence rate up to

certain window size (in our case 100 samples). For small

window size of 10 samples, BLMF is about 3 times compu-

tationally slower than BLMS and about 4 times slower than

EWRLS; yet, it converges 2 to 10 times faster than BLMS

and 2 to 4 times faster than EWRLS for different system

parameters.

The noise sensitivity analysis has revealed that EWRLS is

more robust than the other methods, while BLMF and BLMS

have similar robustness. However, sensitivity to noise in

BLMF is acceptable for practical applications, even with

small window size of 10.

If the measurement noise is high and large window sizes

(more than 100) are required, EWRLS has shown better

performance. However, for small window lengths BLMF is

a better option, since it captures sudden drastic variations

faster than the other methods and it can be implemented in

real time using a sampling frequency of 1 kHz for window

sizes of less than 50, which is needed in practical applications

such as haptics.

Future work will aim toward i) developing faster methods

of finding the correcting gain in order to decrease the

computational complexity, ii) comparing BLMF with other

iterative identification techniques for various changes in

system dynamics, and iii) applying BLMF to online control

applications such as impact and contact control systems.

REFERENCES

[1] O. Nelles, Nonlinear System Identification, Springer- Verlag, 2001
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